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The Bott periodicity theorem is of fundamental importance in many areas of mathematics, from
algebraic topology to functional analysis. It appears unexpectedly in different guises and I would
like to explain some of these as well as the influence it has had on the development of different
fields. I will concentrate on two roles that periodicity plays. First, periodicity allows one to deloop
classifying spaces and thus define cohomology theories. Second, using periodicity, “wrong way”
functoriality maps can be defined and these are of integral importance in the index theorem.

Let me begin with the original statement of Bott, [5]. Consider the infinite versions of the
matrix groups U = limn U(n), and GL(C) = limn GL(n,C) with the limit topology, as well as the
real groups O and GL(R). Then Bott proved

Theorem 0.1 (The Bott Periodicity Theorem)

πn(U) = πn(GL(C)) = { 0 for n even
Z for n odd

Thus the homotopy groups are periodic of period two. In the real case, where one considers the
infinite orthogonal group O, there is a period eight periodicity where the groups are

πn(O) = πn(GL(R)) = Z/2,Z/2, 0,Z, 0, 0, 0,Z for n ≡ 0, · · · , 7 mod 8

Bott’s original proof used Morse theory. An alternate statement is that there is a weak homotopy
equivalence Z × BU → ΩU, the loop space of U . That U → Ω(Z × BU) is a weak homotopy
equivalence is a very general but easy statement, and combined with the previous map provides
us with a weak homotopy equivalence Z× BU→ Ω2(Z× BU). (The corresponding real statement
is that there exists a weak homotopy equivalence Z × BO → Ω8(Z × BO).) Since Z × BU (resp.
Z×BO ) classifies stable isomorphism classes of complex (resp. real) vector bundles, the equivalence
Z×BU→ Ω2(Z×BU) is reflected in an isomorphism of the Grothendieck K group of such stable
isomorphism classes. Namely, K(Σ2X) ∼= K(X) (resp. KO(Σ8X) ∼= KO(X) ) for a compact space
X, or equivalently, K(X × R2) ∼= K(X) where K for non-compact spaces means K-theory with
compact supports, which can be described by finite complexes of vector bundles · · · → Ei+1 →
Ei → Ei−1 → · · · that are exact off of a compact set. This form of the theorem was proved
directly in [2]. Hence the Bott periodicity theorem is the key step in setting up K-theory as an
extraordinary cohomology theory, with Ki(X) = K(Σ|i|X). It is in this way that Bott periodicity
plays a heroic role in extending the definition of K-theory to Banach algebras. Thus, for a complex
Banach algebra A, Ki(A) ≡ πi−1(GL(A)) for i ≥ 1 and periodicity states Ki(A) ∼= Ki+2(A). K0 is
defined, as usual, using projective modules but still satisfies the periodicity above. The proof in the
Banach algebra case is modelled on the proof in [2]. The K-theory of Banach algebras so defined
has many of the wonderful properties that K-theory of spaces has, and deserves to be thought of
as a cohomology of an underlying space (following the Gelfand-Grothendieck philosophy of shifting
the focus from spaces to algebras of functions on the spaces ). This was one of the early inspirations
in the geometric study of non-commuative algebras and in the use of non-commutative algebras to
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study geometric problems, a field of current interest that falls under the rubric of “non-commutative
differential geometry”, [7]. It is the lack of periodicity that makes defining algebraic K-theory for
abstract rings so difficult in addition to not having such desirable properties, for example excision.
It is intersting to point out that once periodicity is “imposed” on algebraic K-theory, that its
character increasingly resembles that of topological K-theory,[9].

In the embedding proof of the index theorem, [3], Bott periodicity emerges as a powerful
tool for producing the essential “wrong way” funtoriality. In fact, in some approaches to the
index theorem, periodicity is practically the same as the index theorem itself. The isomorphism
K0(X) → K0(X ×R2) is given by multiplication by a canonical element in K0(X ×R2), called
the Bott element. Before describing this element, let me describe the Bott periodicity theorem in
its generalized form: the Thom isomorphism in K-theory. Let π : E → X be a complex vector
bundle of rank k over X. The complex structure is more than enough to guarantee that the bundle
is oriented for K-theory, and the Thom isomorphism theorem says

Theorem 0.2 (Bott-Thom isomorphism theorem) There is a canonical isomorphism K0(X)→
K0(E) given by multiplication by an element bE ∈ K0(E)

bE is described by the Koszul complex on E. That is, consider the complex of bundles

0→ Λkπ∗E′ → Λk−1π∗E′ → . . .→ Λ1π∗E′ → π∗E′ → 0

where E′ denotes the dual vector bundle and the maps in the complex are described over a point
e ∈ E by contracting with e. The appearance of the Koszul complex in the description of the Bott
element makes contact with Grothendieck’s formulation and proof of the Riemann-Roch theorem,
suggesting a connection between the Grothendieck-Riemann-Roch Theorem and topological K-
theory. This was carried out by Baum-Fulton-MacPherson in the proof of the Riemann-Roch
Theorem for singular varieties, [4].

An elegant proof of the Bott-Thom isomorphism theorem was given by Atiyah in [1]. Besides
being elegant, it has the advantage of generalizing in several directions, especially to the equivariant
versions, for which, as far as I know, there are still no other proofs. It also established definitively
the close ties between the index theorem and periodicity. I will describe the proof in its modern
formulation. For a topological space X, Atiyah proposed a definition of K∗(X), the K-homology
of X. This is the homology theory corresponding to the generalized cohomology theory K-theory.
His proposed definition was based on some notion of “generalized” elliptic operators that live on
any space X, in such a way that the familiar elliptic operators of geometry would define elements
in K∗(X) when X is a manifold. This idea was successfully carried out by Brown, Douglas and
Filmore and by Kasparov, [6], [8]. These generalized elliptic operators are covariant under maps
and the push forward to a point K0(X) → K0(point) = Z is the index. For a space X there is a
“cap” product K0(X) ×K0(X) → K0(X) which pairs a vector bundle with a generalized elliptic
operator and returns the elliptic operator twisted by the vector bundle. The key idea to the proof
of the Bott-Thom isomorphism theorem is to construct the inverse to multiplication by the Bott
element as a family of elliptic operators. Then by the existence of products (more general than the
cap product defined above) the periodicity theorem reduces to a calculation of an index of a specific
differential operator. In the case of a complex vector bundle, this family is a family of Dolbeault
operators while for real vector bundles it is a family of Dirac operators.

Once the Bott-Thom isomorphism is established, it can be used in a classical way to define
“wrong way” functorialities, which in this case is of essential importance in the index theorem.
An extremely quick sketch of the index theorem goes as follows. Let M be an even dimensional
Spinc manifold. Spinc guarentees the existence of a Dirac operator [D] ∈ K0(M) and the left
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vertical arrow below is capping with this class. This map is in fact surjective and corresponds to
the deformation step in the proof [3]. It is the statement of Poincare duality in K-theory. Embed
M into Rn for large even n. The normal bundle is then endowed with Spinc which is enough to
define a Bott element. The left horizontal arrow is just the Thom-Bott isomorphism (combined
with extending from a tubular neighborhood to all of Rn.

K0(M) → K0(Rn) ∼= Z
↓ ↓ ↓

K0(M) → K0(Rn) → Z

The left commuting square reduces the index theorem to the case of Rn. Hence we use the Bott
periodicity theorem to reduce the index theorem to the case of Rn and then use it again to handle
this case.

I think it is interesting to point out that subsequent to the original periodicity theorem of Bott,
there have appeared other important analogous periodicity phenomena. I would like to point out a
relationship between Bott periodicity and periodicity phenomena that occur in the classification of
topological manifolds (Siebenmann periodicity). Let M be a topological manifold with boundary
∂M . Consider the structure set S(M,∂M); this is the set of topological manifolds with boundary
(N, ∂N) together with a homotopy equivalence h : N → M which is a homeomorphism on the
boundary. Equivalence is homeomorphism commuting up to homotopy. S(M,∂M) is a good first
approximation to the set of homeomorphisms in the same homotopy type as M . (The actual set of
homeomorphism types is a quotient of S(M,∂M).) It turns out that S(M,∂M) is in fact an abelian
group. Siebenmann periodicity states that for M a closed manifold S(M) ∼= S(M × I4,M × ∂I4).
There is actually a factor of Z missing which is akin to the fact that ΩU ∼= Z×BU and not just BU.
Now we relate this to Bott periodicity. Let h : N →M define an element in the structure set. Define
an element in KO[12 ]∗(M) by h∗([dN +d∗N ])− [dM +d∗M ]. The operator d+d∗ denotes the Telemann
signature operator, and can be defined for a manifold with only a Lipschitz structure, which every
topological manifold has (in dimension greater than four). This defines a map S(M)→ KO[12 ]∗(M)
which intertwines the two periodicities. It should be noted that KO[12 ] is four periodic with the
signature operator playing the same role as the inverse of the Bott element as the Dirac operator
does for complex (or real) periodicity. Let me finish by saying that the periodicity theorems here
serve many of the same roles as I have been emphasizing. Namely, because of periodicity, the
classifying spaces used in manifold classification can be delooped to form cohomology theories, and
important non-trivial functorialities can be established.
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