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What is geometric about non-
commutative geometry?

Gelfand [Gelfand] and Grothen-
dieck [Gr] taught us the value of treat-
ing a commutative ring as though it
were the ring of functions on an un-
derlying geometric object. But why
stop there? For many years, algebraists
and algebraic geometers have tried to
extend the tools of their trade—local-
ization, sheaves, differentials, schemes,
and so forth—to the context of non-
commutative rings. The question then
becomes whether or not this is valu-
able. |

The exciting development of the
past two decades, initiated in the arena
of functional analysis and differential
geometry by the author of the book un-
der review, is the appearance of a host
of interesting examples of rings in
which one feels there ought be geom-
etry. These rings arose in applications
to operator algebras, differential topol-
ogy and geometry, and theoretical
physics. As such, the “geometric” study
of these rings is rewarded by the suc-
cess of the applications. Another
bonus of this example-based approach
is that the examples suggest the tools
that facilitate their study, much the
same way that sheaves were invented
to study topological spaces and alge-
braic varieties. Thus, many of the tools
that come out of Connes’s theory are
quite unexpected.

This beautiful, ambitious, and eru-
dite book explains, through many ex-
amples, the phenomena, tools, and
some of the applications of noncom-
mutative geometry. Noncommutative
Geometry is Connes’s answer to the

question, “What is geometric about
noncommutative geometry?”

The mathematical framework from
which Connes’s theory arose and from
which it is, for the most part, still cast
is the theory of operator algebras or,
more specifically, C*-algebras. A C*-al-
gebra is simply a subalgebra A C L(H)
of the bounded linear operators on a
Hilbert space H which is norm-closed
and closed under the adjoint operation
on operators. There is an abstract char-
acterization of a C*-algebra as a
Banach *-algebra in which the algebra
structure and Banach space structure
are compatible. This compatibility is
expressed by the condition that for
all x €A one has |[xx¥| = |]% see
[Gelfand]. However, this definition
hides one of the features that makes
C*-algebras so natural: although the
norm may appear to be an additional
structure, it is, in fact, uniquely deter-
mined by the algebra structure and can
be derived from it by the formula ||| =
(spectral radius xx*)V2.

Another significant feature of C*-
algebras, at least for most of the deep
applications, is the spectral theorem
for continuous functions acting on
normal elements of A. (An element x
of A is called normal if xx* = x¥*z.)
Any commutative C*-algebra is iso-
morphic to the ring of continuous
functions Cy(X) which vanish at infin-
ity on a locally compact set X; see
[Gelfand]. Thus, a commutative C*-al-
gebra contains exactly the information
of alocally compact topological space.
It is in this way that noncommutative
C*-algebras are assumed to play the
role of noncommutative topological
spaces.

A basic example of a noncommuta-
tive C*-algebra is M, (C), the algebra of
n X n complex matrices, or a direct
sum of these. (This exhausts all finite-
dimensional examples, by Wedder-
burn’s theorem.) A slightly more inter-
esting example is M,(Cy(X)), the
algebra of n X n matrices of functions
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on a locally compact space X which
vanish at infinity.

A typical way to form C*-algebras is
to represent a *-algebra on a Hilbert
space and take its norm closure. For ex-
ample, let I" be a discrete group. Then,
the algebraic group algebra C[I] is rep-
resented naturally, via the left regular
representation, on /2(T"), and its norm
closure C;¥(T') is a C*-algebra called the
reduced group C*-algebra of I'. In the
case where I is abelian, C¥(I) is iso-
morphic to Co(f ), the continuous func-
tions which vanish at infinity on the
Pontrjagin dual of I'. For general I', one
likes to think of C;¥(T") as describing the
noncommutative space f‘, which for
many nonabelian I' is a very badly be-
haved classical topological space.

Connes’s book starts out appropri-
ately with one of the motivations of the
theory of operator algebras, namely
quantum physics. In the very first sec-
tion, he shows how Heisenberg redis-
covered matrix multiplication from
empirical results [H]. Classically, ob-
servable physical quantities are repre-
sented by functions on phase space.
Connes shows that if you assumed this
classical picture, then the set of fre-
quencies emitted by an atom would
form a semigroup inside the real num-
bers R; that is, the sum of two emitted
frequencies would also be one. The al-
gebra of observables would be the con-
volution algebra on the group gener-
ated by this semigroup, which (since it
is abelian) is then Cy(T).

Experiments show, however, that
this is not the case. They show that the
frequencies can be represented by the
differences of a small number of terms
v = 73 — 7; (4, j in some index set I,
which is discrete so as to conform to
the observed discreteness of possible
energies of an atom). They, therefore,
obey the Rydberg-Ritz combination
principle, v; = vy + v One then sees
that the set of possible frequencies
does not form a group, but rather a
groupoid. (A groupoid is like a group
in having an associative multiplication
and inverses, but unlike a group, only
certain pairs of elements can be multi-
plied.) Let A = {(4, i, j € I}, and as-
sume the product (7, 7)-(k, [) exists if
and only if j = k and then the product
is (7, ). The algebra of observables is
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then given by sums >a ;5 with product
dictated by the combination principle,

(@)=, G wbe)
k

which one recognizes as the usual rule
for matrix multiplication.

This is actually a special case of a
general construction of a groupoid al-
gebra, similar to a group algebra. Thus,
if G is a groupoid, C[G] consists of fi-
nite formal sums a = Y er a,, a, € C.
The multiplication is given by

(ab)y= Z

Y=Y
One can then form a C*-algebra C(G)
much the same way as we did for a
group, by taking the norm closure in
some representation. Also, let me re-
mark that there is a version of the
group and groupoid C*-algebra when G
has a topology. The matrix algebras
and group algebras are, thus, special
cases of groupoid algebras.

Let me try to explain some of the
situations where noncommutative
spaces arise and some of the examples
that Connes addresses in his book. One
basic operation throughout mathemat-
ics which causes considerable difficul-
ties is the process of forming
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defined as follows. The elements of 3t
are just the pairs (z, y) € R; the mul-
tiplication (x, ¥)-(2, w) exists if y = 2,
and the product is then (z, w), which,
again, is in R by transitivity. The in-
verse of (z, y) is (¥, x); and we see an-
other feature of the notion of groupoid:
there is not just one unit, but many. In
the case of N, the units are the ele-
ments (x, ) and can therefore be iden-
tified with X.

In general, we can think of a
groupoid as a sort of equivalence rela-
tion on the set of units. If, for example,
X is adiscrete set, then the set of equiv-
alence classes of i can be naturally
identified with the set of irreducible
representations of C¥(3R).

In general, we think of C;¥(G) as the
quotient of the set X of units of G by
the groupoid. However, the identifica-
tion of the set of equivalences with
the irreducible representations breaks
down. Although the quotient space may
be really badly behaved, the algebra is
fine. To bring things down to earth,
consider the space [0, 1] X {0, 1}, the
disjoint union of two copies of the unit
interval. Define an equivalence rela-
tion~by (t,7) ~ (6, Dif0<s=t<1.

quotients. Quotients of topo-
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logical spaces by subspaces ¥
or, more generally, by equiv-

An equivalence relation with a non-Hausdorff quotient

alence relations are often
poorly behaved. They can fail to be
Hausdorff or can easily have the triv-
ial topology (only two open sets).
Algebraic geometers are familiar with
the process of forming moduli spaces.
This process itself is a quotient
process. Again, many problems are
faced because the quotient of a variety
is not a variety or the quotient of a
scheme is not a scheme. Notions such
as stack or algebraic space are gener-
alizations of schemes invented so as to
include certain quotients. One of
Connes’s basic ideas is that quotients
are often best expressed as noncom-
mutative spaces.

An important framework for deal-
ing with quotients is, again, the notion
of groupoids. They also arise in alge-
braic geometry in the theory of stacks.
So, for example, an equivalence rela-
tion on a set X, f C X X X, gives rise
to a groupoid (which I will also call i)

X is the space on the left above, and
the interiors of the two intervals get
identified to a single open interval
yielding the figure on the right. The
groupoid algebra of the corresponding
equivalence relation can be identified
with {f: [0, 1] - My(C) |_f(0) and f(1)
are diagonal matrices}. Why is this
groupoid algebra a better description of
this quotient than the quotient itself? For
example, the actual continuous func-
tions on the quotient are exactly the
same as on a closed interval, whereas
the groupoid algebra retains a richer
structure which encodes interesting
features of the space.

Another example is a favorite of
Connes’s. Aperiodic tilings of the plane
arose in the 1950s in connection with
the following problem. Suppose you
are gi{}en a finite number of isometry
types of tiles (prototiles) and are asked
if you can tile the plane with this set of



tiles. (Of course, you are given an infi-
nite number of copies of each type of
tile.) Is there an algorithm to decide if
this set tiles the plane? Wang [GS]
showed that there was no such deci-
sion procedure if and only if there was
a set of tiles which tiled the plane, but
could only tile the plane aperiodically.
The search was on, and soon there was
found an example of a set of prototiles
which was aperiodic (that is, tiled only
aperiodically). This first example had
a ridiculously large number of pro-
totiles in it. This number was gradually
reduced until Penrose found his beau-
tiful examples which had only two
tiles.

An example of a set of Penrose tiles
is

S

a

Here, a = (1 + \/5)/2. We will not go
into why they tile the plane, but they
do. In fact, they tile the plane in an in-
finite number of ways, an infinite num-
ber of distinct ways.

We say two tilings are equivalent if
there is arigid motion of the plane which
brings one set of tiles onto the other.
Connes constructs the moduli space of
tilings of the plane as a noncommutative
space. Although Penrose tilings are ape-
riodic, they possess a property called
quasiperiodicity, which we will express
by the fact that any finite patch of tiles
in one tiling by these two prototiles oc-
curs infinitely often in any other tiling
by the same prototiles.

Thus, if you know all the possible
ways to tile the plane with these two
tiles, and you are given a tiling, it would
still be impossible to determine which
tiling you have in hand by looking at a
finite piece. This is an expression of
the fact that every tiling is arbitrarily
close to every other tiling, so that the
classical quotient has the trivial topol-
ogy, with only two open sets.

According to Connes, the way to

make sense of this
moduli space is as fol-
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Penrose tiling. From Connes, Noncommutative Geometry, p. 89,
©1994, Academic Press.

moduli space is the
quotient K/R, where R is the equiva-
lence relation of eventual equality of
sequences. One then forms the C*-al-
gebra of this equivalence relation
(qua groupoid). This is the correct
“quotient.” Unlike the non-Hausdorff
example above, where the algebra
was not very noncommutative, this al-
gebral is highly noncommutative. In
fact, it is a simple C*-algebra. Out of
this algebra, one can read off some
beautiful properties of the space of
tiles. For example, for a finite patch
of tiles, one can interpret the density
of occurrence of this patch in any
tiling as a sort of dimension associ-
ated to the patch, and because of the
properties of this algebra, the density
must be an element of the subgroup
Z + aZ of R.

Connes describes many more ex-
amples in his book. He also describes
some ways in which noncommutative
geometry enters into the index the-
ory, the Novikov conjecture, har-
monic analysis, geometry, and theo-
retical physics. Along the way, he
develops in a tourist-friendly way the
tools, like K-theory, asymptotic mor-
phisms, and cyclic cohomology. One
can read this material on many levels.
The basic book is written in a way
that anyone can get some of the feel-
ing and ideas of the subject. For those
who want more details, there are
many appendices that cover more

technicalities, and for those who
want to become experts, there are
many references and an extensive
bibliography pointing the reader to
the right place. For all these people,
Connes has accomplished the won-
derful feat of explaining in a simple
and coherent way 20 years (or so) of
his impressive work. I recommend
this book most highly.
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