
plot (basic plotting)

The plot command is probably the command you will use most often in Maple. The
purpose of this command, of course, is to produce (two-dimensional) plots.

The syntax of the plot command in general follows the basic Maple

plot(what,how);

pattern, but both the "what" and the "how" can get pretty complicated.

In the most basic form of the plot statement, "what" is an expression to be plotted and
"how" indicates the domain on the horizontal axis over which the plot is to be displayed:

> restart:

> plot(x^2-x,x=-2..2);

x

210-1-2

6

5

4

3

2

1

0

Notice here that Maple automatically chose a scale on the vertical axis. The scale it chooses
is such that the plot over the entire specified domain is visible (i.e., the graph does not "run
off" the top of the plot). It is possible to restrict the range on the vertical axis as well, as
follows:

> plot(x^2-x,x=-2..2,y=-1..2);

66

0

-0.5

-1

x

210-1-2

y

2

1.5

1

0.5

There is another important difference between the two plots above besides the change of
scale on the vertical axis -- namely, the vertical axis on the second plot has a label. Maple
takes the axis labels from the left side of the domain and range specifications.

It is possible not to give the label for the vertical axis, if you don't want it printed. If the
"what" to plot is an expression, the variable in the domain specification must be specified,
however. This is illustrated by the following:

> plot(x^2-x,x=-2..2,-1..2);

0

-0.5

-1

x

210-1-2

2

1.5

1

0.5

>

67

Plotting more than one curve on the same axes: It is possible to do this. But Maple
looks for the first (un-parenthesized) comma in the plot syntax to dilineate the "what"
from the "how". Thus, your list of things to plot must be enclosed within braces { }. For
example:

> plot({x^2,x^3},x=-2..2,y=-2..2);

y

x

2

2

1

0
1

-1

-2

0-1-2

Common errors in basic plotting: The most common syntax error to make while
plotting is to forget the braces when you are plotting more than one curve on the same axes.
Other than syntax errors, the most common mistakes to make when plotting involve
incorrect specification of variables. There are two kinds of errors:

1. Using a domain value that already has a specific value . It is important to make sure that
the variable that is supposed to vary during the plot isn't already declared to be a constant
(perhaps in the distant past during the Maple session). Making this error results in an
error message, because Maple thinks you are trying to assign a new value to a constant
("invalid arguments"):

> x:=3:

> plot(x^2,x=-2..2);
Error, (in plot) invalid arguments

(Now we reset the value of x so that we don't run into the problem we have
just illustrated.)

68

> x:='x';
x := x

2. Not specifying a domain variable, or specifying the wrong domain variable . If your
expression involves t, then you must let t=-2..2, not x=-2..2 (or whatever the range
is). This kind of mistake results in the dreaded "invalid arguments" or "empty plot"
messages:

> plot(t^3,x=-2..2);
Warning, unable to evaluate the function to numeric values in the region;
see the plotting command's help page to ensure the calling sequence is
correct

Error, empty plot

> plot(t^3,-2..2);
Warning, unable to evaluate the function to numeric values in the region;
see the plotting command's help page to ensure the calling sequence is
correct

Error, empty plot

FANCIER PLOTTING:

The plot command is incredibly powerful and versatile. All of the ins and outs of plot
options take a fair amount of getting used to. We will cover a few of them here.

Plotting points: It is possible to have Maple plot points. This is often useful when
comparing empirical data with a mathematical model. There are two ways to do this,
depending on how the points are generated. If you have a list of specific points to plot,
you can assign them to a name as follows (you may replace the name "ptlst" with any of
your own choosing -- except those in the list of "reserved words"):

> ptlst:=[1,2],[1.5,1],[2,-1],[2.5,0.5],[3,1],[3.5,0.6],[4,0.2
]:

>

In this statement, the variable ptlst is a list of points. Each point is an ordered pair of
numbers enclosed in square brackets (this is different from the usual convention in
mathematics). To plot the list, we must enclose the entire list in square brackets, as
follows:

69

> plot([ptlst],style=POINT);

2

4

1.5

3.5

1

0.5

3
0

-0.5
2.5

-1

21.51

Maple can use other symbols for the points, including circles and boxes. The optional
phrase: symbol=circle or symbol=box is used for this purpose, as follows:

> plot([ptlst],style=POINT,symbol=circle);

2

4

1.5

3.5

1

0.5

3
0

-0.5
2.5

-1

21.51

>

If you replace style=POINT with style=LINE, the dots will be connected by straight
lines (in the order the points were given -- this can make for interesting-looking plots if the
points are mixed up).

If the points come from evaluating an expression at several values of x, you can use plot
in its usual form, but specify style=POINT (and a symbol option if you like):

70

> plot(x^2,x=-2..2,style=point,symbol=cross);

4

x

3

2

2

1

0
10-1-2

The minimum number of points plotted this way is about 50. You can insist that more
points be plotted using the "numpoints" (number of points) option as follows (we do not
show the plot):

> plot(x^2,x=-2..2,style=POINT,numpoints=150);

4

x

3

2

2

1

0
10-1-2

>
71

COMBINING PLOTS, Labelling Plots ...

Maple's fanciest specialty plotting functions are contained in a separate library called "
plots". For basic plotting, there are two commands from the plots library which are
especially useful: textplot and display. To load these two commands into the
computer memory, use the statement:

> with(plots,textplot,display);
textplot, display[]

The display command is useful for combining different kinds of plots into one picture.
The various kinds of plots that can be combined are standard plots of expressions, plots of
points, plots of text (what textplot is for, useful for labelling things), and animations.

For example, suppose we wish to combine the point plot of the variable " ptlst" we
defined above, and a plot of the function sin(3*x). To do this, we define two separate
plots, assign them to variables, and then display them together as follows:

> plot1:=plot([ptlst],style=POINT,symbol=circle):

> plot2:=plot(sin(3*x),x=0..4):

>

When defining and assigning plots, it is very advisable to use a colon rather than a
semicolon. The thing that gets assigned to the variable (plot1 and plot2 in these
examples) is Maple's list of internal instructions for producing the plot -- a long,
complicated sequence of computer-speak that is best left undisplayed.

The display command uses the standard display(what,how) Maple syntax. In this
case "what" is a set of "plot structures", and "how" is often an expression of the form
view=[a..b,c..d], which specifies the horizontal and vertical ranges to be displayed:

> display({plot1,plot2},view=[0..4,-1..2]);

72

0.5

0

-0.5

-1

43210

2

1.5

1

Another reason to use display is to attach labels to objects in your plots. You do this by
putting the labels in a separate plot called a textplot. The textplot command takes
as its argument a single or a set of "text objects", all of which look like [a,b,`words`]
-- it places the words inside the quotes (they are both left quotes, on the keyboard to the
left of the numeral 1) on the plot so that they are centered at the point (a,b). To see this at
work, we plot a function and its derivative, and label them on a graph:

> y:=(1+x^2)*exp(-x^2/2): d:=diff(y,x):

> F:=plot({y,d},x=-3..3):

> G:=textplot({[1,1,`function`],[0.75,0.45,`derivative`]}):

> display({F,G});

derivative

function

x

3210-1

1

-2

0.5

-3
0

-0.5

Optional special topic: A word about plotting functions (as opposed to expressions), and
one situation in which it is a good idea: Sometimes, you will have the relationship you

73

want to plot in the form of a function, rather than an expression, for example:

> f:=x->x^3*exp(-x):

In such a situation, you can simply plot f(x), which is an expression, using the
information given above. Alternatively, you may use plot in the following form:

> plot(f,0..3);

1.2

1

0.8

0.6

0.4

0.2

3
0

2.521.510.50

Usually, there is no particular reason to favor one version of plot over the other.
However, it is imperative not to confuse them. Neither statement

> plot(f(x),0..3);
Warning, unable to evaluate the function to numeric values in the region;
see the plotting command's help page to ensure the calling sequence is
correct

Error, empty plot

nor

> plot(f,x=0..3);
Error, (in plot) invalid plotting of procedures, perhaps you mean plot(f,
0 .. 3)

will work correctly.

The one situation in which function-plotting is de riguer is when you have defined a
function that contains an "if-then" clause (a step-function, or piecewise-defined function).
For example:

74

> f:=x-> if x<3 then x+1 else (x-1)^2 fi:

This function is equal to x+1 if x is less than 3 and is equal to (x-1)^2 otherwise. If we
try to plot it ths usual way, we will get an error message:

> plot(f(x),x=0..5);
Error, (in f) cannot determine if this expression is true or false: x < 3

This is because Maple attempts to understand the function before it has a value for x. On
the other hand, the following way will work:

> plot(f,0..5);

3210

16

14

12

10

8

6

4

2

54

(incidentally, from the plot we can see that f is probably continuous but not differentiable
at x=3).

Plotting options: There are many options you can invoke when doing plots so that you
can make the plot look like you want it. For example, you can control the color of a graph
with the "color=" option (Maple knows many colors, for instance "color=red" or
"color=green"), or make the curves plot thicker with the "thickness=" option (the plots
above all use the default "thickness=1", but you can use bigger integers than 1 to get thicker
plots). Another useful option is "scaling=constrained", which tells Maple to use the same
scale on the x and y axes -- this makes circles look like circles rather than ellipses, and the
slopes of lines are really what they appear to be. Here is a plot that uses all of these
options:

> plot(x^2,x=-2..2,color=blue,thickness=3,scaling=constrained)
;

75

4

x

3

2

2

1

0
10-1-2

>

76

