# Makeup Final Exam, Math 240: Calculus III September, 2011 

No books, papers or may be used, other than a hand-written note sheet at most $8.5^{\prime \prime} \times 11^{\prime \prime}$ in size. All electronic devices must be switched off during the exam.

This examination consists of nine (9) long answer questions and one (1) true/false question. Partial credits will be given only when a substantial part of a long answer question has been worked out. Merely displaying some formulas is not sufficient ground for receiving partial credits.

- Your name, printed:
- Your Penn ID (last 4 of the middle 8 digits):

My signature below certifies that I have complied with the University of Pennsylvania's code of academic integrity in completing this examination.

> Your signature

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | Total |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  |  |  |  |  |  |  |  |  |  |

Name:

1. For what values of $k$ is the following matrix singular?

$$
\left(\begin{array}{ccc}
2 & -3 & 1 \\
2 & k & 0 \\
-k & -6 & 4
\end{array}\right)
$$

Ans. $k=$

Name:
2. Consider the following differential equation

$$
\left[x(1-x) \frac{d^{2}}{d x^{2}}+(3-4 x) \frac{d}{d x}-2\right] u(x)=0 .
$$

(a) Find a real number $\mu$ such that there exists a solution of the form

$$
u(x)=x^{\mu} \cdot\left(1+\sum_{n \geq 1} a_{n} x^{n}\right) .
$$

Ans. $\mu=$
(b) For the value of $\mu$ you found in (a), determine the coefficients $a_{1}, a_{2}, a_{3}$.

Ans. $a_{1}=$ $\qquad$ , $a_{2}=$ $\qquad$ , $a_{3}=$ $\qquad$ .

Name:
3. Find a solution of the differential equation

$$
\frac{d}{d t} \vec{x}(t)=\left(\begin{array}{cc}
-1 & 4 \\
1 & -1
\end{array}\right) \vec{x}(t), \quad \vec{x}(t)=\binom{x_{1}(t)}{x_{2}(t)}
$$

which satisfies

$$
\lim _{t \rightarrow \infty} \vec{x}(t)=0 \quad \text { and } \quad x_{2}(0)=1
$$

Ans. $\vec{x}(t)=$

Name:
4. Let $A$ be the $4 \times 4$ matrix.

$$
A=\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & -1 & 1 & -1 \\
1 & 1 & -1 & -1 \\
1 & -1 & -1 & 1
\end{array}\right)
$$

(a) (4 pts) Compute the matrix $A^{2}$ and find all eigenvalues of $A$

Ans. $A^{2}=$

The eigenvalues of $A$ are $\qquad$ .
(b) ( 6 pts ) Is $A$ diagonalizable? If so, find an invertible matrix $C$ such that $C^{-1} \cdot A \cdot C$ is a diagonal matrix. If not, explain why such a matrix $C$ does not exist.
5. Let $D=\left\{(x, y, z) \in \mathbb{R}^{3} \mid 4 \leq x^{2}+y^{2}+z^{2} \leq 9\right\}$, the solid region between the sphere of radius 3 and the sphere of radius 2 , both centered at the origin. Let $S$ be the boundary of $D$, consisting of the sphere $S_{3}$ of radius 3 and the sphere $S_{2}$ of radius 2, both centered at the origin. Orient $S$ by the unit normal vector field on $S$ such that

$$
\vec{N}(x, y, z)= \begin{cases}\frac{1}{3}(x \vec{i}+y \vec{j}+z \vec{k}) & \text { if }(x, y, z) \in S_{3} \\ -\frac{1}{2}(x \vec{i}+y \vec{j}+z \vec{k}) & \text { if }(x, y, z) \in S_{2}\end{cases}
$$

Compute the surface integral

$$
\iint_{S} x \vec{i} \cdot \vec{N} \mathrm{~d} A
$$

i.e. the flux of the vector field $\vec{F}(x, y, z)=x \vec{i}$ through the boundary $S$ of the solid $D$.

Ans. The surface integral is $\qquad$ .

Name:
6. Let $A$ and $B$ be two $5 \times 5$ matrices such that $A B=B^{3}$ and 4 is an eigenvalue of $B$, find one eigenvalue of $A$.

Ans. One eigenvalue of $A$ is $\qquad$ .

Name:
7. Find all values of $r$ such that the following differential equation

$$
2 x^{2} y^{\prime \prime}+4 x^{2} y^{\prime}+3 y=0
$$

has a solution of the form $y=x^{r} \cdot\left(1+\sum_{n=1}^{\infty} c_{n}(x)^{n}\right)$.

Ans. $r=$ $\qquad$ .

Name:
8. Find the general solution to the following system of differential equations

$$
\frac{d}{d t}\left(\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right)=\left(\begin{array}{ccc}
-2 & 0 & 0 \\
0 & 3 & 1 \\
0 & 0 & 3
\end{array}\right) \cdot\left(\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right)
$$

Ans. $\left(\begin{array}{l}x_{1}(t) \\ x_{2}(t) \\ x_{3}(t)\end{array}\right)=$
9. Let $S=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x^{2}+y^{2}+z^{2}=1\right.$ be the unit sphere in $\mathbb{R}^{3}$ centered about the origin. Orient $S$ by the unit normal vector field $\vec{N}:=x \vec{i}+y \vec{j}+z \vec{k}$ on $S$. Compute the oriented surface integral

$$
\iint_{S} \operatorname{curl}\left(\frac{x^{3} \vec{i}+y^{3} \vec{j}+z^{3} \vec{k}}{\sqrt{x^{2}+4 y^{2}+9 z^{2}}}\right) \cdot \vec{N} \mathrm{~d} A
$$

Ans. This integral, also written as $\iint_{S} \operatorname{curl}\left(\frac{x^{3} \vec{i}+y^{3} \vec{j}+z^{3} \vec{k}}{\sqrt{x^{2}+4 y^{2}+9 z^{2}}}\right) \cdot \vec{N} \mathrm{~d} S$, is $\qquad$ .
10. True/False questions. For each of the following statements, decide whether it is true or false and CIRCLE YOUR ANSWER.
(a) Let $x_{1}(t)$ and $x_{2}(t)$ be two solutions of the differential equation

$$
\frac{d^{2} x}{d t^{2}}+5 \frac{d x}{d t}+6 x(t)=t^{3}+\cos (t)
$$

Then $\lim _{t \rightarrow \infty}\left(x_{1}(t)-x_{2}(t)\right)=0$.
Answer. True False
(b) Let $A$ be a $4 \times 4$ matrix whose characteristic polynomial $f(x):=\operatorname{det}\left(x \cdot \mathrm{I}_{4}-A\right)$ is equal to $(x-1)^{2}(x-2)(x-3)$. Then there does not exist an invertible $4 \times 4$ matrix $C$ such that $C^{-1} \cdot A \cdot C$ is a diagonal matrix.
Answer. True False
(c) Suppose that $C$ is a smooth closed curve on $U=\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2}>1\right\}$, oriented counterclockwise, and $P(x, y)$ and $Q(x, y)$ are two continuously differentiable functions on $U=\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2}>1\right\}$. Suppose moreover that $\frac{\partial Q}{\partial x}=\frac{\partial P}{\partial y}$ on $U$, then

$$
\oint_{C} P(x, y) d x+Q(x, y) d y=0 .
$$

Answer. True False
(d) Let $\vec{F}(x, y, z)$ and $\vec{G}(x, y, z)$ are two continuously differentiable vector fields on $\mathbb{R}^{3}$ such that $\vec{F}(x, y, z)=\vec{G}(x, y, z)$ for all $(x, y, z)$ on the sphere $\left\{(x, y, z) \mid x^{2}+y^{2}+z^{2}=100\right\}$. Let $B=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x^{2}+y^{2}+z^{2} \leq 100\right\}$. Then

$$
\iiint_{B} \operatorname{div}(\vec{F}) d x d y d z=\iint_{B} \operatorname{div}(\vec{G}) d x d y d z
$$

Answer. True False
(e) Suppose $A$ and $B$ are two non-zero $3 \times 3$ matrices such that $A \cdot B=0 \cdot \mathrm{I}_{3}$. Then both $\operatorname{det}(A)=\operatorname{det}(B)=0$.
Answer. True False

