MATH 104 Fall 2013 COMMON FINAL EXAM

NAME:	_	
SECTION:		
My signature below certifies that I have complied with the University of Pennsylvania's code of academic integrity in completing this examination.		
Your signature NSTRUCTIONS:		

- 1. WRITE YOUR NAME at the top.
- 2. To obtain credit, you **MUST SHOW YOUR WORK**. You can receive partial credit based on your work, even if your final answer is wrong. Likewise, a right answer with poor or no work may not receive full credit.
- 3. There are to be NO calculators, cell phones (or any other kind of technology), or books, or notes during this exam. You are allowed **one double-sided handwritten 8.5 x 11in sheet of notes** during this exam.
- 4. You have 2 hours to complete the exam.
- 5. If you have a question, re-read carefully. These questions should not require clarification, and we will not give hints or explain a misunderstood concept. If you suspect an error in the question or a true ambiguity, please raise your hand and someone will help you directly.

PROBLEM	2	3	4	5	6	7	8	9	10	11	12	13	14	15	TOTAL
SCORE															

- 1. Compute the following improper integral: $\int_0^1 \frac{1}{\sqrt{1-x^2}} dx$.
 - (a) 0
 - (b) 1
 - (c) $\frac{\pi}{2}$
 - (d) π
 - (e) diverges

2. Set up, but do not evaluate, the integral for the area of the surface obtained by rotating the curve

$$y = \ln(x), \quad 1 \le x \le 4$$

about the x-axis.

(a)
$$\int_{1}^{4} 2\pi x \sqrt{1 + x^{-2}} dx$$

(b)
$$\int_{1}^{4} 2\pi \ln(x) \sqrt{1+x^{-2}} dx$$

(c)
$$\int_{1}^{4} 2\pi \ln(x) \sqrt{1 + \ln^{2}(x)} dx$$

(d)
$$\int_{1}^{4} 2\pi x \sqrt{1 + \ln^{2}(x)} dx$$

(e) none of the above

3. Find the first few terms of the Maclaurin series for $f(x) = \int x \sin(-x) dx$

(a)
$$C + \frac{1}{3}x^3 + \frac{1}{3! \cdot 5}x^5 + \frac{1}{5! \cdot 7}x^7 + \dots$$

(b)
$$C - \frac{1}{4}x^2 + \frac{1}{4! \cdot 6}x^4 - \frac{1}{6! \cdot 8}x^6 + \dots$$

(c)
$$C - \frac{1}{3}x^3 + \frac{1}{3! \cdot 5}x^5 - \frac{1}{5! \cdot 7}x^7 + \dots$$

(d)
$$C + x^3 - \frac{1}{3! \cdot 5} x^3 - \frac{1}{5!} x^5 + \dots$$

(e)
$$C + \frac{1}{4}x^2 + \frac{1}{4! \cdot 6}x^4 - \frac{1}{6! \cdot 8}x^6 + \dots$$

(f)
$$C + \frac{1}{3}x^3 - \frac{1}{3!}x^5 + \frac{1}{5!}x^7 + \dots$$

4. Find the volume of the solid obtained by rotating the region bounded by the curves

$$y = x \cdot \cos x$$
 and the x-axis for $0 \le x \le \frac{\pi}{2}$

about the y-axis.

- (a) 4π
- (b) $\frac{\pi^3}{2} 4\pi$
- (c) 1
- (d) $2\pi^2$
- (e) $\frac{\pi^2}{4} 6\pi$
- (f) $4\pi^{3}$

- 5. Evaluate $\int_{1/2}^{1} \frac{y+4}{y^2+y} dy$.
 - (a) $\ln\left(\frac{27}{4}\right)$
 - (b) $\ln\left(\frac{8}{3}\right)$
 - (c) $\frac{1}{2} \ln \left(\frac{8}{3} \right)$
 - (d) $\frac{1}{2} + 3(\ln 3 \ln 2)$
 - (e) $\frac{9}{2} \ln 3 5 \ln 2$

- 6. The probability density function f(x) is equal to ke^{-3x} for $x \ge 0$ and 0 for x < 0. Determine the value of k and the mean μ .
 - (a) $k = 3, \mu = \frac{1}{3}$
 - (b) $k = 3, \mu = -\frac{1}{3}$
 - (c) $k = 1, \mu = \frac{1}{9}$
 - (d) $k = 1, \mu = -\frac{1}{9}$

- 7. Solve $y' = \frac{\cos x}{y^2}$ with initial value $y\left(\frac{\pi}{2}\right) = 1$.
 - (a) $y = \sqrt[3]{3 \sin x 2}$ (b) $y = \sqrt[3]{3 \sin x + 1}$

 - (c) $y = \sqrt[3]{\sin x}$
 - (d) $y = \sqrt[3]{3\sin x}$

- 8. Suppose that $\sum_{n=0}^{\infty} a_n$ converges to 2. Then $\sum_{n=0}^{\infty} e^{a_n}$
 - (a) converges to 1
 - (b) converges to 2
 - (c) converges to 2^e
 - (d) converges to e^2
 - (e) diverges

- 9. Which of these quantities is closest to $\sin(1)$?

 - (a) $\frac{4}{5}$ (b) $\frac{5}{6}$ (c) $\frac{101}{120}$
 - (d) $\frac{51}{60}$
 - (e) $\frac{13}{15}$
 - (f) 1

10. Determine the interval of convergence for the power series

$$\sum_{n=1}^{\infty} \frac{n!}{4^n (2n)!} (x-4)^n$$

- (a) [3,5)
- (b) [3, 5]
- (c) (3,5]
- (d) (3,5)
- (e) $(-\infty, \infty)$
- $(f) \{4\}$

- 11. Find the Taylor polynomial $P_4(x)$ of order 4 for $e^{\sin x}$ at x=0 and evaluate it at x=1. Then $P_4(1)=?$
 - (a) $\frac{1}{8}$
 - (b) 0
 - (c) 9
 - (d) $\frac{1}{3}$
 - (e) 4
 - (f) $\frac{19}{8}$

- 12. A thin plate of constant density $\delta=2$ is bounded between the graphs $y=e^{3x}$ and the lines $x=0,\,x=1$ and y=0. Find the moment about the y-axis of the plate.
 - (a) $\frac{1}{4}(3+2e^3)$
 - (b) $\frac{1}{9}(2+e^3)$
 - (c) $\frac{2}{9}(1+2e^3)$
 - (d) $\frac{3}{7}(1+e^3)$
 - (e) $\frac{1}{3}(2+2e^3)$

13. Which statement is true for the following series

I.
$$\sum_{n=0}^{\infty} \frac{1}{n^3 \cdot \sqrt{n+1}}$$
 II. $\sum_{n=1}^{\infty} \frac{7^n}{2^n - 3n + 2}$ III. $\sum_{n=2}^{\infty} \frac{\cos(n\pi)}{\ln n}$ IV. $\sum_{n=2}^{\infty} \frac{n^2 \cdot \sin(n)}{2^n}$

- (a) All four series diverge
- (b) All converge
- (c) II and III converge
- (d) I and II converge
- (e) I and IV converge
- (f) I and III converge
- (g) II and IV converge
- (h) III and IV converge
- (i) I, II and III converge
- (j) I, III and IV converge
- (k) II, III and IV converge
- (l) I, II and IV converge

14. Which equation best models the following statement? You may assume that P stands for population and t for time.

"The percentage growth rate of a population remains constant at around 3% per year."

- (a) P(t) = P(0) + 0.03tP(0)
- (b) $P(t) = (1.03)^t$
- (c) $P(t) = (1.03)^t P(0)$
- (d) P'(t) = 0.03
- (e) P'(t) = 0.03P(t)
- (f) P'(t) = 3%

- 15. The arc length of the portion of the curve $y = \frac{e^x + e^{-x}}{2}$ from the point where x = 0 to the point where $x = \ln(4)$ is
 - (a) $\frac{11}{4}$
 - (b) $\frac{17}{4}$

 - (c) $\frac{11}{8}$ (d) $\frac{15}{8}$
 - (e) $\frac{17}{8}$
 - (f) infinite