
Nonlinear Pólya Urn Models and Self-Organizing Processes

Tong Zhu

A Dissertation

in

Mathematics

Presented to the Faculties of the University of Pennsylvania in Partial
Fulfillment of the Requirements for the Degree of Doctor of Philosophy

2009

Robin Pemantle
Supervisor of Dissertation

Tony Pantev
Graduate Group Chairperson



Acknowledgments

First and foremost, I am deeply grateful to my advisor Robin Pemantle. His patient

guidance and kind support made this work possible. I am thankful for the chance

to study with him and appreciate all the help he has given to me for all these years.

Thank you Robin!

I also want to thank Herman Gluck, Herbert Wilf and Tony Pantev for all the

help they have given to me during my graduate study. I am so lucky to get your

support.

A lot of thanks to Janet Burns, Monica Pallanti and Paula Scarborough, and

everyone in the Math Department. Thank you for all the help and making the

department like a family.

Last, but not least, I would like to express my deepest gratitude to my parents.

Without their unconditional love and support, I would not be able to do what I

have accomplished.

ii



ABSTRACT

Nonlinear Pólya Urn Models and Self-Organizing Processes

Tong Zhu

Robin Pemantle, Advisor

We consider a class of nonlinear Pólya urn models, which are applied to model

self-organizing processes. The first two chapters are devoted to a survey of urn

models, theories and methods. In the third chapter, we study the nonlinear urns,

which show monopoly properties. We found the asymptotic distributions of the

minority color and the attraction time. We showed the asymptotic behaviors of the

final monopoly stage. Our main method is the exponential embedding. We have

also found a simple probabilistic way to prove combinatorial identities involving

symmetric functions. In the last part, we introduce the applications of Pólya urn

models and the future studies.
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Chapter 1

Introduction

Urn models are a group of simple and useful probabilistic models ([68], [69]). One

significant star in this family is the Pólya urn model and its generalizations.

In 1923, Eggenberger and Pólya ([39]) first introduced the original Eggenberger-

Pólya urn model (usually simplified as Pólya urn) to study the contagious diseases.

Through the past 80 years, people have generalized this model in many different

ways. These models are commonly named generalized Pólya urn models (GPU).

Not only have the GPU models been widely developed in theories, but they have

also been applied to numerous fields, for example, statistics, computer science,

biomedicine and economics, etc.
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1.1 Basic Models and Notations

A single-urn GPU model involves an urn containing balls of different colors (or

types). At each discrete time (some generalizations consider continuous time inter-

vals), some balls are added or removed according to probabilities depending on the

composition of balls of different colors at the time.

Let (Ω,F ,P) be a probability space. The randomness we need on this space is

defined by a sequence of IID random variables uniform on [0, 1], say {Unk : n ≥

1, k ≥ 1}. Let Fn (n ≥ 1) be the σ-field generated by {Uik : 1 ≤ 1 ≤ n, k ≥ 1} and

F0 be the trivial one. In most cases, {Un1} is enough, hence simplified as {Un}. For

an event A ∈ F , the indicator function of A is

1A(x) :=


1 x ∈ A

0 x /∈ A.

Let Zd
+ denote the d-dimensional nonnegative integer space. For any vector

r = (r1, ..., rd) ∈ Zd
+, define |r| = r1 + ... + rd. Let R(n) = (R1(n), ..., Rd(n)) be a

homogeneous Markov chain with state space Zd
+. In GPU models, Ri(n) represents

the number of balls of color i at time n. Define the normalized vector of R(n):

X(n) :=


R(n)
|R(n)| if |R(n)| 6= 0

0 if |R(n)| = 0,

which shows the composition of colors in the urn. Denote ∆d−1 := {(x1, ..., xd) ∈

Rd :
∑d

i=1 xi = 1, and xi ≥ 0 for all i} to be the standard (d− 1)-simplex. Hence,
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X(n) ∈ ∆d−1. Let Υ : Zd
+ × Zd

+ → [0, 1] be the transition kernel of R(n), i.e.

Υ(r, r′) = P(R(n + 1) = r′|R(n) = r). In most GPU models, the transition kernel

Υ depends only on X(n). In this dissertation, we refer {R(n)} to be a generalized

(Pólya) urn process.

Associated with {R(n)}, there are some other random processes. Let {ξn}

be the drawn color sequence, with ξn ∈ {1, ..., d} and P(ξn+1|Fn) := µ(X(n)).

Also define δ(n) = (δ1(n), ..., δd(n)) := ν(X(n)) to be the adding sequence, i.e.

δi(n) := Ri(n+ 1)−Ri(n), showing the replacement schemes, which could be either

time-homogeneous or inhomogeneous.

In the following, we introduce some examples of GPU models:

Original Pólya Urn: Initially, the urn has R1(0) balls of color 1 and R2(0)

balls of color 2. Each time, one ball is drawn out uniformly at random and returned

to the urn with another ball of the same color. Formally, at time n or after the n-th

operation,

P(ξn+1 = i|Fn) =
Ri(n)

R1(n) +R2(n)
, for i = 1, 2.

And δi(n+ 1) = 1{ξn+1=i}.

Friedman’s Urn: In 1949, B. Friedman generalized the Pólya urn model in

such a way that, each time one ball is drawn from the urn at random, it is returned

to the urn with α balls of the drawn color, as well as β balls of the opposite color.

Hence, the distribution of ξn+1 is the same as in the original Pólya urn. And
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δi(n + 1) = α1{ξn+1=i} + β1{ξn+1 6=i}. This gives a matrix form to the replacement

scheme, sometimes called a replacement matrix, which is important in determining

the behavior of the urn process,

A :=

 α β

β α

 .

The replacement scheme can also be time-inhomogeneous. Generally, suppose

the replacement matrix is

A(n) = (aij(n))i,j=1,...,d.

Then the adding sequence can be represented by

(δ1(n+ 1), ..., δd(n+ 1)) = (1{ξn+1=1}, ...,1{ξn+1=d}) ·A(n)

GPU with Urn Functions: In many cases, the measure µ(Xn) = Xn. But

for some generalizations, the draws depend on some urn function. This was first

introduced in [57]. An urn function F(X(n)) = (F1(X1(n)), ..., Fd(Xd(n))) is a

function defined on the (d− 1)-simplex

F : ∆d → ∆d.

In other words, P(ξn+1 = i|Fn) = Fi(Xi(n)).

4



1.2 Classifications of GPU Models

Given a lot of generalizations, it is good to classify them. In any given iteration

of the urn process, it is not hard to see that the drawing and replacing schemes

play the key role. Hence, we may classify GPU models based on µ(Xn) and ν(Xn).

For example, the replacement matrix An could be deterministic or random; a de-

terministic one could be classified by different forms (see for example [44]); even

eigenvalues determine the probability behaviors (see for example [66]).

Remark 1.2.1. In Johnson and Kotz’s book [68], they have pointed out that ”The

way in which the replacement is modified determines the particular subclass of

distributions arising. In particular, the kind of replacement depends on the results

of the sampling.” (pp.176). See their book for more details.

These types of classifications are sometimes more or less physical. More essen-

tially, classifying GPU models based on some characteristics is another idea, like

(partial) exchangeability, which we will discuss more in later chapters, or asymp-

totic behaviors. But on the other hands, these are results of the physical operations.

Knowing their relations might be another important job. For example, Pouyanne

classified some GPU according to their asymptotic behaviors, as well as discussed

the eigenvalue of the matrices.

Outline of this dissertation is as follows. In Section 2, we introduce several

methods to study GPU models and their main results. Section 3 is devoted to the
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discussion of one special type of GPU processes, which shows monopoly properties.

Applications of GPU models are introduced in Section 4. And finally in Section 5,

we will list some open problems.
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Chapter 2

Methods and Theories

2.1 Exchangeability

Exchangeability is a basic property of the original Pólya urn. As a method, it is

not so useful in the study of GPU models, but instead has some applications for

statistics, which will be discussed more in later sections.

Definition 2.1.1. A sequence {Xn} of random variables is exchangeable if for

all n ≥ 2,

(X1, ..., Xn)
D
= (Xπ(1), ..., Xπ(n))

for all π ∈ S(n). And S(n) is the symmetric group of {1, ..., n}.

Theorem 2.1.2 (de Finetti Theorem). A sequence {Xn} of Bernoulli random vari-

ables is exchangeable if and only if there exists a distribution function F (x) on [0, 1]
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such that for all n

P(X1 = x1, ..., Xn = xn) =

∫ 1

0

t
Pn
i=1 xi(1− t)n−

Pn
i=1 xidF (t).

The drawn color sequence of the original Pólya urn model is exchangeable. For

the simplicity of discussion, we will set ξi = 1 if color 1 is drawn and otherwise,

ξi = 0.

Theorem 2.1.3. The sequence {ξn} is exchangeable. Hence, there is a random

variable Θ with values in [0, 1] such that given Θ = θ, the variables ξ1, ξ2, ... are

independent Bernoulli(θ). And the de Finetti measure of {ξn}, i.e. the distribution

of Θ is Beta(R1(0),R2(0)). Conversely, the sequence {ξn} can be constructed by a

Θ randomly chosen from [0, 1] with distribution Beta(R1(0),R2(0)) in the follow-

ing step: each ξn is independently color-1 with probability Θ and is color-2 with

probability 1−Θ.

Proof : Among any n draws, the probability that there are m ≤ n draws of color

1 is always:

R1(0)(R1(0) + 1) · · · (R1(0) +m− 1) ·R2(0)(R2(0) + 1) · · · (R2(0) + n−m− 1)

(R1(0) +R2(0))(R1(0) +R2(0) + 1) · · · (R1(0) +R2(0) + n− 1)

This shows the exchangeability of {ξn}. The conclusion of the distribution follows

from Theorem 2.1.4. �

Theorem 2.1.4. The process {X1(n)}n≥0 converges almost surely to some random

limit X∞. And
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(i) When R1(0) = 1, R2(0) = 1, X∞ has a uniform distribution on [0, 1];

(ii) In general, X∞ has a beta distribution with parameters R1(0) and R2(0).

Proof :

(i) First, {X1(n)}n≥0 is a martingale:

E(X1(n+ 1)|Fn) = E
( R1(n) + 1{ξn+1=1}

R1(n) +R2(n) + 1
|Fn
)

=
R1(n)

R1(n) +R2(n) + 1
+

1

R1(n) +R2(n) + 1

R1(n)

R1(n) +R2(n)

= X1(n).

Obviously, each X1(n) is bounded by 1. By Doob’s martingale convergence

theorem, {X1(n)} converges to a random variable X∞ with probability one.

The distribution of X∞ will be a consequence of the general result in (ii).

(ii) In n draws, the probability that ξi = 1 for all 1 ≤ i ≤ n is

P(ξi = 1, 1 ≤ i ≤ n) =
n−1∏
i=0

R1(0) + i

R1(0) +R2(0) + i
.

On the other hand, by Theorem 2.1.3 and part (i), the Θ in Theorem 2.1.3 is

just X∞. Since {ξn} is exchangeable, from Theorem 2.1.2,

P(ξi = 1, 1 ≤ i ≤ n) = E(Xn
∞).

�
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In 1980, Diaconis and Freedman generalized de Finetti’s theorem for Markov

chains [30].

Definition 2.1.5. Suppose σ and τ are two finite strings on a state space I. We

say σ and τ are equivalent, denoted as σ ∼ τ , if and only if σ and τ have the same

initial state and the same number of transitions from i to j for every pair of states

i and j in I.

With this, we can define the generalization of exchangeability, partial exchange-

ability.

Definition 2.1.6. A sequence X = {Xn}n≥0 on state space I is called partially

exchangeable if for any equivalent strings σ = (σ0, ..., σm) and τ = (τ0, ..., τm) in

Im+1,

P(X0 = σ0, ..., Xm = σm) = P(X0 = τ0, ..., Xm = τm).

Remark 2.1.7. Here we follow the definition of partial exchangeability in Diaconis

and Freedman’s paper [30], which is sometimes called Markov exchangeability.

Definition 2.1.8. Let P be the space of stochastic matrices on I × I. X is a

mixture of Markov chains if there is a probability µ on P such that for all

m ≥ 1 and all finite sequence (i0, ..., im) of elements in I,

P(Xk = ik : 0 ≤ k ≤ m) =

∫
P

m−1∏
k=0

p(ik, ik+1)µ(dp).

Theorem 2.1.9 ([30]). Let X := {Xn}n≥0 be a sequence of random variables defined

on a countable state space I. If X is recurrent, then X is a mixture of Markov chains

10



if and only if X is partially exchangeable. And the mixing measure is uniquely

determined.

In 2000, Muliere, Secchi and Walker constructed a reinforced urn process and

showed that it is partially exchangeable. Let I be a countable state space. With

every i ∈ I, an urn is associated with composition of balls (Ri1(n), ..., Rid(n)) of

d ≥ 2 colors at time n ≥ 0. Given a function q : I × [d] → I, define a reinforced

random walk Zn on I as follows: fixed an initial state i0 ∈ I, assume Z0 = i0 and

for all n ≥ 1, if Zn−1 = in−1 ∈ I, from the urn associated with in−1 a ball is drawn

at random and returned to the urn with another ball of the same color, say color

m ∈ [d]; then set Zn = q(in−1,m).

Theorem 2.1.10 ([82]). {Zn} defined above is partially exchangeable.

Proof : For all n ≥ 1 and finite sequence (i0, ..., in) of I, the marginal distribution

P(Z0 = i0, ..., Zn = in) =
∏
i∈I

∏
m∈[d]

∏li(m)−1
k=0 (Rim(n) + k)∏t(i)−1

k=0

(
k +

∑
m∈[d] Rim(n)

) ,
where li(m) := t(i, q(i,m)) is the number of transitions in (i0, ..., in) from state i to

state q(i,m) and t(i) =
∑

i′∈I t(i, i
′). By computing this probability and definition

of partial exchangebility, the authors proved the theorem. �

By Theorem 2.1.9, when {Zn} is recurrent, it is a mixture of Markov chains.

Muliere, Secchi and Walker [82] also proved the unique mixing distribution on the

stochastic matrices space, which is Dirichlet.
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Reinforced urn processes are more convenient for constructing more general

classes of priors commonly used in Polya trees and beta-Stacy processes.

Comparing with the Pólya urn model, not all Friedman’s urns are exchangeable.

Theorem 2.1.11. If {ξn} is the color sequence generated by a Friedman’s urn, then

{ξn} is infinite and exchangeable if and only if one of the following two conditions

is satisfied:

(a) α ≥ 0 and β = 0;

(b) α = β and R0 = W0.

Hill, Lane and Sufferth [58] studied the exchangeability property of GPU models

with non-identity urn functions. They showed that for 2-color Polya urn models with

urn function f , its drawn color sequence is exchangeable if and only if f(x) = x (i.e.

Pólya), or f(x) ≡ p with p ∈ (0, 1) (i.e. Bernoulli) or f(x) = 1 (i.e. deterministic,

or always draw red balls).

12



2.2 Martingale Method and Stochastic Approxi-

mation

2.2.1 Martingale Method

B. Friedman [49] generalized the original Pólya urn in a way that every time α balls

of the same color as the drawn ball, as well as β balls of the opposite color are added

to the urn. In 1965, D. Freedman [47] used a martingale method and some moment

calculations to show the convergence of {X1(n)}, the sequence of proportions of

color-1 balls in the urn.

Theorem 2.2.1 ([47]). Let ρ = α−β
α+β

.

(i) If ρ > 1
2

and α > 0, β ≥ 0, then limn→∞ n
−ρ(R1(n) − R2(n)) = Z with

probability 1, where Z is some non-degenerate random variable;

(ii) If ρ = 1
2

and α, β > 0, then (R1(n) − R2(n))/
√
n log n

d−→ N(0, (α − β)2), as

n→∞;

(iii) If ρ < 1
2

and α ≥ 0, β > 0, then (R1(n)− R2(n))/
√
n

d−→ N(0, (α − β)2/(1−

2ρ)), as n→∞.

Proof :

(i) Let s0 = R1(0) +R2(0) and an(i) = 1 + i(α−β)
s0+(α+β)n

, i ≥ 0. Define

13



Zn =
R1(n)−R2(n)∏n−1

k=0 ak(1)
.

We compute that

E(Zn+1|Fn) =
[ n∏
k=0

ak(1)
]−1E(R1(n+ 1)−R2(n+ 1)|Fn)

=
[ n∏
k=0

ak(1)
]−1

[R1(n) +
R1(n)α +R2(n)β

R1(0) +R2(0) + (α + β)n

−R2(n)− R1(n)β +R2(n)α

R1(0) +R2(0) + (α + β)n
]

=
[ n∏
k=0

ak(1)
]−1

an(1)(R1(n)−R2(n)) = Zn

So Zn is a martingale. Before showing that Zn converges, we estimate
∏n

k=0 ak(i)

for i ≥ 0.

n∏
k=0

ak(i) =
n∏
k=0

[
1 +

i(α− β)

s0 + (α− β)k

]
=

Γ
(
s0/(α + β)

)
Γ
(
(i(α− β) + s0)/(α + β) + n+ 1

)
Γ
(
(i(α− β) + s0)/(α + β)

)
Γ
(
s0/(α + β) + n+ 1

) .
By Stirling’s formula, Γ(a+ n)/Γ(b+ n) ∼ na−b for a, b real. Hence,

n∏
k=0

ak(i) ∼
Γ
(
s0/(α + β)

)
Γ
(
(i(α− β) + s0)/(α + β)

)niρ. (2.2.1)

14



Then

E
[
(R1(n+ 1)−R2(n+ 1))2|Fn

]
=

R1(n)

s0 + (α + β)n
(R1(n)−R2(n) + α− β)2+

+
R2(n)

s0 + (α + β)n
(R1(n)−R2(n)− α + β)2

=(R1(n)−R2(n))2 + (α + β)2 +
2(R1(n)−R2(n))2(α− β)

s0 + (α + β)n

=an(2)(R1(n)−R2(n))2 + (α + β)2 (2.2.2)

By induction,

E
[
(R1(n+ 1)−R2(n+ 1))2

]
=

n∏
k=0

ak(2)(R1(0)−R2(0))2 +
[ n∑
k=0

k∏
j=0

aj(2)
]
(α + β)2.

In (2.2.1), let i = 2, we get supn E(Z2
n) <∞. So Zn converges to a finite limit

with probability 1. By letting i = 1 in (2.2.1), we complete the proof of part

(i).

(ii) If ρ = (α−β)/(α+β) = 1/2, we first compute the moments of R1(n)−R2(n).

IfR1(0) = R2(0), R1(n)−R2(n) has a symmetric distribution, hence E
[
(R1(n)−

R2(n))2k+1
]

= 0 for all k nonnegative integer. When R1(0) 6= R2(0) and k = 0,

similar to the computation of (2.2.2),

E(R1(n+ 1)−R2(n+ 1)) =
n∏
j=0

aj(1)(R1(0)−R2(0)) ∼ n
1
2 .

15



When k 6= 0,

E
[
(R1(n+ 1)−R2(n+ 1))2k+1|Fn

]
=

R1(n)

s0 + (α + β)n

(
R1(n)−R2(n) + α− β

)2k+1
+

+
R2(n)

s0 + (α + β)n

(
R1(n)−R2(n)− α + β

)2k+1

=
R1(n)

s0 + (α + β)n

2k+1∑
j=0

(
2k + 1

j

)
(R1(n)−R2(n))j(α− β)2k+1−j+

+
R2(n)

s0 + (α + β)n

2k+1∑
j=0

(
2k + 1

j

)
(R1(n)−R2(n))j(−α + β)2k+1−j

=an(2k + 1)(R1(n)−R2(n))2k+1 +
k∑
j=1

{[(2k + 1

2j

)
(α− β)2j+

+

(
2k+1
2j+1

)
s0 + (α + β)n

(α− β)2j+1
]
(R1(n)−R2(n))2k+1−2j

}
(2.2.3)

Let

bn(2k + 1) =
k∑
j=1

{[(2k + 1

2j

)
(α− β)2j +

(
2k+1
2j+1

)
s0 + (α + β)n

(α− β)2j+1
]

(R1(n)−R2(n))2k+1−2j
}

By induction, we can get bn(2k + 1) ∼ nk−
1
2 (log n)k−1. From the recursion

(2.2.3) and (2.2.1),

E
[
(R1(n+ 1)−R2(n+ 1))2k+1

]
∼ nk+ 1

2 (log n)k

So

E
[
(R1(n+ 1)−R2(n+ 1))2k+1

]
= o
[
(n log n)k+ 1

2

]
.
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Similarly, we can get

E
[
(R1(n+ 1)−R2(n+ 1))2k

]
∼ µ(2k)(n log n)k,

where µ(2k) is defined recursively by

µ(2k + 2) =
(α− β)2

k + 1

(
2k + 2

2

)
µ(2k),

with µ(0) = 1.

Note that µ(2k) is the 2k-th moment of a normal distribution with mean 0

and variance (α−β)2. Normal distribution is determined uniquely by its mo-

ments. Hence by moment convergence criterion, (R1(n)−R2(n))/
√
n log n

d−→

N(0, (α− β)2).

(iii) The proof is similar to (ii), by estimating the moments of (R1(n)−R2(n)). �

Corollary 2.2.2. When β 6= 0, limn→∞R1(n)/[R1(n)+R2(n)] = 1
2

with probability

1.

2.2.2 Stochastic Approximation

A stochastic approximation process (algorithm) {X(n)}n≥0 is a discrete time

stochastic process defined in Euclidean space Rd and in general can be written as

X(n+ 1) = X(n) + εn
(
F(X(n)) + ζn+1

)
. (2.2.4)
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In (2.2.4), {εn}n≥1 are a given sequence called the step sizes and satisfy

εn ≥ 0 for all n ;
∑

εn =∞ and lim
n→∞

εn = 0;

F : Rd → Rd is a deterministic vector field on Rd and ζn ∈ Rd are (deterministic or

random) noises.

One of the oldest stochastic approximation algorithm was introduced by Robbins

and Monro in 1951 [99]. They applied such a method to approximate the solution

of an equation M(x) = a, which has a unique root, say x = θ. In this equation,

suppose M(x) is unknown and there are only some experiment observations, and a

is a given constant. They set up a recursive algorithm with (2.2.4) in a form

xn+1 = xn + εn(a− yn),

where E(yn) = M(x).

Theorem 2.2.3 ([99]). Suppose

(i) yn are bounded almost surely;

(ii) εn is of type 1/n, i.e. there are constants 0 < c1 < c2 such that c1/n ≤ εn ≤

c2/n for all n;

(iii) M is nondecreasing and M ′(θ) > 0.

Then xn → θ in probability.

The Robbins-Monro approximation is a basis of stochastic approximation (algo-

rithm). It has also been an important method to study GPU models, for example,
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Hill, Lane and Sudderth [57], Arthur, Ermoliev and Kaniovski [3], Pemantle [90]

and [91], Benaim and Hirsch [17], Higueras, Moler, Plo and Miguel, etc. Some of

the results might be applied to general stochastic approximation processes as well.

For our GPU urn models, following the notation in Chapter 1, suppose an urn

initially has d balls with d different colors. Each time the probability of drawing

a color depends on an urn function F(X(n)), and then one new ball of the drawn

color is added to the urn. The expected change of X(n) is:

E(X(n+ 1)−X(n)|Fn) =
1

d+ n+ 1

[
F(X(n))−X(n)

]
.

Hence, {X(n)} is a stochastic approximation process:

X(n+ 1)−X(n) =
1

d+ n+ 1

[
F(X(n))−X(n) + ζn+1

]
, (2.2.5)

where ζn+1 is the martingale difference noise X(n + 1) − E(X(n+))|Fn) and obvi-

ously E(ζn+1|Fn) = 0.

First, the limit of a stochastic process {X(n)} satisfying (2.2.5) lies in the fixed

point set of F, i.e. the set S := {p : F(p) = p}. In this section, S is only refered

to F’s fixed point set. For a two color case, d = 2, we have

Theorem 2.2.4. If F is continuous, then P
(

limn→∞X1(n) ∈ S
)

= 1.

Proof : First, for ∀ε > 0, let

Uε := {x : F (x)− x > ε}

Dε := {x : F (x)− x < −ε}.
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If there is some n0 ≥ 0 such that X1(n0) ∈ Uε, then

P( lim
n→∞

X1(n) /∈ Uε) = 1. (2.2.6)

To prove (2.2.6), consider the first exit time τ of {X1(n)} from Uε and let τn be the

minimum of τ and n ≥ n0. Then the event {τn ≥ k} is Fk−1 measurable. By

E(X1(τn)) ≥ E
( n∑
k=n0+1

(X1(k)−X1(k − 1))1{τn≥k}
)

≥ E
( n∑
k=n0+1

E(X1(k)−X1(k − 1)|Fk−1)1{τ=∞}
)
. (2.2.7)

Note that E(X1(τn)) ≤ 1 and by Markovian property and (2.2.5), if X1(k−1) ∈ Uε,

then

E(X1(k)−X1(k − 1)|Fk−1) = E(X1(k)−X1(k − 1)|X1(k − 1))

≥ ε/(d+ k). (2.2.8)

From (2.2.7) and (2.2.8), we can get for ∀n ≥ n0 and ∀n0 ≥ 0,

ε
n∑

k=n0+1

P(τ =∞)/(d+ k) ≤ 1.

But
∑

k 1/(d+ k)→∞, so P(τ =∞ = 0. Similarly,

P( lim
n→∞

X1(n) /∈ Dε) = 1. (2.2.9)

For ∀ε > 0, (2.2.6) and (2.2.9) are true. Hence

P(| lim(X1(n)− F (X1(n))| ≤ ε) = 1.
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So P(limX1(n) ∈ S) = 1. �

Can all fixed points be the limit of X1(n)? The answer is no.

In 1980, Hill, Lane and Sudderth, who first raised the concept of urn function,

considered the two color case, d = 2.

Definition 2.2.5. A point p0 ∈ [0, 1] is called an upcrossing point (downcrossing

point) for F if p0 ∈ S and for all p in some neighborhood of p0, p < p0 ⇒ F (p) < p

(F (p) > p, respectively) and p > p0 ⇒ F (p) > p (F (p) < p, resp.). And p0 ∈ S is a

touchpoint if F (p) > p (or F (p) < p) for all p 6= p0 in a neighborhood of p0.

Theorem 2.2.6 ([57], I). If F is continuous in a neighborhood of p0 ∈ [0, 1] and p0

is a downcrossing point of F , then P(X1(n)→ p0) > 0.

Arthur, Ermoliev and Kaniovski generalized Hill, Lane and Sudderth’s results

to higher dimensional situations. For d ≥ 2, suppose 〈, 〉 is the inner product of Rd.

A classification of fixed points is:

Definition 2.2.7. A point p0 ∈ S is called a stable point if for some neighborhood

U of p0, there is a symmetric positive definite matrix A such that

〈A · [p− F(p)],p− p0〉 > 0, ∀p ∈ U ∩ [0, 1]d, p 6= p0.

Similarly, a point p0 ∈ S is called an unstable point if for some neighborhood U

of p0, there is a symmetric positive definite matrix A such that

〈A · [p− F(p)],p− p0〉 < 0, ∀p ∈ U ∩ [0, 1]d, p 6= p0.
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Theorem 2.2.8 ([3], I). If p0 is a stable point of F, then P(X(n)→ p0) > 0.

Proof of Theorem 2.2.6: It can be shown that if there exists a continuous urn

function G such that p0 is the only fixed point of G and F (p) ≥ G(p) for p < p0

and f(p) ≤ g(p) for p > p0, then X1(n) converges to p0 almost surely. Choose a

neighborhood N of p0 where F is continuous and {p0} = N ∩ S. Then we can

construct an urn process with the same initial condition as the urn process for F

and a proportion sequence {Y1(n)} and urn function G. By {Y1(n)} converging to

p0 almost surely and comparing {X1(n)} and {Y1(n)}, P(X1(n)→ p0) > 0.�

Proof of Theorem 2.2.8: By definition of stable points, there exists a symmetric

positive definite matrix A such that

〈A · (p− F(p)),p− p0〉 > 0,

for all p ∈ U ∩ [0, 1]d and p 6= p0. So define a function

L(p) := 〈A · (p− p0),p− p0〉.

Since A is positive definite, L is positive definite too. And L is twice differen-

tiable and ∇L · (F(p) − p) ≤ 0. Hence L is a Lyapunov function. Then by the

following lemma, we can finish the proof. �

Lemma 2.2.9. Suppose an urn function F is continuous and its fixed point set S

contains a finite connected component. If there exists a Lyapunov function L such

that
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(i) L is twice differentiable;

(ii) L(p) ≥ 0 for all p ∈ [0, 1]d and

(iii) 〈F(p)− p,Lp(p)〉 < 0 for p ∈ [0, 1]d ⊂ N (S), which is an open neighborhood

of S.

Then {X(n)} converges to a point of S or to the border of a connected component.

Proof : First, L(X(n)) is a supermartingale. On S ⊂ N (S), the expected in-

crement of L is always less than some negative value. Hence the process will exit

S ⊂ N (S) in finite time, hence enters N (S) infinitely many times. It is also not

hard to show that
∑n

i=0(1/d+ i)ζi, where ζi is the noise in (4), is a martingale and

converges. It means that at large time, there is no enough perturbation for the

process to leave N (S). S has finite connected components. So {X(n)} converges to

a single one of them or its border. Besides, it is impossible for {X(n)} to converge

to different points inside S, because the expected increment in S is zero and the

perturbation converges. �

On the other hand, some fixed points will never be the convergent limits.

Theorem 2.2.10 ([57], II). If F is continuous in a neighborhood of p0 ∈ [0, 1] and

p0 is a upcrossing point of F , then

P(X1(n)→ p0) = 0.
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For higher dimensions,

Theorem 2.2.11 ([3], II). If p0 is an unstable point of F and is not a vertex of the

d-simplex, then P(X(n)→ p0) = 0.

In 1990, Pemantle showed the nonconvergence to linearly unstable points for a

general class of stochastic approximation processes.

Go back to look at (2.2.4). Usually, εn is assumed to decrease to 0 as n → ∞.

Also, the noise is expected to be zero. So {X(n)} approximates the solution of the

ODE

dX

dt
= F(X). (2.2.10)

Associated to the differential flow defined by (2.2.6), there are some analogue

to Definition 2.2.7:

Definition 2.2.12. A critical point p of F. i.e. F(p) = 0, is linearly stable if

all the eigenvalues of DF have negative real parts, where DF is the linear approxi-

mation of F. If some eigenvalue has a positive real part, then p is called a linearly

unstable point.

Theorem 2.2.13 ([90]). Suppose {X(n)} satisfies (2.2.4) and lies in an open subset

∆ ⊂ Rd. Assume F is smooth enough. Let p0 ∈ ∆ be a critical point, i.e. F(p0) = 0

and U be a neighborhood of p0. If n is large enough, whenever X(n) ∈ U the

following conditions are satisfied:
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(i) p0 is linearly unstable;

(ii) c1/n
γ ≤ an ≤ c2/n

γ;

(iii) E
(
〈ζn, θ〉+|Fn

)
≥ c3/n

γ for every unit tangent vector θ ∈ T∆;

(iv) |ζn| ≤ c4/n
γ,

where γ ∈ (1/2, 1] and c1, c2, c3, c4 are positive constants. Then,

P
(
X(n)→ p0

)
= 0.

Proof of Theorem 2.2.10: By the construction comparison in (1), without loss of

generality, we may assume F (p) ≤ p for p < p0 and F (p) ≥ p for p > p0. Suppose

the statement is not true, i.e.

P(X1(n)→ p0) = δ > 0. (2.2.11)

To show the contradiction, we first construct a process {(Y (n), q(n))} associated

with F in a way that: Y (0) = 1/2 and q(0) = F (1/2); Y (1) = 1/3, with proba-

bility 1 − q(0), Y (1) = 2/3 with probability q(0) and q(1) = F (Y (1)); in general

Y (n+1) =
(
(2+n)Y (n)+ξn+1

)
/(n+3) with P(ξn+1 = 1) = q(n) = 1−P(ξn+1 = 0),

and q(n+ 1) = F (Y (n+ 1)); and so on. Clearly, {Y (n)} has the same distribution

as the urn process {X1(n)} with urn function F .
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Given two reals α > 0 and β > 0, let ϕα+1,β+1(x) be the probability density

function of a Beta distribution with parameters (α + 1, β + 1). For an F , define a

utility function for Y := {Yn} associated with F

u(Y ) :=

∫
lim
n
ϕα+1,β+1(Yn)dY.

Lemma 2.2.14. If α/(α+β) = p0, then for F (x) = x, the associated process {Yn},

which shares the same distribution as the original Pólya process, has the maximum

utility function among all F ’s associated processes.

The proof of this lemma contains some straightforward computation for Beta

distributions. Since we only need its conclusion, the proof is omitted here.

Also, define two sequences {αn} and {βn} such that αn+βn →∞ and αn/(αn+

βn)→ p0. Let ϕαn+1,βn+1(x) be the probability density function of a Beta distribu-

tion with parameters (αn + 1, βn + 1). Then

Lemma 2.2.15. The sequence of Beta distributions with parameters (αn+1, βn+1)

converges in distribution to a point mass at p0. And

supϕαn+1,βn+1 →∞.

Proof of the lemma: By the mean of a beta (αn + 1, βn + 1) is (αn + 1)/(αn +

βn+2)→ p0 and the variance is (αn+1)(βn+1)/
[
(αn+βn+2)2(αn+βn+1)]→ 0,

therefore the first convergence assertion is proved. Then since the variance goes to

zero, the density functions can not remain bounded. QED
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Now we are ready to prove our theorem. The urn function F is not the identity

function. By (10), we have that the utility function of the associated process satisfies

u(Y ) ≥ δϕα+1,β+1(p0).

Let α+β →∞ and α/(α+β) = p0. From Lemma 2, u(Y )→∞. On the other hand,

the utility function associated with the identity function, i.e. the original Pólya urn

process, approaches ϕ1,1(p0) <∞, by direct computation. The conclusion of Lemma

1 gives the contradiction. �

Before proving Theorem 2.2.11, a lemma for general stochastic approximation

processes is needed.

Lemma 2.2.16. If a process {X(n)} defined by (3) satisfies:

(i) Let S := {p : F(p) = 0} and S ′ ⊂ S, for p0 ∈ S ′ and p in a neighborhood

of p0, there exists a symmetric positive definite matrix A such that 〈A · (p−

p0),F(p)〉 < 0;

(ii) {ζn} has bounded fourth moments and for the matrix B(p, n) :=
(
E(ζ in(p) ×

ζjn(p))
)

1≤i,j≤d, where ζ in is the i-th component of ζn, there are constants c1 > 0

and c2 > 0 such that

c1 ≤ tr(B) ≤ c2;

(iii) There exist some k > 0 and r ∈ (0, 1) such that

|F(p)|2 + |tr
(
B(p, n)−B(p0, n)

)
| ≤ k|p− p0|r.
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Then P(X(n)→ p0) = 0.

Proof of Theorem 2.2.11: All we need to do is to check that the urn process

defined in (2.2.5) satisfies the three conditions in Lemma 4. Condition (i) is directly

from the definition of unstable points. It is also easy to see that ζn has bounded

fourth moments. Now the diagonal elements in the matrix B(p, n) are in the form:

E(ζ in(p)2) = Fi(pi)(1− Fi(pi)).

At an unstable point p0, F(p0) = p0. So tr(B(p0, n)) =
∑d

i=1 p0i(1− p0i). Since p0

is not a vertex of the simplex, tr(B) is bounded above and below. �

Sketch of proof of Theorem 2.2.13: First, the stable manifold theorem helps to

decompose the tangent subspace DF.

Theorem 2.2.17 (Stable Manifold Theorem). Let F, ~p0 and DF be defined as

in the theorem. Set ∆ = [0, 1]d. Decompose the image of DF(∆) into two com-

plementary subspaces DF(∆) = U ⊕ W , where W is the subspace spanned by

eigenvectors of DF whose corresponding eigenvalues have positive real parts and

U is spanned by eigenvectors whose corresponding eigenvalues have nonpositive real

parts. Then there is a neighborhood N of 0 in U and a function g ∈ C2 : N → W

such that g(0) = 0 and the derivative of g at 0, D0(g) = 0. Furthermore, let

S = {p0 + u + g(u)|u ∈ U}. F is always tangent to S.

With the help of the stable manifold theorem, a function η is constructed, mea-

suring the distance from the particle to p0 in an unstable direction, where we may
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think of the movement of the process as a movement of a particle. The fact that

not all eigenvalues of T have positive real parts implies the existence of U .

After the geometric decomposition and construction, there are two probabilistic

estimations of the difference sequence of {X(n)} in order to show that the noise

ζn always keeps the particle at some distance from p0 and never gets into a small

neighborhood of p0. �

In 1991, Pementle also found the conditions of convergence to touchpoints.

Theorem 2.2.18 ([91]). Suppose F is continuous and p0 is a touchpoint of F . If

F (p) > p and F (p)−p
p0−p ≤ k for some k < 1

2
and all p ∈ (p0− ε, p0) for some ε > 0 (or

similarly, if F (p) < p, and F (p)−p
p0−p ≤ k for some k < 1

2
and all p ∈ (p0, p0 + ε)), then

P(X1(n)→ p0) > 0.

Proof of Theorem 2.2.18: Without loss of generality, we may assume that F (p) >

p for all p ∈ (0, 1) {p0}. From (2.2.7) and (2.2.10) in the proof of Theorem 10, it

suffices to prove that with positive probability there is an N > 0 such that whenever

n > N , X1(n) < p0. By Theorem 10, X1(n) converges to a fixed point of F . Hence

the limit must be p0.

Suppose for k < 1/2, F (p)−p
p0−p ≤ k for all p ∈ (p0 − ε, p0). Choose k1 and γ > 1

such that k < k1 < 1/2 and γk1 < 1/2. Then, define a function g(r) = re(1−r)/2k1γ.

Note that g(1) = 1 and g′(1) = 1 − 1/2k1γ < 0. Hence there is a r0 ∈ (0, 1) such

that g(r0) > 1. Also define T (n) := en(1−r0)/γk1 . So g(r0)n = rn0
√
T (n) > 1. Choose
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an M big enough such that γrM0 < ε. Let

τM := inf{i > T (M)|X1(i− 1) < p0 − rM0 < X1(i)}

if there is such an i; if not, then let τM = −∞. Since F : (0, 1) → (0, 1), P(τM >

T (M)) > 0. For all n > M , define

τn+1 := inf{i ≥ τn|X1(i) > p0 − rn+1
0 }.

If for some i0 > TM , X1(i0) ≥ p0, then for all n ≥M , τn ≤ i0.

Define

ηn =


(1− F (X1(n)))/(n+ 2) with probability F (X1(n)),

−F (X1(n))/(n+ 2) with probability 1− F (X1(n))

Then for all m > n, define Zn,m :=
∑m−1

i=n ηi.

Now for event A := {infi>τn X1(n) ≥ p0 − γrn0}, estimate

P
(
Ac|τn > T (N)

)
≤ P

(
inf
i>τn

Zτn,i < −(γ0 − 1)rn0 |τn > T (N)
)

≤ E
(
Z2
τn,∞|τn > T (N)

)
/[(γ0 − 1)rn0 ]2

≤ e−n(1−r0)/k1γ0/[(γ0 − 1)rn0 ]2

= [(γ0 − 1)g(r0)n]−2.

Let An = E(X1(n+ 1)−X1(n)|Fn). If A holds, then

∑
T (n)<i<T (n+1)

Ai =
∑

T (n)<i<T (n+1)

[F (X1(n))−X1(n)]/(n+ 2)

<
k

k1

(rn0 − rn+1
0 ) +

kγ0r
n
0

T (n)
.
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Note that if A holds and τn+1 ≤ T (n+ 1), then it must be

Zτn,τn+1 = X1(τn+1)−X1(τn)−
τn+1−1∑
i=τn

Ai

≥ rn0 (1− r0)(1− k/k1)− ζn − kγ0r
n
0/T (n),

where ζn is bounded by X1(τn) −X1(τn − 1) < 1/τn < 1/T (n). By the discussion

at the beginning of the proof, we know that 1/T (n) = o(r2n
0 ), so

l0 := rn0 (1− r0)(1− k/k1)− ζn − kγ0r
n
0/T (n) ∼ rn0 (1− r0)(1− k/k1).

Then by the fact that E(Z2
τn,∞|τn > T (N)) < 1/T (n),

P(τn+1 ≤ T (n+ 1)|τn > T (N))

≤P(Ac|τn > T (N))

+ P
(
A and sup

τn+1

Zτn,τn+1 ≥ l0|τn > T (N)
)

≤[(1− γ0)g(r0)n]−2 + [(1− r0)(1− k/k1)g(r0)n]−2.

Taking the summation, we can get

P(τn > T (n) for all n > M)

=P(τM > T (M))
∏
n≥M

(
1− P(τn+1 ≤ T (n+ 1)|τn > T (n))

)
> 0.

This shows that X1(n) will eventually be < p0. �

In 1993, Benäım and coauthors established a more comprehensive dynamical

system approach to stochastic approximation. Since our focus is on urn models,

here we will only state some related results.
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In (3), suppose {Xn} have values in a compact set ∆ ⊂ Rd and F is a bounded

Cm mapping with m ≥ 1. Then the vector field of F can generate a Cm flow Φ in

the following way:

Φ : R× Rd → Rd

(t,X) 7→ Φt(x)

defined by

Φ0 = Id

dΦt(X)

dt
= F(Φt(X)).

Then the asymptotic behavior of {Xn} can be approximated by the asymptotic

behavior of Φ, which needs some topological definitions:

Definition 2.2.19. A subset Λ ⊂ Rd is an attractor of Φ if

(i) Λ 6= ∅ is compact and invariant, i.e. Φt(Λ) = Λ;

(ii) There is a neighborhood N (Λ) of Λ such that as t → ∞, the Euclidean

distance d(Φt(x),Λ)→ 0 uniformly in x ∈ N (Λ).

Applied to the urn processes in (4), Benäım and Hirsch got:

Theorem 2.2.20 ([17], I). As in (4), suppose F : [0, 1]d → [0, 1]d is a C1. If

(i) F([0, 1]d) ⊂ Int([0, 1]d);

(ii) The vector field (F− Id) has an attractor Λ ⊂ Int([0, 1]d).
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Then P({lim Xn} ⊂ Λ) > 0.

A better result can be derived for a special type of GPU model, called Morse-

Smale urn, which means the vector field of the urn funciton F is Morse-Smale:

(1) All periodic orbits of F are hypernolic and all intersections of their stable and

unstable manifolds are transverse;

(2) Every alpha or omega limit set is a periodic orbit;

(3) F is transverse to the boundary of the manifold where F is defined;

(4) F has a global attractor.

Theorem 2.2.21 ([17], II). Suppose the urn function F is C2. If

(i) F([0, 1]d) ⊂ Int([0, 1]d);

(ii) (F− Id) is a Morse-Smale vector field on Rd,

then

(1) For all the distinct hyperbolic periodic orbits Γi of F,
∑

i P({lim Xn} = Γi) =

1. In other words, the limits of {Xn} all fall in the hyperbolic periodic orbits

of the urn function, and

(2) P({lim Xn} = Γi) > 0⇔ Γi is linearly stable.

Please see the original paper for proofs of the above theorems.
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2.3 Embedding into Multitype Continuous Markov

Branching Process (MCMBP)

A definition from Athreya and Ney’s classical book on branching processes:

Definition 2.3.1. A stochastic process {X (t) = (X1(t), ...,Xd(t))} defined on a

probability space (Ω,F ,P) is called a d-dimensional continuous time Markov

branching process if:

(i) Its state space is in Zd+ := {x = (x1, ..., xd) ∈ Zd|xi ≥ 0, i = 1, ...d};

(ii) It is a strong Markov process with respect to Ft := σ(X (s); s ≤ t);

(iii) The transition probabilities P(i, j; t) satisfy

∑
j∈Zp+

P(i, j; t)sj =
d∏

k=1

[ ∑
j∈Zd+

P(ek, j; t)s
j
]ik (2.3.1)

where i = (i1, ..., id) ∈ Zd+, s is in the unit cube in Rd+, sj =
∏d

k=1 s
jk
k and

{ek}dk=1 is the normal basis of Rd, i.e. ek = (0, ..., 1, ...0) with 1 in the k-th

component.

In this definition, Xi(t) is referred to the number of particles of type i at time

t ≥ 0 and each particle has a random life time with exponential distribution. The

lifetimes are independent. Hence the process is Markovian. Equation (11) charac-

terizes its branching process property. Let

f(s) := (f1(s), ..., fd(s)),
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where

fi(s) =
∑

j∈Zd+
pi(j)s

j

and pi(j) is the probability that a particle of type i produces jk new particles of

type k, 1 ≤ k ≤ d. From a one dimensional branching process, it is not hard to

see that for i = (0, ..., ik, ..., 0) with the only non-zero ik at the k-th component,∑
j P(i, j; t)sj =

(∑
j P(ek, j; t)s

j
)ik . Then the left hand side of (11) follows.

Associated with an urn process {X(n)}n≥0 with a uniformly random drawing

scheme, an MCMBP {X (t) = (X1(t), ...,Xd(t))}t≥0 can be defined with initial state

X (0) = X(0) and:

1) the lifetime of all types of particles, say ri
D∼ exp(1) ;

2) the probability generating function f(s) equals the p.g.f. of ν(R(n)) defined

in Section 1.1;

3) all the ri’s and ν(R(n)) are independent.

Let {τn}n≥0 with τ0 = 0 be the split times for this process. Then it is not hard

to see that the two processes {X(n)}n≥0 and {X (τn)}n≥0 are equivalent. So the

works done for X (t) can be applied to X(n).

This method was introduced by Athreya and Karlin in 1968. It used the similar-

ity between the drawing-replacing procedure in urn models and the splitting scheme

in branching processes. As the authors noted, the Pólya urn model had been a basic
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method to study branching process. On the other hand, branching processes can

help “investigate the fluctuation behavior of urn scheme” by “exploiting properties

of branching processes”. Their main result is:

Theorem 2.3.2 ([7],I). For a d-dimensional MCMBP X (t), let A be its generating

matrix (we may think of it as the replacement matrix for urn models). Suppose λ1

is the largest eigenvalue of A, with eigenvector v1. For an eigenvector v of A with

eigenvalue λ 6= λ1. Define

Wu := lim
t→∞

(X)(t)e−λ1t,

where W is some scalar random variable and u is a unit vector. And

Yv(t) := eλt
(
v · X (t)

)
, t ≥ 0.

If λ1 > 2Reλ and the second moment of f exists, then

lim
n→∞

P(0 < x1 ≤ W ≤ x2 <∞, Yv(τn)/
√

u · X (τn) ≤ y) =

P(0 < x1 ≤ W ≤ x2 <∞|X (0))Φ(y/σ),

where

Φ(x) :=
1

2π

∫ x

infty

e−t
2/2dt

σi(t)
2 := e−λ1tE(Yv(t)2|X (0) = ei)

σ(t)2 :=
d∑
i=1

uiσi(t)
2

σ := lim
t→∞

σ(t)2.

36



As a corollary of this theorem, we can get a result for GPU models:

Corollary 2.3.3 ([7], II). As defined in section 1.1, let A = (aij) be the replacement

matrix of a d-color Pólya process {X(n)}. Suppose λ1 is the largest eigenvalue of A

and λ 6= λ1 is another eigenvalue with eigenvector v. If 2Reλ < λ1 and E(a2
ij) <∞

for all i, j, then

v ·X(n)√
n

d−→ N(0, c), as n→∞,

where c is a constant.

Until 2003, Janson used Athreya and Karlin’s embedding method again. He

proved some functional limit theorems for multitype branching processes, in which

the GPU models can be embedded. As applications of the general theorems, we can

get asymptotic normality theorems for {X(n)} as well as joint asymptotic normality

for (X(n),N(n)), where N(n) = (N1(n), ..., Nd(n)) and Ni(n) =
∑n

k=1 1{ξk=i}. In

[66], the author also gave a survey of related papers on GPU models, especially

those getting similar results but using different methods, such as [108], [10], and

[13], which we will introduce later.

In Janson’s 2004’s paper, he studied GPU models with two colors and triangu-

lar replacement matrices. So according to our notation, let (R1(n), R2(n)) be the

composition of the urn at time n. The replacement matrix is:
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A =

 α β

γ δ


Here, we allow α, δ ≥ −1 and β, γ ≥ 0. Note: in the 2-color case, when β, γ > 0,

we call the replacement matrix irreducible. In Janson’s paper, he assumed β = 0

and got:

Theorem 2.3.4 ([66], I). Suppose δ, γ, R2(0) > 0.

(i) If α < δ/2, then

n−1/2(R2(n)− δ δ − α
δ − α + γ

n)
d−→ N(0, σ2),

where σ2 = γδ3(δ−α)
(δ−2α)(δ−α+γ)2

.

(ii) If α = δ/2, then

(n lnn)−1/2(R2(n)− δ δ − α
δ − α + γ

n)
d−→ N(0, σ2),

where σ2 = αγδ2

(α+γ)2
.

(iii) If δ/2 < α < δ, then

n−α/δ(R2(n)− δ δ − α
δ − α + γ

n)
d−→ W := − δ(δ − α)1+α/δ

α(δ − α + γ)1+α/δ
Z,

where Z is a random variable with the characteristic function given by

EeitZ =
1

Γ(R2(0)/δ)

∫ ∞
0

(1− iαtx0−α/δ)−R1(0)/αeg(t,x)xR2(0)/δ−1dx, (†)

38



with

g(t, x) :=

∫ ∞
x

ϕ2(−iαtu−α/δ)du− i γ

1− α/δ
tx1−α/δ − x, (‡)

where ϕ2(z) := (1 + z)−γ/α − 1 + (γ/α)z.

(iv) If α = δ, then

ln2 n

n
(R2(n)− α2

γ

n

lnn
− α2

2

n ln lnn

ln2 n
)
d−→ W :=

α2

γ2
(γ ln

γ

α
+ γ − α− Z),

where Z is a random variable with the characteristic function given by (†)

with

g(t, x) :=

∫ ∞
x

ϕ2(−iαtu−1)du− iγt lnx− x.

(v) If α > δ, then

nδ/αR2(n)
d−→ W := δαδ/αZ−δ/α,

where Z is a random variable with the characteristic function given by (†) and

(‡) or

g(t, x) :=

∫ ∞
x

ϕ1(−iαtu−α/δ)du− x

with ϕ1(z) := (1 + z)−γ/α − 1.

A special case on diagonal replacement matrices is

Theorem 2.3.5 ([66], II). Suppose β = γ = 0, and α, δ, R1(0), R2(0) > 0. Let

U ∼ Γ(R1(0)/α, 1) and V ∼ Γ(R2(0)/δ, 1) be two independent random variables

with Gamma distribution.
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(i) If α > δ, then

n−α/δ(nδ −R2(0))
d−→ W := δUV −α/δ

(ii) If α = δ, then

n−1R2(n)
d−→ W := δ

V

U + V
.

So W/δ has a Beta(R2(0)/δ,R1(0)/α) distribution.

(iii) If α > δ, then

n−δ/αR2(n)
d−→ W := δU−δ/αV

Theorem 2.3.6 ([66], III). With the same assumption in Theorem 22, the moments

of W can be given by,

(i) If α < δ, then

EW s = δs
Γ(R1(0)/α + s)Γ(R2(0)/δ − sα/δ)

Γ(R1(0)/α)Γ(R2(0)/δ)
, −R1(0) < sα < R2(0).

(ii) If α = δ, then

EW s = δs
Γ((R1(0) +R2(0))/α)Γ(R2(0)/δ + s)

Γ(R2(0)/δ)Γ((R1(0) +R2(0) + sδ)/α)
, s ≥ 0.

(iii) If α > δ, then

EW s = δs
Γ(R1(0)/α− sδ/α)Γ(R2(0)/δ + s)

Γ(R1(0)/α)Γ(R2(0)/δ)
, −R2(0) < sδ < R1(0).

If we consider the behavior of the urn after a fixed number of draws of color-2,

let X(m) be the number of color-1 balls in the urn when m color-2 balls have been
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drawn. Janson gave the probability generating function of X(m), as well as a limit

theorem for it:

Theorem 2.3.7 ([66], IV). Suppose β = 0 and δ, R2(0) > 0. Let m→∞:

(i) If α < δ/2, then

m−1/2(X(m) − γ

1− α/δ
m)

d−→ N(0, σ2),

where σ2 = α2γδ(δ+γ−α)
(δ−2α)(δ−α)2

.

(ii) If α = δ/2, then

(m lnm)−1/2(X(m) − γ

1− α/δ
m)

d−→ N(0, γ(γ + α)).

(iii) If δ/s < α < δ, then

m−α/δ(X(m) − γ

1− α/δ
m)

d−→ Z,

where Z is the same as in Theorem(Janson, 2004, I) (iii).

(iv) If α = δ, then

m−1(X(m) − γm lnm)
d−→ Z,

where Z is the same as in Theorem(Janson, 2004, I) (iv).

(v) If α > δ, then

m−α/δX(m) d−→ Z

where Z is the same as in Theorem(Janson, 2004, I)(v).
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In the 2004 paper, Janson also discussed the case in which the number of balls

of one color stays fixed.

Theorem 2.3.8 ([66], V). Suppose β = δ = 0.

(i) If α > 0, γ > 0 and R2(0) > 0, then {R1(n)} is a persistent irreducible

Markov chain with period γ/|α|+ 1. Assume α = −1. Then

R1(n) ≡ R1(0)− n mod (γ + 1).

For ∀k ≥ 0,

P(R1(n) = k)− 1{k≡R1(0)−n mod (γ+1)}

k∑
j=k−γ

P(W = k)→ 0,

where W is a compound Poisson distributed random variable with probability

generating function

E(zW ) = exp
(
R2(0)

γ∑
j=1

zj − 1

j

)
.

(ii) If α = 0, then

n−1/4(R1(n)−
√

2γR2(0)n1/2)
d−→ N(0,

√
2γ3R2(0)/3).

(iii) If α > 0 and either R1(0) > 0 or γ > 0, then

(lnn)−1/2
(
R1(n)− αn− γ − α

α
R2(0) lnn

) d−→ N
(
0,

(γ − α)2

α
R2(0)

)
.

A simple version of Athreya and Karlin’s embedding method will be discussed

more in Section 5.
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2.4 Some Other Methods and Results

For completeness and convenience to apply, we state some theorems about GPU

models which people obtained when they needed them for applications. In fact,

many of them can be found in a more general version in Janson’s paper [66].

In 1985, Bagchi and Pal gave a sufficient condition for the asymptotic normality

behavior of balanced 2-color GPU models. And the replacement matrix should

satisfy: 1) α+β = γ+ δ ≥ 1; 2) α 6= γ; 3) β, γ ≥ 0 and 4) If α < 0 then α divides γ

and R1(0). Similarly, if δ < 0 then δ divides β and R2(0). An urn scheme satisfying

these conditions is called a tenable urn. Intuitively, an urn is tenable if we can not

draw more balls of a certain type than are present in the urn. By a method of

moment, they got that:

Theorem 2.4.1 ([9]). If α−γ
α+β
≤ 2 and α− γ 6= 0, then

P(
R1(n)− E(R1(n))

σ(R1(n))
< x)→ Φ(x),

where σ(R1(n)) is the standard deviation of Rn and Φ(x) is the standard normal

distribution.

Motivated by this paper and with the same assumptions, Gouet (1993) [53] used

the martingale technique to find some functional central limit theorems for R1(n):

Theorem 2.4.2 ([53], I). In a tenable urn process with βγ > 0,
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(i) If the ratio of eigenvalues of A, ρ := (α− γ)/(α + β) > 1/2, then

n−1/2(R1([nt]) + (nt)ρ(b[nt] − Z))⇒ t1−ρW ◦ ϕ(t),

where W (t) is the Wiener process, ϕ(t) = βγ/(2ρ − 1)(ρ/(1 − ρ))2t2ρ−1, Z

is a nondegenerate random variable independent of W and bk is defined by

an := Γ((R1(n) +R2(n))/(α+ β))/Γ(ρ+ Tn/(α+ β)) and bn := −γ
∑n

k=1 ak.

(ii) If ρ = 1/2, then

(nt lnn)−1/2(R1([nt])− γ

γ + β
(R1([nt]) +R2([nt])))⇒ W ◦ ϕ(t)

where ϕ(t) = βγt.

(iii) If ρ < 1/2, then

n−1/2(R1([nt])− γ

γ + β
(R1([nt]) +R2([nt])))⇒ tρW ◦ ϕ(t),

where ϕ(t) = βγ/(1− 2ρ)(ρ/(1− ρ))2t1−2ρ.

Gouet also considered the triangular replacement matrix case:

Theorem 2.4.3 ([53], II). In a tenable urn process, suppose βγ = 0 and max(β, γ) >

0. Then

n−ρ/2(R1([nt1/ρ])− nρtZ)⇒ W ◦ ϕ(t),

where ϕ(t) = αZt and Z is a nondegenerate positive random variable independent

of W .
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In 1996, Smythe generalized Bagchi and Pal’s results and gave some central

limit theorems for GPU models under conditions on eigenvalues and eigenvectors of

generating matrices. By generating matrix, we mean if the entries in the replacement

matrix are random numbers, i.e. the urn model is under a random environment,

then take Ã = [ãij] with ãij = E(i)(aij) where E(i) is the expectation conditional

on the drawing of s color i ball. For application purpose, the author also defined

a type of GPU, extended polya urns(EPU): drawn balls not necessarily replaced,

i.e. the diagonal elements in the replacement matrix could be negative. Several

assumptions are needed for EPU’s considered in this paper:

(1) ãij ≥ 0 and
∑d

i=1 ãij =a positive constant;

(2) E(i)[a2
ij] <∞ for all i, j;

(3) The maximal eigenvalue of Ã is simple and has a strictly positive left eigen-

vector.

The asymptotic normality for both d = 2-color and d > 2-color cases are gotten:

Theorem 2.4.4 ([108]). When d = 2, let λ0 be the maximal eigenvalue of Ã.

Suppose any other eigenvalue λ satisfies 2λ < λ0. Also, let ξ be a right eigenvector

of the nonprincipal eigenvalue of Ã. Then

(i) (ξ ·X1(n))/
√
n and (ξ ·Nn)/

√
n are each asymptotic normal.

(ii) If ξ · (X1(n + 1)−X1(n)) is P(i)-nondegenerate for i = 1, 2, where P(i) is the
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probability conditional on a draw of color i, then n−1/2(ξ · X1(n), ξ · Nn) has

an asymptotic bivariate normal distribution.

(iii) Let w = (w1, w2) be the left eigenvector of λ0 and λ be the other eigenvalue of

Ã. If for any nonzero vector v = (v1, v2), v·(Xn+1−Xn) is not constant almost

surely for P(i), i = 1, 2, then n−1/2(Xn1−nλ0w1, Xn2−nλw2) is asymptotically

bivariate normal.

(iv) If for any nonzero vector v = (v1, v2), v · (Xn+1−xn) is P(i)-nondegenerate for

i = 1 or 2, then n−1/2(Xn1−nλ0w1, Xn2−nλ0w2, Nn1−nw1) is asymptotically

trivariate normal.

The case for d > 2 needs the consideration of complex eigenvalues and eigenvec-

tors. A few more assumptions are added. But the results are parallel, so we won’t

state them here.

Bai and Hu [10] generalized Smythe’s results for nonhomogeneous generating

matrices. Let Ãn = [ãnij] := [E(anij)] to be the generating matrix at time n. If

Ãn = Ã for all n, then we call the GPU model homogeneous. Athreya and Karlin

[7] and Smythe [108] have all studied homogeneous GPU models. But in practical

applications, the generating matrices are usually nonhomogeneous, like in the adap-

tive clinical trials. They kept the first one in Smythe’s assumptions and supposed

that there exists a positive regular matrix H such that
∑∞

n=1 ‖Ãn −H‖∞/n < ∞,

i.e. the generating matrices, though different from each other, are still close to some
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H. Then they showed that

Theorem 2.4.5 ([10], I). n−λ(EXn) converges to a constant vector ~v of nonnegative

entries, where λ is the unique maximal eigenvalue of H and ~v is the left eigenvalue

of H corresponding to λ.

Theorem 2.4.6 ([10], II). n−λXn converges in probability to ~v in the above theorem.

Under a few more assumptions, they also proved the asymptotic normalities:

Theorem 2.4.7 ([10], III). Let τ be the maximum of zero and the real parts of all

the non-maximal eigenvalues of H. If τ < 1/2, then n−1/2(Xn − EXn) is asymp-

totically normal with mean vector 0. If τ = 1/2, then n−1/2(lg n)ν−1/2(Xn − EXn)

is asymptotically normal with mean vector 0, where ν is the maximal order of the

Jordan forms of H.

These results apply for the homogeneous case.

Later, in 2002, Bai, Hu and Zhang gave the weak and strong approximation

for {Rn} by a Gaussian process for both homogeneous and nonhomogeneous in the

2-color GPU models based on Gouet’s theorems.

In Athreya and Karlin’s paper [7], they suggested an open question about the

asymptotic normality of Nn. Bai and Hu [14] gave an answer to this question as well

as an explicit formula for the asymptotic variance of Nn and showed the consistency

of bothXn andNn for both homogeneous and nonhomogeneous generating matrices.
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There are more results by Bai and Hu, etc.. Please see the papers listed in the

reference.

Kotz, Mahmoud and Robert [70] considered the case of 2-colored GPU’s with

nonnegative and fixed replacement matrix elements, not necessarily balanced. They

calculated the exact form of the distribution of {Nni} by calculating some recurrence

relations of the urn process.

Theorem 2.4.8 ([70]). For 1 ≤ r ≤ n,

P(Nn1 = r) =
∑

1≤i1<i2<...<ir≤n

r∏
k=1

(φ(ik, k)
∏

ik−1<j<ik

(1− φ(j, k))),

where φ(x, y) = N01+β(x−y)+δ(y−1)
N02+N01+(α+β)(x−y)+(γ+δ)(y−1)

.

Motivated by understanding the 2−3 tree, Flajolet, Gabarró and Pekari studied

the balanced 2-colored GPU models, especially with negative diagonal entries in the

replacement matrix. So the urn models are assumed to be tenable. First, they got

the probability generating function of Rn:

Theorem 2.4.9 ([45], I). Suppose the replacement matrix is of the form

 −α α + s

β + s −β

,

with α, β > 0. Then the probability generating function at time n of the urn’s com-

position is

pn(u) :=
Γ(n+ 1)Γ((R0 +B0)/s)

snΓ(n+ (R0+B0)
s

)
([zn]H(z, u)),
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where, [zn]H(z, u) means the coefficient of zn in H and

H(z, u) = δ(u)R0+B0ψ(zδ(u)s + I(u))

with δ(u) := (1− uα+β+s)1/(α+β+s), I(u) :=
∫ u

0
tα−1

δ(t)α+β dt and ψ(I(u)) = uR0

δ(u)R0+B0
.

They also gave the Gaussian law and the convergence speed of Xn1, as well as

calculation of the moments:

Theorem 2.4.10 ([45], II). For a GPU with negative diagonal entries in the re-

placement matrix, Rn is asymptotically Gaussian with speed of convergence to the

limit O(n−1/2).

Theorem 2.4.11 ([45], 2004, III). For a GPU with negative diagonal entries in the

replacement matrix and any r > 0, the r-th factorial moment of the distribution of

Rn is of hypergeometric type: it’s a finite linear combination of terms of the form(
n+(R0+B0)/s+l−k(α+β+s)/s−1

n

)(
n+(R0+B0)/s−1

n

)
with 0 ≤ l, k ≤ r.

Remark 2.4.12. Note that Flajolet, Gabarró and Pekari devised a relatively new

and purely analytic method. It starts with trying to find a combinatorial structure

of the model and to find a PDE for the exponential generating function(egf) for

the probability generating function(pgf) of the GPU. By solving the PDE, we can

find an expression of the pgf at time n as the coefficient of the egf. Then it needs

to build a complex-analytic structure with the complex Fermat curve and connect
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the nature of the urn model with a conformal map, which leads to some probability

consequences, like large deviations, convergence speed and moments. The analytic

method seems to be able to produce plenty of results. However it needs the require-

ments of a balanced urn and can be applied mainly to 2-colored GPU’s and some

special cases of 3-colors, according to the authors.

Remark 2.4.13. Similar to the analytic method, Inoue and Aki [61] used another

method based on the conditional probability generating functions to calculate the

exact joint distribution of the number of balls with particular colors which are drawn

in the first n draws. Their method can be applied to GPU models with d ≥ 2 colors

and nonrandom replacement matrices with nonnegative entries.
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Chapter 3

A Close Look at the Monopoly

Processes

This chapter studies a non-linear GPU model, which exhibits a monopoly property.

What is different from the original Pólya urn process is the drawing probability,

which depends not only on the current numbers of balls of different colors in the

urn, but also on some given nonlinear functions, called feedback functions. The

intuition of a feedback function is the same as an urn function. So we use F (x) ≥ 0

as well for feedback function. With the setup in Section 1.1, the probability of

drawing a ball of color j at time n is

P(color j is drawn|Fn) =
F (Rj(n))∑d
k=1 F (Rk(n))

, j = 1, ..., d. (3.0.1)

It is well known that when F (x) satisfies certain conditions, monopoly happens,

i.e. after finite times only one color can be drawn out. Hence if the system does
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not stop, the monopoly color will have infinitely many balls and there are only a

finite number of balls in the other colors. The simplest example of such a feedback

function is F (x) = xα with α > 1. In this paper, we require that F (x) should

satisfy the following monopoly conditions:

(C1) F (x) > 0 for all x > 0;

(C2) F (x) ≥ F (y) if x > y;

(C3)
∑∞

n=1 1/F (n) <∞.

Without loss of generality, in this paper we always assume the initial composition

in the urn is (1, ..., 1).

The asymptotic behaviors of the type of monopoly processes defined before are

studied in the following two aspects:

1. The final number of balls of the minority colors in the urn.

2. After what time are all draws the same color?

3.1 Exponential Embedding Method

One of our main tools is the exponential embedding method, invented by Herman

Robin and introduced by Burgess Davis in 1990 [28].
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Define independent random variables {rk(n), n ≥ 1}dk=1. Each rk(n) is exponen-

tially distributed with mean 1/F (n). For all k, define

Σk(N) :=
N∑
n=1

rk(n), N ≥ 1.

Now write all of these {Σk(N)} in an increasing order, say t1 < t2 < .... Define

another random variable sequence {γi}i≥1 according to this order: if ti = Σki(N)

for some 1 ≤ ki ≤ d and N ≥ 1, then let γi = ξki , i = 1, 2, ..., where ξki means the

ki-th color.

Theorem 3.1.1 ([28], Rubin’s Theorem). The sequence {γi} defined above is equiv-

alent in distribution to the sampling color sequence to our nonlinear Polya urn

process.

This proof of this theorem can be found in [28]. Here we will state it in a more

general pattern.

Proof : First, we will use the fact that if X1, ..., Xm (m ≥ 2) are indepen-

dent exponential random variables with parameter λ1, ..., λm, respectively, then

min(X1, ..., Xm) is also exponential with parameter λ1 + ... + λm. Secondly, for

two independent exponential random variables X1 ∼ exp(λ1) and X2 ∼ exp(λ2),

P(X1 < X2) = λ1/(λ1 + λ2).

By induction, in the {γi} sequence when i = 1, since the initial values are all
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one:

P(γ1 = ξk1 |F0) =P
(
rk1(1) < min

k 6=k1
{rk(1)}

)
=

F (1)

d · F (1)
.

Now suppose before γn, each Σk has been added up to Nk. Then

P(γn = ξkn) = P
(
rkn(Nkn + 1) < min

k 6=kn
{rk(Nk + 1)}

)
=

F (Nkn)∑d
k=1 F (Nk)

.

�

3.2 Summation of independent exponential ran-

dom variables

In this section, we prove some combinatorial identities involving symmetric func-

tions. These identities will be applied to simplify the computations in later sections.

Our method depends on the density function of the summation of independent

exponential random variables. This density function can be found in Feller’s book

[41], but it does not provide proof.

Lemma 3.2.1. For any sequence of independent exponentially distributed random

variables {X1, ..., Xn} (n ≥ 2), with distinct parameters λ1, ..., λn (λi > 0), respec-
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tively, the density function of their summation
∑n

j=1 Xj is

fn(x) =
[ n∏
j=1

λj

] n∑
k=1

e−λkx

n∏
l=1
l 6=k

(λl − λk)
, x ≥ 0. (3.2.1)

The first method:

Proof : When n = 2, by convolution

f2(x) = λ1λ2
e−λ1x − e−λ2x

λ2 − λ1

.

Suppose it is true for n− 1. Then from convolution, we can get

fn(x) =
[ n∏
j=1

λj

] n−1∑
k=1

e−λkx − e−λnx
n∏
l=1
l 6=k

(λl − λk)

In order to finish the proof, we need to prove

−
n−1∑
k=1

1
n∏
l=1
l 6=k

(λl − λk)
=

1
n−1∏
l=1

(λl − λn)

Or equivalently,
n∑
k=1

1
n∏
l=1
l 6=k

(λl − λk)
= 0

By some calculation, this is equivalent to

n∑
k=1

(−1)k
∏

1≤j<l≤n
l 6=k
j 6=k

(λl − λj) = 0 (3.2.2)
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Note that the product is a Vandermonde determinant:∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 λ1 λ2
1 ... λn−2

1

... ... ... ... ...

1 λk−1 λ2
k−1 ... λn−2

k−1

1 λk+1 λ2
k+1 ... λn−2

k+1

... ... ... ... ...

1 λn λ2
n ... λn−2

n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
From this determinant, it is not hard to see that (3.2.1) is the determinant of

1 1 λ1 ... λn−2
1

... ... ... ... ...

1 1 λk ... λn−2
k

... ... ... ... ...

1 1 λn ... λn−2
n


,

which is obviously zero. �

The second method to prove Lemma 3.2.1 is to use characteristic function, which

makes the proof much simpler. We use it in the following lemma for the infinite

sum of independent exponential random variables, with some constraint.

Lemma 3.2.2. Let {X1, X2, ...} be an infinite sequence of independent exponentially

distributed random variables with distinct parameters λj > 0, j ≥ 1. Suppose

56



∞∑
j=1

1

λj
<∞. Then the density function of

∞∑
j=1

Xj is

f∞(x) =
[ ∞∏
j=1

λj

] ∞∑
k=1

e−λkx∏
l≥1
l 6=k

(λl − λk)
, x ≥ 0. (3.2.3)

Proof : The characteristic function of
n∑
j=1

Xj, n ≥ 1, is

φn(t) =
n∏
j=1

EeitXj

=
n∏
j=1

1

1− it
λj

.

Since
∞∑
j=1

1

λj
<∞, {φn(t)}n≥1 converges to

φ∞(t) =
∞∏
j=1

1

1− it
λj

.

Note that the norm

∣∣∣ n∏
j=1

1

1− it
λj

∣∣∣ =
n∏
j=1

1√
1 + t2

λ2
j

decreases as n increases. Hence

∫
|φ∞(t)|dt <∞.

By the Fourier inversion, the density function of
∑

j≥1Xj is

f∞(x) =
1

2π

∫ ∞
−∞

e−itxφ∞(t)dt.
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Now φ∞(t) has simple poles at −iλj, j ≥ 1. And the residue of e−itxφ∞(t) at

−iλj is

res(−iλj) = iλje
−λjx

∏
k 6=j

λk
λk − λj

.

Finally the residue theorem gives us the explicit form of the density function. �

3.2.1 Probability proof for some combinatorial identities

Summation of independent exponential random variables provides a much simpler

way to prove some algebraic equations. Here we will state both the probabilistic

method and the algebraic method, for comparison. These results are stated for the

finite case, but are in fact true for the infinite one as well.

Corollary 3.2.3. For any distinct λ1, ..., λn, n ≥ 2 and λi > 0, there is

n∑
k=1

∏
l 6=k

λl
λl − λk

= 1. (3.2.4)

Proof : The probability method is to construct a sequence of independent

exponential random variables {Xk}nk=1 with distinct parameters λk. The integral of

any density function is 1. From Lemma 3.2.1,∫ ∞
0

fn(x)dx =
[ n∏
j=1

λj

] n∑
k=1

∫∞
0
e−λkxdx

n∏
l=1
l 6=k

(λl − λk)

=
n∑
k=1

∏
l 6=k

λl
λl − λk

= 1

�
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Proof : The algebraic method will use the Vandermonde determinant. Ob-

serve that (3.2.4) is true if and only if

n∑
k=1

(−1)k−1[
∏
l 6=k

λl]
∏
t6=k
l<t

(λt − λl) =
∏

1≤l<t≤n

(λt − λl) (3.2.5)

The left hand side of (3.2.5) is exactly the determinant of the following Van-

dermonder matrix, whose determinant has a formula in the form of the right hand

side. 
1 λ1 . . . λn−1

1

...
...

...
...

1 λn . . . λn−1
n


�

Corollary 3.2.4. For any λ1, ..., λn, n ≥ 2, λi > 0,

n∑
k=1

1

λk

n∏
l=1
l 6=k

λl
λl − λk

=
n∑
k=1

1

λk
(3.2.6)

Proof (The probabilistic method): same construction as in the previous

proof. The expected value of {Xk}nk=1 is

E(
n∑
k=1

Xk) =
n∑
k=1

1

λk
.

On the other hand, from the density function (3.2.1) of
∑n

k=1Xk, the expectation
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is

E(
n∑
j=1

Xj) =

∫ ∞
0

[ n∏
j=1

λj

] n∑
k=1

xe−λkx

n∏
l=1
l 6=k

(λl − λk)
dx

=
n∑
k=1

n∏
l=1
l 6=k

λl
λl − λk

�

Proof (The algebraic method): (3.2.6) is true if and only if

n∑
k=1

(−1)k−1
[∏
l 6=k

λ2
l

]∏
t6=k
l<t

(λt − λl)

[ n∏
k=1

λk

] ∏
1≤l<t≤n

(λt − λl)
=

n∑
k=1

∏
l 6=k

λl

n∏
k=1

λk

(3.2.7)

And (3.2.7) is equivalent to

n∑
k=1

(−1)k−1
[∏
l 6=k

λ2
l

]∏
t6=k
l<t

(λt − λl) =
[ ∏

1≤l<t≤n

(λt − λl)
] n∑
k=1

∏
l 6=k

λl (3.2.8)

The left hand side of (3.2.8) is the determinant

D1 :=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 λ2
1 λ3

1 . . . λn1

1 λ2
2 λ3

2 . . . λn2

...
...

...
...

...

1 λ2
n λ3

n . . . λnn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

This is in fact a generalized Vandermonde matrix. Let us look at another (but

60



not the only) way to compute its determinant. Construct the following matrix:

1 λ1 λ2
1 . . . λn1

...
...

...
...

...

1 λn λ2
n . . . λnn

1 x x2 . . . xn


, (3.2.9)

whose determinant is a polynomial of x, say p(x). And it is easy to see that

p(x) = Cn+1,1 + Cn+1,2x+ ...+ Cn+1,n+1x
n, (3.2.10)

where Cij is the cofactor. First, obviously λ1, ..., λn are the roots of p(x) = 0. Then

from matrix (3.2.9), Cn+1,2 = (−1)n+3D1 and

Cn+1,n+1 =
∏

1≤l<t≤n

(λt − λl).

Next, by Viète’s formula,

n∑
k=1

∏
l 6=k

λl = (−1)n−1 Cn+1,2

Cn+1,n+1

=
D1∏

1≤l<t≤n(λt − λl)
.

Hence, D1 equals the right hand side of (3.2.8). �

More generally, a corollary of the algebraic proof of Corollary 3.2.4:
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Corollary 3.2.5. For any λ1, ..., λn, n ≥ 2, λi > 0, let

Dk :=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 λ1 . . . λk−1
1 λk+1

1 . . . λn1

1 λ2 . . . λk−1
2 λk+1

2 . . . λn2

...
...

...
...

...
...

...

1 λn . . . λk−1
n λk+1

n . . . λnn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, (3.2.11)

where 1 ≤ k ≤ n − 1 (when k = n, it is the original Vandermonde determinant).

Then

Dk =
∏

1≤l<t≤n

(λt − λl)
n∑

ij=1
ij 6=ij′ if j 6=j′

n−k∏
j=1

λij . (3.2.12)

Proof : In matrix (3.2.9) and the determinant polynomial (3.2.10), the coefficient

of xk is Cn+1,k+1, which is also (−1)n+k+2Dk. By Viète’s formula,

(−1)n−k
Cn+1,k+1

Cn+1,n+1

=
n∑

ij=1
ij 6=ij′ if j 6=j′

n−k∏
j=1

λij .

�

Corollary 3.2.6. For any λ1, ..., λn, n ≥ 2, λi > 0, there is

n∑
k=1

1

λ2
k

n∏
l=1
l 6=k

λl
λl − λk

=
n∑
k=1

1

λ2
k

+
n∑

i,j=1
i 6=j

1

λiλj

Proof (the probability method): same construction of independent expo-

nential random variables as before, then the second moment of their summation
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is

E
[( n∑

k=1

Xk

)2
]

= E
( n∑
k=1

X2
k + 2

n∑
k=1

XiXj

)
=

n∑
k=1

2

λ2
k

+ 2
n∑
k=1

1

λiλj

On the other hand, from the density function (3.2.1),

E
[( n∑

k=1

Xk

)2
]

=

∫ ∞
0

[ n∏
j=1

λj

] n∑
k=1

x2e−λkx

n∏
l=1
l 6=k

(λl − λk)

=
n∑
k=1

2

λ2
k

∏
l 6=k

λl
λl − λk

.

�

Proof (the algebraic method): First,

n∑
k=1

1

λ2
k

∏
l 6=k

λl
λl − λk

=

n∑
k=1

[∏
l 6=k

λ3
l

]
(−1)k−1

∏
1≤l<t≤n
t,l 6=k

(λt − λl)

[ n∏
k=1

λ2
k

] ∏
1≤l<t≤n

(λt − λl)
. (3.2.13)

Note that the top is the determinant

D :=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 . . . 1

λ3
1 λ3

2 . . . λ3
n

λ4
1 λ4

2 . . . λ4
n

...
...

...
...

λn+1
1 λn+1

2 . . . λn+1
n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.
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In order to evaluate this determinant, set up a function

D(x) :=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ex/λ
2
1 ex/λ

2
2 . . . ex/λ

2
n

λ1e
x/λ2

1 λ2e
x/λ2

2 . . . λne
x/λ2

n

...
...

...
...

λn−1
1 ex/λ

2
1 λn−1

2 ex/λ
2
2 . . . λn−1

n ex/λ
2
n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= e

Pn
k=1

1

λ2
k

x

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 . . . 1

λ1 λ2 . . . λn

...
...

...
...

λn−1
1 λn−1

2 . . . λn−1
n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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Then the derivative of D(x) is

dD
dx

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1
λ2
1
ex/λ

2
1 1

λ2
2
ex/λ

2
2 . . . 1

λ2
n
ex/λ

2
n

λ1e
x/λ2

1 λ2e
x/λ2

2 . . . λne
x/λ2

n

...
...

...
...

λn−1
1 ex/λ

2
1 λn−1

2 ex/λ
2
2 . . . λn−1

n ex/λ
2
n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

+

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ex/λ
2
1 ex/λ

2
2 . . . ex/λ

2
n

1
λ1
ex/λ

2
1 1

λ2
ex/λ

2
2 . . . 1

λn
ex/λ

2
n

...
...

...
...

λn−1
1 ex/λ

2
1 λn−1

2 ex/λ
2
2 . . . λn−1

n ex/λ
2
n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

+

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ex/λ
2
1 ex/λ

2
2 . . . ex/λ

2
n

λ1e
x/λ2

1 λ2e
x/λ2

2 . . . λne
x/λ2

n

ex/λ
2
1 ex/λ

2
2 . . . ex/λ

2
n

...
...

...
...

λn−1
1 ex/λ

2
1 λn−1

2 ex/λ
2
2 . . . λn−1

n ex/λ
2
n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

+ ...

+

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ex/λ
2
1 ex/λ

2
2 . . . ex/λ

2
n

λ1e
x/λ2

1 λ2e
x/λ2

2 . . . λne
x/λ2

n

...
...

...
...

λn−3
1 ex/λ

2
1 λn−3

2 ex/λ
2
2 . . . λn−3

n ex/λ
2
n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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Hence

dD
dx

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1
λ2
1
ex/λ

2
1 1

λ2
2
ex/λ

2
2 . . . 1

λ2
n
ex/λ

2
n

λ1e
x/λ2

1 λ2e
x/λ2

2 . . . λne
x/λ2

n

...
...

...
...

λn−1
1 ex/λ

2
1 λn−1

2 ex/λ
2
2 . . . λn−1

n ex/λ
2
n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

+

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ex/λ
2
1 ex/λ

2
2 . . . ex/λ

2
n

1
λ1
ex/λ

2
1 1

λ2
ex/λ

2
2 . . . 1

λn
ex/λ

2
n

...
...

...
...

λn−1
1 ex/λ

2
1 λn−1

2 ex/λ
2
2 . . . λn−1

n ex/λ
2
n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

66



After some adjustment, we get

dD
dx

=
[ n∏
k=1

1

λ2
k

]
e

Pn
k=1 x/λ

2
k

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 . . . 1

λ3
1 λ3

2 . . . λ3
n

λ4
1 λ4

2 . . . λ4
n

...
...

...
...

λn+1
1 λn+1

2 . . . λn+1
n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−
[ n∏
k=1

1

λk

]
e

Pn
k=1 x/λ

2
k

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 . . . 1

λ1 λ2 . . . λn

λ3
1 λ3

2 . . . λ3
n

...
...

...
...

λn1 λn2 . . . λnn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(3.2.14)

By Corollary 3.2.5,∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 . . . 1

λ1 λ2 . . . λn

λ3
1 λ3

2 . . . λ3
n

...
...

...
...

λn1 λn2 . . . λnn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=
∏

1≤l<t≤n

(λt − λl)
[ n∏
k=1

λk
]∑
i 6=j

1

λiλj

Besides, the derivative also equals

dD
dx

=
( n∑
k=1

1

λ2
k

)
e

Pn
k=1 x/λ

2
k

∏
1≤l<t≤n

(λt − λl). (3.2.15)

Equaling (3.2.12) and (3.2.13), we get

D =
[ n∏
k=1

λ2
k

]( n∑
k=1

1

λ2
k

+
∑
i 6=j

1

λiλj

) ∏
1≤l<t≤n

(λt − λl). (3.2.16)
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Plugging (3.2.14) back to (3.2.11) proves the identity. �

The following corollary is a general case of the previous one.

Corollary 3.2.7. For any λ1, ..., λn, n ≥ 2, m ≥ 2 and λi > 0, there is

n∑
k=1

1

λmk

∏
l 6=k

λl
λl − λk

=
∑

i1+...+in=m
i1,...,in≥0

1

λi11 ...λ
in
n

Proof (the probability proof): similar construction of independent exponen-

tial random variables, then compute the m-th moment of
∑
Xk.

E
[
(
n∑
k=1

Xk)
m
]

= E
[∑(

m

i1 ... in

)
X i1

1 ...X
in
n

]
=

∑
i1+...+in=m

m!

λi11 ...λ
in
n

On the other hand, by integrating the density function eqrefequ 3.2.1, we have

E
[
(
n∑
k=1

Xk)
m
]

=
n∑
k=1

m!

λmk

∏
l 6=k

λl
λl − λk

�

Compared to the probability proof, the algebraic method is too complicated to

prove Corollary 3.2.7. As a consequence, it deduces a generalized Vandermonde

determinant.
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Corollary 3.2.8.∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 . . . 1

λm+1
1 λm+1

2 . . . λm+1
n

...
...

...
...

λn−m−1
1 λn−m−1

2 . . . λn−m−1
n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∏
1≤l<t≤n

(λt − λl)
∑

i1+...+in=m
i1,...,in≥0

∏n
k=1 λ

m
k

λi11 ...λ
in
n

Corollary 3.2.9. For any λ1, ..., λn, n ≥ 2, λi > 0 and any s 6= −λk (all k =

1, ..., n),
n∑
k=1

λk
λk + s

[∏
l 6=k

λl
λl − λk

]
=

n∏
k=1

λk
λk + s

Or
n∑
k=1

1

λk + s

[∏
l 6=k

1

λl − λk

]
=

n∏
k=1

1

λk + s

Proof (the probability method): construct independent exponential random

variables {Xk} with parameter λk, then the Laplace transform of
∑
Xk is

L(s) = E
(
e−s

Pn
k=1Xk

)
=

n∏
k=1

E
(
e−sXk

)
=

n∏
k=1

λk
λk + s
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If we apply the density function (3.2.1),

L(s) =

∫ ∞
0

[ n∏
j=1

λj

] n∑
k=1

e−sxe−λkx

n∏
l=1
l 6=k

(λl − λk)
dx

=
n∑
k=1

λk
λk + s

[∏
l 6=k

λl
λl − λk

]
�

Proof (the algebraic method):

n∑
k=1

1

λk + s

[∏
l 6=k

1

λl − λk

]
=

n∑
k=1

∏
l 6=k

(λl + s)(−1)k−1
∏

1≤l<k≤n
l,t6=k

(λt − λl)

n∏
k=1

(λk + s)
∏

1≤l<t≤n

(λt − λl)

The numerator is a Vandermonde determinant∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 . . . 1

λ1 + s λ2 + s . . . λn + s

...
...

...
...

(λ1 + s)n−1 (λ2 + s)n−1 . . . (λn + s)n−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∏
1≤l<t≤n

(λt − λl)

�

In fact, Corollary 3.2.9 and its general case have a much simpler proof, as a

consequence of Corollary 3.2.7.
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Corollary 3.2.10. For distinct λ1, ..., λn, n ≥ 2, λi > 0 and m ≥ 1, s 6= λi,

n∑
k=1

1

(λk + s)m

∏
l 6=k

1

λl − λk
=

1∏n
j=1(λj + s)

∑
i1+...+in=m−1

i1,...,in≥0

1

(λ1 + s)i1 ...(λn + s)in

Proof : Let λ̃j = λj + s, j = 1, ..., n. Apply Corollary 3.2.7. �

Recall that when the parameters are all the same, the summation of m inde-

pendent exponential random variables with the parameter β has a density function

gm(y) = βm
ym−1

(m− 1)!
e−βy, y ≥ 0. (3.2.17)

This is a Γ(m,β) distribution.

The following lemma is a general formula.

Lemma 3.2.11. Suppose {X1, ..., Xn, Y1, ..., Ym}, n ≥ 1, m ≥ 2, are independent

exponentially distributed random variables. The Xj’s have distinct parameters λj,

j = 1, ..., n. And all the Yk’s have the same parameter β, β 6= λj for all j. Then

the density function of
∑n

j=1 Xj +
∑m

k=1 Yk is

hn,m(s) = βme−βs
[ n∏
j=1

λj

] n∑
k=1

{
1∏n

l=1
l 6=k

(λl − λk)

[ e(β−λk)s

(β − λk)m
−

m∑
l=1

sm−l

(m− l)!(β − λk)l
]}

,

for s ≥ 0.

Proof : By the convolution of the density functions (3.2.1) and (3.2.17),

hn,m(s) =

∫ s

0

fn(s− y)gm(y)dy

=
[ n∏
j=1

λj
] n∑
k=1

e−λks∏
l 6=k(λl − λk)

βm

(m− 1)!

∫ s

0

e(λk−β)yym−1dy.
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The integral ∫ s

0

e(λk−β)yym−1dy

=
1

(λk − β)
e(λk−β)ssm−1 − m− 1

(λk − β)

∫ s

0

e(λk−β)yym−2dy

Then, induction leads to the final formula. �

3.3 Monopoly

Our first goal is to show that monopoly happens almost surely. The proof is for

general feedback functions F (x) and number of colors K ≥ 2. And we use the

exponential embedding method.

In the proof, we will need a concept attraction time, whose distribution will be

discussed in later chapter. Let {Xn}n≥1 be the drawing color sequence. Define the

attraction time Ta by

Ta := min{k : Xn+1 = Xn,∀n ≥ k}.

Theorem 3.3.1. If the feedback function F (x) of a nonlinear Polya urn process

satisfies conditions (C1)-(C3), then monopoly happens almost surely, i.e.

P(Ta <∞) = 1.

Proof : By Theorem 3.1.1, after the exponential embedding, the time until the

number of balls of color k, k = 1, ..., K, gets to infinity is

Σk(∞) :=
∞∑
n=1

rk(n).
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Obviously,

E(Σk(∞)) =
∞∑
n=1

1/F (n) <∞.

So P(Σk(∞) < ∞) = 1. Furthermore, all the variables Σk(∞) have continuous

distribution, which implies that they are distinct with probability one. Let

Σk0(∞) = min
1≤k≤K

{Σk(∞)}.

Then for each k 6= k0, there is a finite number n(k) such that

Σk(n(k)) < Σk0(∞) < Σk(n(k) + 1).

Let

Ta := max
k 6=k0
{n(k)}.

Obviously, after time Ta only balls of color k0 arrive. �

There is another method to prove the existence of monopoly. It is based on

the stochastic approximation method, which is an important tool for the study of

reinforced random processes.

Some History: W. B. Arthur is the first one to introduce this type of nonlinear

Polya urn processes to model the “lock-in” phenomena, i.e. monopoly, in economics.

He got the idea from a paper by B. M. Hill, D. Lane and W. Sudderth in 1980,

who first generalized Polya urn models via urn functions which are essentially the

same to feedback functions. An urn function f(x) is a continuous map from [0, 1] to

[0, 1] (this is for the two-color case and can be generalized to higher dimensional).
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Hill, at all proved that the proportion of one-color balls in the urn will converge

almost surely to a fixed point of f(x). A fixed point x0 is a point satisfying the

condition f(x0) = x0. In 1990, R Pemantle improved on their results by proving

the nonconvergence to unstable fixed points and giving conditions on when conver-

gence happens at a touchpoint. Interested readers please read the previous chapter,

section 4.2, Theorem 8 to 11 or their original papers.

Briefly, the relation between urn functions and feedback functions is straight

forward. Take the two-color case for example. Suppose X1(n) is the proportion

of one color balls in the urn at time n, then f(X1(n)) = u(R1(n))/[u(R1(n)) +

u(R2(n))]. From this, we can easily see that 0 and 1 are two fixed points for f(x)

and in fact are stable. Hence, finally X1(n) will converge to one of them, which

means monopoly happens.

3.4 The Number of Balls of The Minority Color

First, let us look at the distribution of the number of balls of the minority color

in the urn. These results currently are for two-color case and general F (x). The

special cases F (x) = xα, α > 1 will be stated as corollaries. We will first discuss

how many balls of the minority color wins in the end, or after its rival gets final

monopoly. Then we will also consider the probability behavior of the minority color

during the process of competition, or when it is not clear yet who will finally win,.
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Note that during the process, the minority color is not fixed.

Definition 3.4.1. Let χk be the number of balls of the minority color at time k,

i.e.

χk = min{r1(k), r2(k)}, k ≥ 1.

Let χ∞ be the number of balls of the minority color in the end. Then

Definition 3.4.2.

χ∞ = lim
k→∞

min{r1(k), r2(k)}.

The following theorem estimates the tail distribution of χ∞.

Lemma 3.4.3. Let

a1(n) =
[ n∏
k=1

F (k)2
] n∑
j=1

[ 1

F (j)

n∏
k=1
k 6=j

1

F (k)2 − F (j)2

]
.

Then

a1(n) ∼ 1√
πnξn

,

where ξn ∈ (0, 1
F (1)2

) depends on F and n. An upper and lower bound is√
1

π
∑

1
F (j)

≤ a1(n) ≤
√

2

π
∑

1
F (j)

Proof : Here we will apply the Lagrange interpretation. Let

λj =
1

F (j)2
, j ≥ 1
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and

fn(x) = xn−
1
2 , x ∈ [0, λ1].

Give n distinct points {λ1, ..., λn}, define the interpolation polynomial

pn(x) =
n∑
k=1

λ
n− 1

2
k

∏
l 6=k

x− λl
λk − λl

.

Then the interpolation error is

fn(x)− pn(x) =
f

(n)
n (ξn)

n!

n∏
j=1

(x− λj), x ∈ [0, λ1],

where ξn ∈ (0, λ1) depends on x. If we choose x = 0, then

(−1)n
n∑
k=1

1

F (k)2n−1

∏
l 6=k

F (k)2

F (l)2 − F (k)2
=
f

(n)
n (ξn)

n!
(−1)n

n∏
j=1

1

F (j)2
.

Hence

a1(n) =
f

(n)
n (ξn)

n!
.

Besides,

f (n)
n (ξn) = (n− 1

2
)...(1− 1

2
)ξ
− 1

2
n

=
(2n− 1)!!

2n
ξ
− 1

2
n

=
(2n)!

22nn!
ξ
− 1

2
n .

By Stirling’s formula, when n→∞,

a1(n) ∼ 1√
πnξn

. (3.4.1)
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To estimate the bounds of a1(n), we need its integral representation, which will

be shown in Theorem 3.4.4.

a1(n) =
1

π

∫ ∞
−∞

φn(t)dt,

where

φn(t) =
n∏
j=1

1

1 + t2

F (j)2

.

By

e−x ≤ 1

1 + x
≤ e−x/2

and

∑ 1

F (j)
<∞,

we can get √
1

π
∑

1
F (j)

≤ a1(n) ≤
√

2

π
∑

1
F (j)

(3.4.2)

The form (3.4.1) is a simple representation of a1(n). On the other hand, (3.4.2)

gives an estimation to the error point ξn. �

Theorem 3.4.4. As n→∞,

P(χ∞ ≥ n) ∼ a1(n)
∞∑

j=n+1

1

F (j)
,

where a1(n) is as defined in Lemma 3.4.3.
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Proof : By the exponential embedding scheme we set up at the beginning, it is

not hard to see that

{χ∞ ≥ n} =
{ n∑

j=1

r2(j) <
∞∑
j=1

r1(j) <
∞∑
j=1

r2(j)
}⋃{ n∑

j=1

r1(j) <
∞∑
j=1

r2(j) <
∞∑
j=1

r1(j)
}

=
{
−

∞∑
j=n+1

r1(j) <
n∑
j=1

(r1(j)− r2(j)) <
∞∑

j=n+1

(r2(j)− r1(j))
}

⋃{
−

∞∑
j=n+1

r2(j) <
n∑
j=1

(r2(j)− r1(j)) <
∞∑

j=n+1

(r1(j)− r2(j))
}

Now, let

∆n :=
n∑
j=1

(
r1(j)− r2(j)

)
Γ1(n+ 1) :=

∞∑
j=n+1

r1(j)

Γ2(n+ 1) :=
∞∑

j=n+1

r2(j)

Obviously, Γ1(n+ 1) and Γ2(n+ 1) are independent and identically distributed.

Hence,

{χ∞ ≥ n} ={−Γ1(n+ 1) < ∆n < Γ2(n+ 1)− Γ1(n+ 1)}

∪ {−Γ2(n+ 1) < −∆n < Γ1(n+ 1)− Γ2(n+ 1)}

={|∆n| < Γ1(n+ 1)}

So

P(χ∞ ≥ n) =P(|∆n| < Γ1(n+ 1))

In order to estimate this probability, let us first look at the distribution of ∆n.
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The characteristic function of ∆n is

φn(t) = E(eit∆n)

=
n∏
j=1

1

1− it
F (j)

×
n∏
j=1

1

1 + it
F (j)

=
n∏
j=1

1

1 + t2

F (j)2

Now we may apply the inversion formula to get the distribution of ∆n, which is

obviously continuous. For any a ≤ b,

lim
T→∞

(2π)−1

∫ T

−T

e−ita − e−itb

it
φn(t)dt = P(a ≤ ∆n ≤ b)

Suppose the density functions of ∆n and Γ1(n+ 1) are g(x) and h(y), respectively.

By independence,

P(|∆n| < Γ1(n+ 1)) =

∫ ∞
0

∫ y

−y
g(x)h(y)dxdy

=

∫ ∞
0

P(−y ≤ ∆n ≤ y)h(y)dy

=

∫ ∞
0

[ 1

2π
lim
T→∞

∫ T

−T
φn(t)

eity − e−ity

it
dt
]
h(y)dy

=
1

π

∫ ∞
0

[ ∫ ∞
−∞

φn(t)
sin(ty)

t
dt
]
h(y)dy

Applying the Taylor expansion of sin(ty),

sin(ty) =
∞∑
k=0

(−1)k

(2k + 1)!
(ty)2k+1.

Hence,

P(|∆n| < Γ1(n+ 1)) =
1

π

∫ ∞
−∞

φn(t)
[ ∫ ∞

0

yh(y)dy − 1

3!
t2
∫ ∞

0

y3h(y)dy + ...
]
dt
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First, note that ∫ ∞
−∞

tkφn(t)dt <∞,

for all k ≥ 0 and

E
[
(
∑
j≥n+1

r1(j))m
]

= o
(
E
[ ∑
j≥n+1

r1(j)
])
,

for all m ≥ 2.

Secondly, let us look at the integral,

∫ ∞
−∞

φn(t)dt =

∫ ∞
−∞

n∏
k=1

1

1 + t2/F (k)2
dt

=

∫ ∞
−∞

n∏
k=1

F (k)2

(F (k) + it)(F (k)− it)
dt.

Here, {±iF (k)}nk=1 are simple poles of φn(t). And the residue of iF (k) is

resφn(iF (k)) =
n∏
j=1
j 6=k

F (j)2

F (j)2 − F (k)2
· F (k)

2i
.

So, by residue theorem

∫ ∞
−∞

φn(t)dt = π
[ n∏
k=1

F (k)2
] n∑
k=1

[ 1

F (k)

n∏
j=1
j 6=k

1

F (j)2 − F (k)2

]
.

Hence,

P(|∆n| < Γ1(n+ 1)) ∼ a1(n)
∑
j≥n+1

1

F (j)
.

�
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Corollary 3.4.5. For F (x) = xα, α > 1,

P(χ∞ ≥ n) ∼ ã1(n)

α− 1

( 1

nα−1

)
,

where

ã1(n) ∼ 1√
πnξ̃n

, ξ̃n depends on α and n.

and √
1

π
∑

1
jα

≤ ã1(n) ≤
√

2

π
∑

1
jα

.

Proof : This is a direct consequence of the theorem and the fact that as n→∞,

∞∑
x=n+1

1

xα
∼ 1

(α− 1)nα−1
.

�

Another way : There is another way to estimate the tail distribution of the

number of the minor color balls, by using the useful? density function in Lemma

1. This method is more straightforward and much simpler. And both methods give

the same asymptotic estimation.

First, obviously for any n, fn(x) is bounded by min{λ1, ..., λn}.

Lemma 3.4.6. For any two independent random variables X and Y with density

function f(x) and g(y) respectively. If h(z) is the density function of X + Y , then

suph(z) ≤ min{sup f(x), sup g(y)}
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Proof :

h(z) =

∫
f(z − y)g(y)dy ≤ sup f(x)

∫
g(y)dy = sup f(x).

Similarly, suph(z) ≤ sup g(y). �

Theorem 3.4.7.

P(χ∞ ≥ n) ∼ a1(n)
∞∑

j=n+1

1

F (j)
,

where a1(n) is as defined in Lemma 3.4.3.

Proof : Let’s look at P(
∑n

j=1 r2(j) <
∑∞

j=1 r1(j) <
∑∞

j=1 r2(j)). Suppose the

density function of
∑∞

j=1 r1(j) is f∞(x) and the joint density function of y =∑n
j=1 r2(j) and z =

∑∞
j=1 r2(j) is g(y, z). By the boundedness of fn(x) and in-

dependence, we have

P
( n∑
j=1

r2(j) <
∞∑
j=1

r1(j) <
∞∑
j=1

r2(j)
)

=

∫ ∞
0

∫ z

0

∫ z

y

f∞(x)g(y, z)dxdydz

= lim
n→∞

∫ ∞
0

∫ z

0

[ ∫ z

y

fn(x)
]
g(y, z)dxdydz

= lim
n→∞

∫ ∞
0

∫ z

0

{[ n∏
j=1

F (j)
] n∑
k=1

(e−F (k)y − e−F (k)z)/F (k)
n∏
l=1
l 6=k

(F (l)− F (k))

}
g(y, z)dydz. (3.4.3)
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Inside the summation, the double integral gives

E
(
e−F (k)

Pn
j=1 r2(j) − e−F (k)

P∞
j=1 r2(j)

)
=

n∏
j=1

F (j)

F (j) + F (k)
−
∞∏
j=1

F (j)

F (j) + F (k)

=
n∏
j=1

F (j)

F (j) + F (k)

(
1−

∞∏
j=n+1

F (j)

F (j) + F (k)

)
.

Next, we will show that

1−
∞∏

j=n+1

F (j)

F (j) + F (k)
∼ F (k)

∞∑
j=n+1

1

F (j)
.

Since F (x) is increasing,

∞∏
j=n+1

F (j)

F (j) + F (k)
=

∞∏
j=n+1

1

1 + F (k)
F (j)

=
∞∏

j=n+1

[∑
s≥0

(−F (k)

F (j)
)s
]

= 1− F (k)
∞∑

j=n+1

1

F (j)
+ o
( ∑
j≥n+1

1

F (j)

)
.

Finally,

P
( n∑
j=1

r2(j) <
∞∑
j=1

r1(j) <
∞∑
j=1

r2(j)
)

∼ lim
n→∞

[ n∏
j=1

F (j)2
] n∑
k=1

1

2F (k)

1∏
l 6=k

(F (l)2 − F (k)2)

[ ∞∑
j=n+1

1

F (j)

]

�

Theorem 3.4.8.

P(χ∞ = n) ∼ a1(n)

F (n)
,

where a1(n) is as defined in Lemma 3.4.3.
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Proof : By exponential embedding, we can represent

{χ∞ = n} =
{ n−1∑

j=1

r2(j) <
∞∑
j=1

r1(j) <
n∑
j=1

r2(j)
}⋃{ n−1∑

j=1

r1(j) <
∞∑
j=1

r2(j) <
n∑
j=1

r1(j)
}
.

Suppose the density function of
∑∞

j=1 r1(j) is f(x) and the joint density function

of
∑n−1

j=1 r2(j) and
∑n

j=1 r2(j) is g(y, z). Then by Lemma 3.2.1,

P
( n−1∑
j=1

r2(j) <
∞∑
j=1

r1(j) <
n∑
j=1

r2(j)
)

=

∫ ∞
0

∫ z

0

[ ∫ z

y

f(x)dx
]
g(y, z)dydz

=
[ ∞∏
j=1

F (j)
] ∞∑
k=1

1

F (k)

1∏
l 6=k

[F (l)− F (k)]

∫ ∞
0

∫ z

0

[
e−F (k)y − e−F (k)z

]
g(y, z)dydz.

Note that

E
[

exp
(
− F (k)

n−1∑
j=1

r2(j)
)
− exp

(
− F (k)

n∑
j=1

r2(j)
)]

=
n−1∏
j=1

F (j)

F (j) + F (k)
−

n∏
j=1

F (j)

F (j) + F (k)

=
F (k)

F (n)

n∏
j=1

F (j)

F (j) + F (k)
.

Hence,

P(χ∞ = n) ∼
{

2
[ ∞∏
j=1

F (j)
] ∞∑
k=1

1∏
l 6=k

[F (l)− F (k)]

n∏
j=1

F (j)

F (k) + F (j)

} 1

F (n)
.

�

Corollary 3.4.9. When F (x) = xα, α > 1,

P(χ∞ = n) ∼ ã1(n)

α− 1

1

nα
,

where ã1(n) is as defined in Corollary 3.4.5.
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Our next job is to evaluate the number of minority balls at finite time. We first

estimate some coefficients.

Lemma 3.4.10. For 1 < n ≤ k+2
2

, let

a2(k, n) :=
[ n−1∏
j=1

F (j)
] n−1∑
s=1

1∏
l 6=s

[F (l)− F (s)]

k−n+2∏
j=1

F (j)

F (j) + F (s)

a3(k, n) :=
[ k−n+1∏

j=1

F (j)
] k−n+1∑

t=1

1∏
l 6=t

[F (l)− F (t)]

n∏
j=1

F (j)

F (j) + F (t)
.

Then

a2(k, n) =

(
k + 1

n− 1

)
ξk−n+2µn−1

(µ+ ξ)k+2

a3(k, n) =

(
k + 1

n

)
ξ̃nµ̃k−n+1

(µ̃+ ξ̃)k+2
,

where ξ, µ, ξ̃ and µ̃ are some constants, in (0, 1
F (1)

), depending on F (x), k and n.

Besides, a2(k, n) and a3(k, n) share the same bounds.

1

2

√
1

π
∑

1
F (j)

≤ a2(k, n) ≤
√

1

2π
∑

1
F (j)

.

Proof : We will apply Lagrange interpolation estimation again.

(i) For a2(k, n), let λs = 1
F (s)

, s = 1, ..., k − n+ 2,

f(x) :=
xk

k−n+2∏
j=1

(x+ λj)

x ∈ [0, λ1]
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and p(x) be the interpolation polynomial of f(x) with interpolating points {λ1, ..., λn−1}

p(x) :=
n−1∑
s=1

λks

k−n+2∏
j=1

1

λs + λj

n−1∏
l 6=s
l=1

x− λl
λs − λl

Then the error is

f(x)− p(x) =
f (n−1)(ξ)

(n− 1)!

n−1∏
j=1

(x− λj), x ∈ [0, λ1]

with some ξ ∈ (0, λ1) depending on x.

If choosing x = 0, we get

−p(0) =
f (n−1)(ξ)

(n− 1)!
(−1)n−1

n−1∏
j=1

λj

where in our problem ξ depends on F , k and n.

Hence

a2(k, n) =
f (n−1)(ξ)

(n− 1)!

In order to evaluate f (n−1)(ξ), we first use the partial fraction to simplify f(x).

We get

xk

k−n+2∏
j=1

(x+ λj)

=
k−n+2∑
j=1

(−λj)k

x+ λj

∏
l 6=j

1

λl − λj
.

Then

f (n−1)(x) = (−1)n−1(n− 1)!
k−n+2∑
j=1

(−λj)k

(x+ λj)n

∏
l 6=j

1

λl − λj
.
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So

a2(k, n) = (−1)k+n−1

k−n+2∑
j=1

λkj
(ξ + λj)n

∏
l 6=j

1

λl − λj

=
k−n+2∑
j=1

λkj
(ξ + λj)n

∏
l 6=j

1

λj − λl

Apply the interpolation technique again by letting

g(x) :=
xk+1

(ξ + x)n
, x ∈ [0, λ1]

Interpolated at {λ1, ..., λk−n+2}, the interpolation polynomial is

q(x) =
k−n+2∑
j=1

λk+1
j

(ξ + λj)n

∏
l 6=j

x− λj
λj − λl

.

The error is

g(x)− q(x) =
g(k−n+2)(µ)

(k − n+ 2)!

k−n+2∏
j=1

(x− λj),

where µ ∈ (0, λ1) depends on x. Let x = 0. We can get

a2(k, n) =
g(k−n+2)(µ)

(k − n+ 2)!
.

Partial fraction gives

g(x) =
n∑
s=1

(
k + 1

n− s

)
(−ξ)k+1−n+s 1

(x+ ξ)s
.

The derivative is

g(k−n+2)(µ) =
n∑
s=1

(
k + 1

n− s

)
(−ξ)k+1−n+s(−1)k−n+2 (s+ k − n+ 1)!

(s− 1)!

1

(µ+ ξ)k−n+2+s

=
(k + 1)!

(n− 1)!

ξk−n+2

(µ+ ξ)k+2

n∑
s=1

(n− 1)!

(n− s)!(s− 1)!
(−ξ)s−1(µ+ ξ)n−s

=
(k + 1)!

(n− 1)!

ξk−n+2µn−1

(µ+ ξ)k+2
.
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Hence

a2(k, n) =

(
k + 1

n− 1

)
ξk−n+2µn−1

(µ+ ξ)k+2
.

(ii) With similar methods, we get the estimation of a3(k, n). �

Theorem 3.4.11. After time k, the number of minority balls in the urn has prob-

ability behavior:

1) If 1 < n ≤ k+2
2

,

P(χk = n) =
2a2(k, n)

F (k − n+ 2)
+

2a3(k, n)

F (n)
,

where a2(k, n) and a3(k, n) are defined in Lemma 3.4.10.

2) If n = 1,

P(χk = 1) =
k∏
j=2

F (j)

F (j) + F (1)
.

Proof :

1) When n > 1, there are two possibilities to make the number of balls of the

minority color at time k to be n. First, the n-th minority ball is added at the k-th

pick. Second, all the n − 1 minority balls are added before the k-th pick. Hence,

exponential embedding gives

{χk = n} =
{ k−n+1∑

j=1

r2(j) <
n−1∑
j=1

r1(j) <
k−n+2∑
j=1

r2(j)
}

⋃{ n−1∑
j=1

r1(j) <
k−n+1∑
j=1

r2(j) <
n∑
j=1

r1(j)
}
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Applying the density function in Lemma 3.2.1,

P
( k−n+1∑

j=1

r2(j) <
n−1∑
j=1

r1(j) <
k−n+2∑
j=1

r2(j)
)

=
[ n−1∏
j=1

F (j)
] n−1∑
s=1

1

F (s)

1∏
l 6=s

[F (l)− F (s)]

[ k−n+1∏
j=1

F (j)

F (j) + F (s)
−

k−n+2∏
j=1

F (j)

F (j) + F (s)

]

=
{[ n−1∏

j=1

F (j)
] n−1∑
s=1

1∏
l 6=s

[F (l)− F (s)]

k−n+2∏
j=1

F (j)

F (j) + F (s)

} 1

F (k − n+ 2)
.

And

P
( n−1∑
j=1

r1(j) <
k−n+1∑
j=1

r2(j) <
n∑
j=1

r1(j)
)

=
{[ k−n+1∏

j=1

F (j)
] k−n+1∑

t=1

1∏
l 6=t

[F (l)− F (t)]

n∏
j=1

F (j)

F (j) + F (t)

} 1

F (n)
.

2) When n = 1, it means that the minority color is never added until at least

time k + 1. Represented in the exponential embedding, it is

{χk = 1} =
{
r1(1) >

k∑
j=1

r2(j)
}⋃{

r2(1) >
k∑
j=1

r1(j)
}
.

Let f(x) and g(y) be the probability density function of r1(1) and
∑k

j=1 r2(j),
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respectively. Then,

P
(
r1(1) >

k∑
j=1

r2(j)
)

=

∫ ∞
0

f(x)

∫ x

0

g(y)dydx

=
[ k∏
j=1

F (j)
] k∑
s=1

F (1)∏
l 6=s

(F (l)− F (s))

[ ∫ ∞
0

e−F (1)x

∫ x

0

e−F (s)ydydx
]

=
[ k∏
j=1

F (j)
] k∑
s=1

1∏
l 6=s

(F (l)− F (s))

1

F (1) + F (s)

=
k∏
j=1

F (j)

F (j) + F (1)

The last equality is from Corollary 3.2.9. In fact, we can get this probability

directly from the probabilistic intuition of the adding-ball scheme. But we want to

show the comparison of n = 1 and n > 1 by exponential embedding method. �

Corollary 3.4.12. When F (x) = xα, α > 1, for 1 < n ≤ k+2
2

,

P(χk = n) =
2ã2(k, n)

(k − n+ 2)α
+

2ã3(k, n)

nα
,

where

ã2(k, n) =

(
k + 1

n− 1

)
ξk−n+2µn−1

(µ+ ξ)k+2

ã3(k, n) =

(
k + 1

n

)
ξ̃nµ̃k−n+1

(µ̃+ ξ̃)k+2
,

where ξ, µ, ξ̃ and µ̃ are some constants, in (0, 1), depending on α, k and n. And

the bounds for them are

1

2

√
1

π
∑

1
jα

≤ ã2(k, n) ≤
√

1

2π
∑

1
jα

.
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One of our goals to estimate P(χk = n) is for the following attraction time.

Before that, we need to show that, when the urn function F (x) is not growing too

fast, like exponential functions, then the above coefficients a2(k, n) and a3(k, n) are

asymptoticly equal to each other.

Lemma 3.4.13. As defined in Lemma 3.4.10,

a2(k, n) ∼ a3(k, n).

Proof : The main idea is also to apply the Lagrange interpolation. Consider the

function f(x) = xk. Let λj = 1
F (j)

. Interpolating f(x) at

{λ1, ..., λk−n+1,−λ1, ...,−λn},

the interpolation polynomial is

p(x) =
k−n+1∑
t=1

λkt

k−n+1∏
l 6=t
l=1

x− λl
λt − λl

n∏
j=1

x+ λj
λt + λj

+
n∑
t=1

(−λt)k
n∏
l 6=t
l=1

x+ λl
−λt + λl

k−n+1∏
j=1

x− λj
−λt − λj

There are k+1 interpolation points. In the formula of the error term, f (k+1(ξ) =
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0. So there is

a3(k, n) =
[ n∏
j=1

F (j)
][ k−n+1∏

j=1

F (j)
] n∑
t=1

n∏
l 6=t
l=1

1

F (l)− F (t)

k−n+1∏
j=1

1

F (j) + F (t)

=
[ n−1∏
j=1

F (j)
][ k−n+2∏

j=1

F (j)
] F (n)

F (k − n+ 2)

n−1∑
t=1

[ n−1∏
l 6=t
l=1

1

F (l)− F (t)

k−n+2∏
j=1

1

F (j) + F (t)

F (k − n+ 2) + F (t)

F (n)− F (t)

]

+ F (n)
n−1∏
j=1

F (j)

F (j)− F (n)

k−n+1∏
j=1

F (j)

F (j) + F (n)

> a2(k, n) + F (n)
n−1∏
j=1

F (j)

F (j)− F (n)

k−n+1∏
j=1

F (j)

F (j) + F (n)

Now

F (n)
n−1∏
j=1

F (j)

F (j)− F (n)

k−n+1∏
j=1

F (j)

F (j) + F (n)

∼(−1)n−1F (n)e2
Pn−1
j=1 (

F (j)
F (n)

)2−(n−1)−F (n)
Pk−n+1
j=n

1
F (j)

Similarly, we can get

a2(k, n) > a3(k, n) + (−1)k−n+1F (k − n+ 2)e
2

F (k−n+2)

Pk−n+1
j=1 F (j)−(k−1)

�

3.5 Attraction time

In this section, let us look back at the attraction time, Ta. From Ta, only one-color

balls can be drawn out.
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Before estimating the distribution of Ta, we will simplify some definitions first,

since in this section we only care about the two-color case. Let

ξn :=


1, if the minor color is drawn at time n

0, if the major color is drawn at time n

Consequently,

Definition 3.5.1.

Ta := min{k : ξn = 0,∀n ≥ k}.

Then the distribution of Ta can be given in

Theorem 3.5.2. The distribution of the attraction time is

P(Ta = k) = 2a2(k, n)
k∑

n=1

1

F (k − n+ 1)

∏
i≥k−n+1

F (i)

F (n) + F (i)
,

where a2(k, n) is defined in Lemma 3.4.10.

Proof : In order to estimate P(Ta = k), we need the condition of the number

of the minority balls at time k − 1, i.e χk−1. And given χk−1 = n, (1 ≤ n ≤ k),

{Ta = k} means that the (k− 1)-th pick picks the minority color and from then on,

no more minority color balls are picked; hence χ∞ = χk−1. So

{Ta = k|χk−1 = n} = {ξk−1 = 1, χ∞ = n|χk−1 = n}.
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Summed over n,

P(Ta = k) =
k∑

n=1

P(Ta = k|χk−1 = n)P(χk−1 = n)

=
k∑

n=1

[
P(ξk−1 = 1|χk−1 = n)P(χ∞ = n|χk−1 = n)

]
P(χk−1 = n).

Without loss of generality, we may suppose color 1 is the minority color for

the computation. By the independence of {r1(i)} and {r2(j)} and the memoryless

property of exponential processes, we have

{ξk−1 = 1|χk−1 = n} = {r1(n− 1) < r2(k − n+ 1)}.

Hence,

P(ξk−1 = 1|χk−1 = n) =
F (n− 1)

F (n− 1) + F (k − n+ 1)
.

Similarly,

{χ∞ = n|χk−1 = n} = {
∞∑

i=k−n+1

r2(i) < r1(n)}.

By Lemma 3.2.2, the density function of
∑∞

i=k−n+1 r2(i) is

f(x) =
[ ∞∏
i=k−n+1

F (i)
] ∞∑
i=k−n+1

e−F (i)x∏
l≥k−n+1

l 6=i

(F (l)− F (i))
.

Hence,

P(χ∞ = n|χk−1 = n) =
[ ∞∏
i=k−n+1

F (i)
] ∞∑
i=k−n+1

∫∞
0

∫ y
0
e−F (i)xF (n)e−F (n)ydxdy∏

l≥k−n+1
l 6=i

(F (l)− F (i))

=
[ ∞∏
i=k−n+1

F (i)
] ∞∑
i=k−n+1

[∏
l 6=i

1

F (l)− F (i)

] 1

F (n) + F (i)
.
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By Corollary 3.2.9,

P(χ∞ = n|χk−1 = n) =
∞∏

i=k−n+1

F (i)

F (n) + F (i)
.

�

Corollary 3.5.3. When F (x) = xα, α > 1,

P(Ta = k) = 2ã2(k, n)
k∑

n=1

1

(k − n+ 1)α

∏
i≥k−n+1

iα

nα + iα
,

where ã2(k, n) is defined in Corollary 3.4.12.

Theorem 3.5.4 ([26]). When F (x) = xα, α > 1,

P(Ta = k) = Θ

(
1

kα−α′

)
,

where α′ = (α− 1)/α.

Corollary 3.5.5. When F (x) = xα, α > 1,

P(Ta = k) ∼ 2ã2(k, n)

kα−α′
,

where α′ = (α− 1)/α and ã2(k, n) is defined in Corollary 3.4.12.

3.6 Large Time Minority Has Little Chance to

Win Back

There are vibrations at the beginning of the evolution. It is hard to tell which

color will finally win. We will show in the following that after some time point, the
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leading side has an overwhelming chance to dominate. Here, our method is simpler

and the result is more accurate than the one in [85].

Suppose at some point, when the total number of balls in the urn is n0 >> 1,

color 1 has p0n0 balls where 0 < p0 <
1
2
. In the following, we estimate the probability

that there are pn (0 < p0 < p < 1) color 1 balls in the urn when there are n > n0

balls in total. For simplicity, we assume that p0n0 and pn are integers. With the

help of exponential embedding, this event can be represented by

{ pn−1∑
i=p0n0

r1(i) <

qn−1∑
i=q0n0

r2(i)
}
,

where q0 = 1− p0 and q = 1− p.

Theorem 3.6.1 ([85]).

P
( pn−1∑
i=p0n0

r1(i) <

qn−1∑
i=q0n0

r2(i)
)
< 8e2−(p0n0)1/4 .

Theorem 3.6.2. As defined above,

P
( pn−1∑
i=p0n0

r1(i) <

qn−1∑
i=q0n0

r2(i)
)
<

pn−1∑
k=p0n0

1

F (k)

Proof : Let f(x) and g(y) be the density functions of
∑pn−1

i=p0n0
r1(i) and

∑qn−1
i=q0n0

r2(i),

respectively. Then

f(x) =
[ pn−1∏
i=p0n0

F (i)
] pn−1∑
k=p0n0

e−F (k)x∏
l 6=k

(F (l)− F (k))
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and

g(y) =
[ qn−1∏
i=q0n0

F (i)
] qn−1∑
k=q0n0

e−F (k)y∏
l 6=k

(F (l)− F (k))
.

So

P
( pn−1∑
i=p0n0

r1(i) <

qn−1∑
i=q0n0

r2(i)
)

=

∫ ∞
0

[ ∫ y

0

f(x)dx
]
g(y)dy

Similar to the proof of the previous theorems, we can get

P
( pn−1∑
i=p0n0

r1(i) <

qn−1∑
i=q0n0

r2(i)
)

=
[ pn−1∏
i=p0n0

F (i)
] pn−1∑
k=p0n0

1

F (k)

1∏
l 6=k

(F (l)− F (k))

[
1−

qn−1∏
j=q0n0

F (j)

F (j) + F (k)

]

By Corollary 3.2.3,

[ pn−1∏
i=p0n0

F (i)
] pn−1∑
k=p0n0

1

F (k)

1∏
l 6=k

(F (l)− F (k))
= 1.

Hence, the probability is

P
( pn−1∑
i=p0n0

r1(i) <

qn−1∑
i=q0n0

r2(i)
)

= 1−
pn−1∑
k=p0n0

pn−1∏
l 6=k

l=p0n0

F (l)

F (l)− F (k)

qn−1∏
j=q0n0

F (j)

F (j) + F (k)

Take the logarithm of the product, for

log

qn−1∏
j=q0n0

F (j)

F (j) + F (k)
=

qn−1∑
j=q0n0

log
( 1

1 + F (k)
F (j)

)
∼ −F (k)

qn−1∑
j=q0n0

1

F (j)
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Let s =
∑qn−1

j=q0n0

1
F (j)

. Then

P
( pn−1∑
i=p0n0

r1(i) <

qn−1∑
i=q0n0

r2(i)
)

= 1−
pn−1∑
k=p0n0

e−F (k)s

pn−1∏
l 6=k

l=p0n0

F (l)

F (l)− F (k)

=1−
pn−1∑
k=p0n0

(
1− F (k)s+

F (k)2s2

2
− · · ·

) pn−1∏
l 6=k

l=p0n0

F (l)

F (l)− F (k)

=

pn−1∑
k=p0n0

(
F (k)s− F (k)2s2

2
+ · · ·

) pn−1∏
l 6=k

l=p0n0

F (l)

F (l)− F (k)

Since
∑

1
F (j)

is convergent, we can choose s small enough so that

P
( pn−1∑
i=p0n0

r1(i) <

qn−1∑
i=q0n0

r2(i)
)
<

pn−1∑
k=p0n0

1

F (k)

pn−1∏
l 6=k

l=p0n0

F (l)

F (l)− F (k)

=

pn−1∑
k=p0n0

1

F (k)
,

by Corollary 3.2.4. �

3.7 The Decay/Growth is Slow

Although at large time point the minority color has little chance to win back, it

still takes a long time for the majority to finally announce the victory. We will

show this by estimating that the probability of the minority color has more than p

percentage of the balls in the urn, which is equivalent to say that the majority color

has less than q = 1 − p percentage, for some 0 < p < 1
2
. Let χn be the number of

the minority balls when the total number of balls in the urn is n.
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Theorem 3.7.1.

P(χn ≥ pn) = a4(p, n)

qn−1∑
j=pn

1

F (j)
,

where

a4(p, n) ∼ 1√
πpnξn

,

where ξn ∈ (0, 1
F (1)

) is some constant depending on F (x), n and p. And a4(p, n) has

the same bounds as a1(n).

Proof : When the minority gets pn, it means the majority has got pn too. The

event can be represented by

{χn ≥ pn} ={
pn−1∑
j=1

r2(j) <

pn−1∑
i=1

r1(i) <

qn−1∑
j=1

r2(j)}

⋃
{
pn−1∑
i=1

r1(i) <

pn−1∑
j=1

r2(j) <

qn−1∑
i=1

r1(i)}

Let f(x) be the density function of

pn−1∑
i=1

r1(i) and g(y, z) be the joint density

function of

pn−1∑
j=1

r2(j) and

qn−1∑
j=1

r2(j). Then

P
( pn−1∑

j=1

r2(j) <

pn−1∑
i=1

r1(i) <

qn−1∑
j=1

r2(j)
)

=

∫ ∞
0

∫ z

0

[ ∫ z

y

f(x)dx
]
g(y, z)dydz

Similar to above,

P
( pn−1∑

j=1

r2(j) <

pn−1∑
i=1

r1(i) <

qn−1∑
j=1

r2(j)
)

=
[ pn−1∏
i=1

F (i)
] pn−1∑
k=1

1

F (k)

1∏
l 6=k

(F (l)− F (k))

pn−1∏
j=1

F (j)

F (j) + F (k)

[
1−

qn−1∏
j=pn

1

1 + F (k)
F (j)

]
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And

1−
qn−1∏
j=pn

1

1 + F (k)
F (j)

= 1−
qn−1∏
j=pn

[∑
s≥0

(
− F (k)

F (j)

)s]
= F (k)

qn−1∑
j=pn

1

F (j)
+ o
( qn−1∑
j=pn

F (k)

F (j)

)
By the same method in Lemma 4, we finish the proof. �

Corollary 3.7.2. When F (x) = xα (α > 1),

P(χn ≥ pn) ∼ ã4(p, n)
p1−α − q1−α

α− 1

1

nα−1
,

where

ã4(p, n) ∼ 1√
πpnξ̃n

,

where ξ̃n ∈ (0, 1) is some constant depending on α, n and p. And ã4(p, n) has the

same bounds as ã1(n).
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Chapter 4

Applications of GPU Models

With the development of theories and the need of applications, people have paid

a lot of attention to GPU models since 1960’s. It has been successfully applied

in many fields. Usually, GPU models are applied to stochastic processes in which

early events determine the ultimate outcomes. Here I will give a brief survey of

some main recent work.

4.1 Reinforced Random Walk (RRW)

Coppersmith and Diaconis invented this concept in 1987. There are two types

of RRW: one is edge-reinforced random walk (ERRW) and the other is vertex-

reinforced random walk (VRRW). Given an undirected graph with all the edges

having an initial weight, for simplicity, say 1, a rabbit jumps on the graph starting
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from a specific point, say v0. And suppose there’re k edges leading out from v0. The

probability that the rabbit chooses one of these edges to go is 1/k. After running

through an edge, say e0, its weight is increased by a fixed (or random) number α.

Then choose the next edge. And the probability to run through e0 again becomes

(1 + α)/(k′ + α), if there’re k′ edges leading out from the current vertex. This

precess is continuous. This is a concrete description of edge-reinforced random

walk. Similarly, a vertex-reinforced random walk is a random walk on an undirected

graph with all the vertices having an initial weight. At each time, passing a vertex

will increase its weight by a fixed (or random) number. Choosing the next vertex to

move is with probability proportional to the weights of the vertices adjoining to the

current one. For the mathematical definitions of edge(vertex)-reinforced random

walk, see Pemantle [88] or Davis [28].

How to apply GPU models to study RRW’s? Pemantle [88] has pointed out that

the ERRW has similar behaviors with the Polya urn and the VRRW has similar

behaviors with the Friedman’s urn. Let’s look at an example.

Example 4.1.1 (An ERRW on Z). Let {Xn}n≥0 denote the process. So it takes

values in Z. At time n, the weight of the edge (or interval) (i, i + 1) is one plus

the number of times of crossing it, if the initial weight is one. This RRW was

introduced by Diaconis. And he showed that it’s equivalent to having an indepen-

dent Polya’s urn (the original one) at each integer vertex and the urn at difference

vertices are independent, so drawing a red ball means moving to the increasing
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direction and drawing a black in the other way. The exchangeability property of

Polya’s urn shows that this motion is equivalent to a random walk in a random

environment(RWRE), where the environment is distributed as the limiting beta

random variables at Polya’s urn processes associated with each integer vertex. So

the study of this ERRW is deduced to the study of the corresponding RWRE.

Similarly, for VRRW, we place a Polya urn at each vertex. The classical Polya’s

urn model doesn’t work well for all the RRW’s. So in some specific cases, we need

to modify it or generalize the original Polya urn model.

How about more than one rabbit jumping on the graph? Kovchegov [71] mod-

ified(generalized) the classical Polya’s urn model to study a multi-particle ERRW,

say two rabbits jumping on Z. Their positions can be one left(right) to the other or

at the same integer vertex. He modified the Polya’s urn model in this way: at each

integer vertex, we set an urn with red balls, black balls AND a magic ball such

that when the left rabbit jumps to the vertex, the magic ball is assumed as a red

ball, and when the right rabbit jumps to the vertex, the magic ball is assumed to be

black. If the magic ball is drawn, we add two balls of the color that the magic ball

is assumed to be at that time. Still the rabbits move according the color drawn.

For more mechanism of this process, see Kovchegiv’s paper.

Remark 4.1.2. In fact, we can study directed-edge-reinforced random walk, i.e. on

directed graph, in the same way with the assistance of Polya urns. See Keane and

103



Rolles [101] for details.

Remark 4.1.3. There is another similar characterization that the Polya’s urns and

the ERRW’s share. It’s well known that the Polya’s urn arise as naturally as Dirich-

let distribution (see Mauldin, Sudderth and Williams [77]). Diaconis conjectured

that so does ERRW. Rolles [101] proved that it’s true for a modified ERRW. See

also Diaconis and Rolles [31].

Remark 4.1.4. From the description above, it seems there should usually be some

connections between all the reinforced random processes, which will provide meth-

ods to study other similar random process. Pemantle wrote a survey on this in

2001.

4.2 Statistics

Blackwell and MacQueen [22] generalized Pólya urn model in a very general way,

which allows “continuum” colors and a given measure similar to the urn function.

Let M be a separable and complete metric space, which is in fact the space of the

colors in the urn. Let υ be a finite positive measure onM. A sequence {ξn : n ≥ 1}

of random variables with values in M is a Pólya sequence with parameter υ if for

every S ⊂M,

1. P(ξ1 ∈ S) = υ(S)/υ(M) and

2. P(ξn+1 ∈ S|ξ1, ..., ξn) = (υ(S) +
∑n

i=1 1{ξi∈S})/(υ(M) + n).
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Theorem 4.2.1 ([22]). Let {ξn} be a Pólya sequence on M with parameter υ.

Then:

(i) vn := (υ +
∑n

i=1 1{ξi∈S})/(υ(M) + n) converges almost sure to a discrete

probability distribution υ∗;

(ii) υ∗ has a Ferguson distribution with parameter υ, i.e. for every partition

(M1, ...,Mk) of M, the vector < υ∗(M1), ..., υ∗(Mk) > has a Dirichlet distri-

bution with parameter (υ(M1), ..., υ(Mk)).

(iii) {ξn} is exchangeable and its de Finetti measure is µ∗.

Proof : When M is finite,

Their goal was to generate an exchangeable sequence of random variables whose

de Finetti measure is a Dirichlet process.

Remark 4.2.2. Since Blackwell and MacQeen’s construction, many authors have

agreed that Polya urn model might be the simplest and most concrete way to

construct infinite exchangeable sequences. At the same time, it has been one of the

foundations of GPU models’ applications on statistics.

The Pólya urn model was introduced to define a finite population Bayesian boot-

strap(FPBB) by Lo in 1988. The FPBB is a Bayesian analogue of finite population

bootstrap(FPB). From the name, we can see that FPB is the bootstrap method

for a finite population. For a detail description of this method, see Gross. Suppose

there’s a finite population {y1, ..., yN} and a sample from it is given {x1, ..., xn} with
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n < N . So the FPRR method can be described as a Polya sampling algorithm: 1)

given an urn with n balls and each a type(color), {x1, ..., xn}, draw m := N−n balls

successfully from the urn and every time the drawn ball is replaced with another

ball of the same type into the urn. This is a Polya sample of size m procedure. Say

z1, ..., zm are sampled; 2) define a random distribution function Hmn by the sample

empirical distribution function Fn of {x1, ..., xn} and the empirical distribution Gm

of {z1, ..., zm}. Evaluate the functional θ of Hmn and Fn; 3) Repeat the previous

steps a large number of times, say L, getting Gm1, ...GmL and θ1, ..., θL; 4) Use the

empirical distribution of θ1, ..., θL to approximate the posterior distribution which

a Bayesian might be interested in (see [72]).

In 1981, Lo defined a censored date Bayesian bootstrap(CDBB).Eleven years

later, Muliere and Walker introduced a new bootstrap method, the finite censored

Bayesian bootstrap(FCBB), for a finite population with censored data in terms of

a genralized Polya urn scheme. Their sample procedure involves a multi-urn algo-

rithm, each a Polya. Each urn contains something-we-want balls and something-else

balls. If we sample from the first urn with the usual Polya urn drawing procedure,

then the next urn, until a something-we-want ball is sampled. For details, see the

paper. This is actually from the two authors studied in 1997 which will be explained

in the following.
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Cohen extended Lo’s idea of the FPBB method to the uneuqal probability

Bayesian bootstrap, i.e. the sample of each unit depends on some different prob-

abilities. I think, this could be connected to the idea of urn function in our GPU

models.

Related to the Bayesian bootstrap is the Polya posterior, which is a noninfor-

mative Bayesian procedure used when little or no prior information is available.

In 1998, Nelson and Meeden studied how to use the Polya posterior to estimate a

function of the population when we know some prior information about the popu-

lation. Their method is as follows: they divide the population into different strata

according to the prior information we’ve known, then at each stratum the Polya

posterior is used. One year later, Meeden modified the Polya sample procedure

again to study two-stage cluster sampling. His method is to place ”big” balls in an

urn and in each ball there’s a set of units. See details in their paper. Also see [84]

for further progress.

Since in 1973 when Blackwell and MacQueen found the connection between the

original Polya urn model and the Dirichlet process, many authors have agreed that

the Polya urn model might be the simplest and most concrete way to construct prior

distributions and to construct exchangeable sequences. So people generalized Polya

urn models according to their needs. For example, Muliere and Walker constructed

a genralized Polya urn model motivated by the beta-Stacy process, which illustrates
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the existence of a more general scheme for generating an exchangeable sequence than

Blackwell and MacQueen’s construction. And they showed that this urn process

is exchangeable. This is what we mentioned before. Another example to use the

connection between Polya urn model and Dirichlet process is the ”Gibbs sampler”

algorithm in Escobar [40], which influences the later simulation-based computation

method in nonparametric and semiparametric Bayesian movement (like [40] and

[38]).

Remark 4.2.3. Note that the exchangeability of Polya urn model plays a key role in

most of the applications. But as we know, not all the GPU’s have exchangeability.

But sometimes, we depend more on other advantages of GPU’s, like in Ishwaran’s

paper [62] when the author used GPU to model a finite mixture distribution by

depending more on the mechanism of GPU generating right number of distinct

values of the population.

Remark 4.2.4. In 2000, O’Cinneide and Pokrovskii used the Poisson approximation

method for matches in a multi-Polya-urn model to prove a limit law of nonuniform

random transformations. See their paper for details.

4.3 In Computer Science

The first application of GPU models in computer science is in the computer aided

geometric design(CAGD). Goldman [50] used the original Polya urn model to gen-
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erate blending functions. In computer aided geometric design, given a collection of

points P0, ..., Pn, to construct a curve P (t) =
∑

iB
n
i (t)Pi, t ∈ [0, 1] will use the pre-

defined blending functions, {Bn
i (t)}ni=0. The requirement for curves, consequently

for the blending functions, of CAGD is high. There’re 13 desirable properties: 1.

well-defined, 2. convex hull, 3. smooth, 4. interpolates end points, etc. For the

whole list and descriptions of the 13 properties, see the paper for details. So we

can see that to find suitable blending functions satisfying all of the 13 properties,

even half of them, is not an easy job. Motivated by the observation that a function

satisfying the properties should first be a discrete distribution function and the fact

that Polya urn model is usually a good choice to construct discrete distributions,

Goldman used the Polya distribution functions, Dn
i (t), i.e. the probability of draw-

ing exactly i balls in the first n trials, as the blending function with δ/(R0 + B0)

fixed and t := R0/(R0 + B0) changing and showed that they satisfy 11 desirable

properties. Also, the author showed that if we want to relax some end point condi-

tion for some curve, then the corresponding distribution functions for the original

Friedman’s urn model can be used as blending functions. Specifically, Goldman

constructed the GPU models for two special blending functions, the B-spline and

Beta-spline functions and use the urn model to study properties of Beta-splines. See

the paper ([50] and [52]) for details. There is a good survey in this field ([52]). In

that paper, some basic properties of 2-colored GPU models, the comparison of urn

models and approximation schemes and their application in splines are discussed.
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See also Barry and Goldman [16] for a brief description of using Polya tensor prod-

uct and Polya triangular patch to approximate surfaces in CAGD, as well as a

thorough study of Polya curves and Polya polynomials based on the earlier works

of Goldman. Until 2003, Chen expanded Goldman’s result [52] to construct a class

of approximation operators for which the Weierstrass Approximation Theorems by

using the original Friedman’s urn. It seems that using GPU models to construct

blending functions to approximate surfaces has not been studied systematically and

higher dimensional urn models haven’t been used in CAGD.

The second application is in image segmentation and labelling. In the model,

each pixel is represented by an urn with balls of different colors, one color for each

class label. The initial composition of each urn can be determined by the initial

measures of similarity of the pixels assigned by an arbitrary segmentation technique.

At each stage, all the urns in the neighborhood of the pixel we’re looking at are

combined together and one ball is drawn randomly from the combined urn, then

a fixed number of balls of the drawn color are added to the urn for the pixel; OR

drawing on ball from each urn in the neighborhood and add a fixed number of

balls of the majority color in theses balls to the urn for the pixel. This shows the

influence of the neighborhood of a pixel in image segment. This urn model was

modified by Banerjee, Burlina and Alajaji in 1999. They used urn models because

first they can generate Markov chains and second they provide a natural probability

representation for image labels. The authors also showed that compared to some
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other methods for image segmentation, the urn models yields better segmentations

in relatively small numbers of iterations.

Remark 4.3.1. Another application of GPU models in digital images is in the blend-

ing technology, which studies how to hide a secret image with several public images.

See Zhao and Gong [116] for details. Their idea is similar to generate the blending

functions in Goldman’s method, except that they looked at the probability of the

first black ball at the n-th draw.

The third application is in random trees. In our previous chapters, there’re

several authors whose results of GPU models are motivated by the goal to study

trees, like Bachi and Pal [9]. In 1991, Mahmoud and Smythe used a GPU model

to study the distribution of leaves in rooted subtrees of recursive trees. The model

has replacement matrix


1 0 0

0 0 1

0 1 0

 and the colors represent different positions of

the nodes. More generally, Janson [66] proved the asymptotic degree distribution

in random recursive trees by considering GPU models with infinitely many types

of colors, which can be truncated into finite case. Mahmoud [75] used a bottom-up

approach and a GPU model to study rotations in fringe-balanced binary trees. The

replacement matrix there is


−2 1 2

4 −1 −2

4 −1 −2

 where we need an extension that
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the entries in the replacement matrix could be less than −1. For completeness,

comparing to the urn method, later Panholzer and Prodinger used an analytic

approach to study the rotations in fringe-balanced trees.

Remark 4.3.2. For more applications in random trees, see Móri [80]

Remark 4.3.3. Another application is in constructing communication channel. Ala-

jaji and Fuja (1994) used the original Polya urn model to construct discrete binary

additive communication channel. They focused on the drawn color sequence.

4.4 In Clinical Trials

Clinical trial is one of the classical application fields of GPU models. It was first

introduced by Wei in 1977. The original Friedman’s urn was used. To compare the

effectiveness of K (K ≥ 2) treatments in a process, suppose eligible patients arrive

sequentially and must be treated immediately. The statistical problem here is how

to assign the treatment to each patient. Also, there’re several factors known or

thought to affect the patients’ ability to respond to treatment and each factor has

several levels. And each patient could not have all the factors. Use a generalized

Friedman’s urn. There’re K colors of balls in the urn and initially each color has the

same number of balls. If a color i ball is drawn at a stage, then α balls of the same

color and β balls of each of the different colors are added to the urn with the drawn

ball. Here α, β > 0. So each time a patient is waiting for a treatment, if the color
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i is drawn then assign treatment i to the patient. To consider influencing factors,

use an urn at each level of a factor and measure the ’unbalance’ of each urn. The

more unbalanced the urn is, the higher probability the drawn result of that urn will

be used. (See Wei, 1978). Due to the ethical problem, in a medical trial there’re

two goals: one is to get information about the effectiveness of the K treatments;

the other one is to treat each current patient in the best way the experimenter can.

So for the ethical reason, Wei and Durham raised the GPU model in 1978: initially

there’re wi balls of each color in the urn, i = 1, ...K; when the first patient arrives, a

ball is drawn randomly from the urn and the treatment of the corresponding color,

say i, is assigned to the patient; suppose we can get the response of the previous

treatment: if it’s successful, then add α > 0 balls of color i to the urn; if it’s failed,

then add β > 0 balls of each color j (j 6= i) to the urn. This is also called a

randomized play-the-winner rule. (The play-the-winner rule was first introduced by

Zelen (1969)). This type of designs are called adaptive designs. Schouten (1995)

extended Wei’s GPU model to those without replacement to study small strata case

when blinding is impossible. And in 1998, Durham, Flournoy and Li proposed a

randomized Polya urn for selecting optima in which a ball is drawn from the urn

at each time and if the response is a success then another ball of the same color

is added; if the response is a fail, then no new balls are added. A stopping rule is

associated with this process and the urn contains some additional information that

pertains only to the stopping time.
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People also allow balls to be taken out of the urn. Ivanova, Rosenberger, Durham

and Flournoy extended Durham, Flournoy and Li’s design (1998) in a way that after

each draw the drawn ball is returned, if response is success, then one ball of the

same color is added; if fail, then one ball of the same color is removed from the urn.

They then embedded the urn model into a continuous birth and death process,

motivated by Athreya and Karlin’s embedding method. So they call the model a

birth and death urn.

Notice that the above models don’t have a lot of flexibility. In other words, in

real experiments, there’re usually time trends, which correspond to the replacement

matrices of the GPU models nonhomogeneous. Some of Bai and Hu and some other

authors’ papers considered this situations as a type of GPU models.

In probability design, there is always a goal people care about: finding the opti-

mal design. In clinical trials, it is more important. In 2001, Bai, Chen and Hu gave

an optimal adaptive design which is based on the idea to make the error probability

minimal and construct an asymptotic optima. Chen and Zhu (2004) gave several

optimal designs represented by GPU models. See also Durham, Flournoy and Li

(1998).

Remark 4.4.1. See also Smythe and Wei (1983), Wei, Smythe, Lin and Park (1990),

Rosenberger (1993), Bai, hu and Rosenberger (2002). for further discussions of

applications of GPU models in clinical trial. There’re two survey papers about
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adaptive designs, Rosenberger (1996) and Dirienzo (2000).

Remark 4.4.2. Similar to the adaptive design, Rosenberger and Grill (1997) applied

a randomized GPU model to psychophysical experiments, since the the convergence

properties of the urn model allow selection of design points in a distribution that

approximates the optimal design and parameters of the urn model can be adjusted

to control the spread of this distribution.

4.5 In Biology

Applications of GPU models in biology have a long history. See Johnson and Kotz

(1977) for some earlier work. Let’s mention some relatively new results.

The first subfield is in biological population statistics. In 1982, Janardan used

the classical Polya urn model to study correlation between the numbers of male

and female children in a family. The famous Ewens Sampling Fornula (see Ewens,

1972) can also be generated by a GPU model, which is more Friedman-like. See

Hoppe (1984), Donnelly (1986) and a relatively complete survey in this field, Hoppe

(1987).

The second subfield is in evolutionary theory. Current papers in this field are

more mathematical, see Schreiber (2001), Benaim, Schreiber and Tarres (2001) and

McKenzie and Steel (2000). Schreiber generalized the Polya urn model in a way
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that two balls are drawn from the urn at each step and the replacement scheme

becomes more complicated, which depends on the composition of the chosen colors.

He used this to model the ”replicator processes” in evolutionary theory.

Remark 4.5.1. Another ’indirect’ application subfield is in phylogeny, since random

trees can be used in the null models and Polya urn models and random trees have

some connections. See Maddison and Slatkin (1991) and Barrett, Donoghue and

Sober (1991).

4.6 In Social Science

4.6.1 In Psychology:

The application of GPU models in the learning processes in mathematical psychol-

ogy might be since 1919. There’s a relatively complete introduction of this field

in Johnson and Kotz’s book (1977). See Pemantle and Skyrms (2003) for some

recent development. I will only introduce some recent papers in psychology, since

they have a close relation to the applications of GPU models in statistics. Navarro,

Griffiths, Steyvers and Lee (2005) tried to model individual differences by Dirichlet

process, which uses Blackwell and Macqueen’s result about Polya urn model. Xue

(2005) used Polya urn models to study the conformity of individual behavior.
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4.6.2 In Economics:

The application of Polya urn model in economics can be traced back to 1958. Janson

used the original Polya urn to model brand choice’s contagion characteristic. Arthur

and Lane called this kind of phenomenons information contagion. See their paper

(1993) for a relatively complete discussion of these processes and how they are

related to GPU models with urn functions. Arthur, Ermoliev and Kaniovski (1984

and 1987) introduced the nonlinear Polya urn models to study path-dependent

processes for applications in chemical kinetics, industrial location theory and the

emergence of technological structure in economy. See also Arthur (1989). Motivated

by the evolutionary processes, Samuel tried to use the original Polya urn model to

microdata disclosure risk assessment in 1998. Based on this, Fienberg and Makov

modified the Polya urn a little to continue study disclosure risk. For the relation

between Polya distribution and Bayesian Learning and consequently application in

pricing system, see Jonssan(2003).

Remark 4.6.1. For more, see Martin and Yo (2002), Pemantle and Skyrms (2000).
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Chapter 5

Further Development

We have seen that many people proved theoretical results of GPU models at the

same time applying them to some field. This is decided by the strong applicable

property of GPU models. And this trend will continue. But from some point of view,

I think, we need to ”focus” on purely and systematically theoretical studies, because

the dependence on applications makes the structure of GPU models scattered and

being a little more closed to other mathematical fields may introduce new methods

to our study.

For applications, there’re still a lot more potential. First, some theoretical results

of GPU models have not been used, especially those for higher dimensions. Second,

with the development of randomization in applied mathematics in recent years,

GPU models are waiting to be employed and teamed with other stochastic models.

Last, in some specific fields: 1) GPU models will continue working for biology
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and biomedical trials. They might depend on more development in applications

in statistics and the deeper study of nonhomogeneous GPU models seems having

a bright future; 2) GPU models will be applied more in recent-developed fields in

computer science. For example, the application in CAGD was exploited by Goldman

in 1980’s. But after almost 20 years, people picked it up again. So it should have

a lot of potential, especially that higher dimensional GPU models might be able to

be used in approximate images in higher dimensional space.
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