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ABSTRACT
ON THE EXISTENCE OF SOLUTIONS TO THE MUSKAT PROBLEM WITH

SURFACE TENSION

Spencer Tofts

Robert Strain

We consider the Muskat Problem with surface tension in two dimensions over the
real line, with H? initial data and allowing the two fluids to have different constant
densities and viscosities. We take the angle between the interface and the horizontal,
and derive an evolution equation for it. We use energy methods to prove that a so-
lution @ exists locally and can be continued while ||6||s; remains bounded and the arc
chord condition holds. Furthermore, the resulting solution is unique, and depends
continuously on the initial data. Additionally, when both fluids have the same vis-
cosity and the initial data is sufficiently small, we show the energy is non-increasing,

and that the solution # exists globally in time.
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Chapter 1

Introduction:

We consider the dynamics of the interface between two incompressible fluids, also
known as the Muskat problem. In this paper, we focus on the initial value problem in
two dimensions with surface tension. We will take the angle 6 between the interface
and the horizontal, and prove that it satisfies the evolution equation

0, = gH(em) - %H((Rcos(@) +24,U)0,)
(1.1)

—AMH(wjtm-E) + (V=W )y +m-n

We will use energy methods to prove that 6 exists locally, obtaining a bound for
the energy that is polynomial in nature, as well as continuation criteria that depend
only on the Sobolev norm and the arc-chord condition. Additionally, we show that
the resulting solution is unique, varying continuously with the initial data. This
extends previous results of Ambrose [1], who proved the same in the periodic case.
Furthermore, we show that when the viscosity remains constant, the bound can be
tightened such that the lowest degree terms are strictly negative. As a consequence,
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when the initial data is sufficiently small, the energy is non-increasing, and we will

show that this implies global existence for 6.

We begin by rigorously stating the problem. The fluids are incompressible and sat-
isfy Darcy’s law. Therefore, letting v(z,t) be the velocity and p(x,t) be the pressure,
we have

%v =—-vp—(0,9p)
v-v=0

Here p is the dynamic viscosity, k£ is the permeability of the medium, p is the
density of the liquid, and g is the acceleration from gravity. For this paper, we
assume that the two fluids have different constant viscosities and densities (which
we label p1, o, p1, and ps), and that the surface tension 7 is non-zero. We consider
this interface as a two-dimensional parametric function (z(a,t),y(«,t)), and denote

it z(a,t). The curve evolves according to the Birkhoff-Rott integral,

O(2)" (a, t) = 2L7rz'PV /_Z Z(mt;(_ag(a’,t) do

Here ® maps R? to the complex plane, * is complex conjugation, and v is the

vortex sheet strength, satisfying the integral equation

Y= TRa — (pl - P2)Z/a - ZA,uSaW : 7?

— H1—pa

where 7 is the surface tension, & is the curvature, s, is the arc length, A, T

is the Atwood number, and W is the aforementioned Birkhoff-Rott integral. Next,

we define our notation.



1.1 Notation:

We define the Lebesgue spaces L? and L™ in the standard way, with norms

It = ([ If(fv)l2dx)1/2

/]| = esssup | f ()|
zeR

We also define the Sobolev space H® in the usual way, via

[ Fls = [1f1lz2 + 1107 f]] 2

We define the Hilbert transform H in the standard way,

(e = ey [~ I

T e X — X

dzx

Furthermore, we define the commutator [H, f] to be the non-singular integral

operator
[H, flg(e) = H(fg)(a) = f(e)H(g)(a)
Additionally, for any L? function g, we define the Fourier transform as follows,

§(¢) = /eZMC:”g(a:)da:

For any set S, we let xs be the characteristic function on the set S. That is,

xs(x) =1if x € S, otherwise ys(x) = 0.
If z is a complex number, we let z* denote its complex conjugate.

Finally, we use the notation A < B to denote A < C'- B for some constant C'.
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1.2 Past Results:

The Muskat problem without surface tension has been widely studied. It has been
shown the problem is well posed when the initial data satisfies the Rayleigh-Taylor
condition [8], and that otherwise the problem is ill-posed (see [17] and [9]). Castro,
Cordoba, Fefferman, and Gancedo proved that turning waves can develop in finite
time [2], and that there exists analytic initial data satisfying Rayleigh-Taylor result-
ing in a singularity in finite time[3]. In [6], it was shown that when both fluids have
the same viscosity, the interface obeys an L? maximum principle, and that it exists
globally for small initial data. These results were later extended to three-dimensional

space in [7].

The presence of surface tension makes the equation more regular, ensuring the
problem is well-posed [13]. Furthermore, in the periodic case, Escher and Matioc
[11],[12] proved global existence for small initial data in Holder spaces. Also in the
periodic case, Ambrose [1] proved that as the surface tension coefficient approaches
zero, the solutions to the Muskat problem with surface tension exist on a uniform
time interval and converge to a solution of the problem without surface tension. For
additional results regarding the Muskat problem and Hele-Shaw cells, we refer the

reader to [4], [5], [14], [16], [17] and the discussion therein.



1.3 Main Results:

For our paper, we adapt the method of [1] to the real line. Namely, rather than work
with z(a, t) directly, we instead focus on bounding the angle between the tangent and
the horizontal, 6(«, t), as it determines the interface up to a constant. Our first result

is that 0 exists locally in time.

Theorem 1.1. Let 8y € H® satisfy the arc-chord condition. Then there exists some

T >0 and 0 € C([0,T], H*) such that 6 is a solution to (1.1) and 6(-,0) = 6,.
Additionally, we prove that the solution 6 to (1.1) is unique.

Theorem 1.2. Let dy < 0o,dy > 0. Define the set O by

za(a) — za(a’)

O={0eH |0, < d,| | > dyVa, o € R}

Let 0y, o € O be given. Then the solution of the initial value problem (1.1) with
0(-,0) = by is unique. Furthermore, if T > 0 such that 8 € C([0,T]; O) is the solution

corresponding to 0y and ¢ € C([0,T); O) is the solution corresponding to ¢q, then

sup [0 — ¢[l2 < [|00 — doll2

te[0,T
Finally, we show that when both fluids have the same viscosity and the initial

data is sufficiently small, 6 exists globally in time.

Theorem 1.3. Suppose the Atwood number A, is zero, and that ||6||s < ¢ for c

small enough. Then there exists some 8 € C([0,00); H®) such that 0 is a solution to

(1.1) and 6(-,0) = 6.



1.4 Strategy of Proof:

In this subsection we will discuss the general strategy used throughout this paper.
The preliminary work of setting up the evolution equation is almost exactly the same

as in [1], with the end result being

0, = %H(eaaa) — T(%eaem + AuH(UStea)>

+ [H(/@HQ) + 7V =W )0, + TAO W - f}
% Rin()0 + A20 W b+ (V=W )0y +m-n— AH(m ¢
5 sin(6)6,, WO W - )0 +m-n wH(m - 1)

Next, we define x, to be the standard mollifier, and let ¢ denote the solution of

the mollified equation

T A
b = S i)~ 7 (50 (ui) + AL (U 8) )

+ e {H(kfxeeg) 7 (V= WO ) b+ T AL (xS ) W 56]

A : € € e\ 117€ fe
+ E“Rxe(sm(xeﬁ )x66a> + A% x ((xﬁa)W -t )

~

+ Xe [(‘76 — W fe)xﬁ;} + xe(mS - ) — AuxeH(me - )

Via basic properties of mollifiers and Picard’s theorem, it’s easy to show that
the ¢ exist on some time interval [0,7¢]. Our main goal in the paper is to prove
the necessary energy estimates to get a uniform time of existence [0,7] for all #°.
Once those estimates have been obtained, we note that the #¢ form an equicontinuous
family, and by Arzela-Ascoli, some subsequence must converge to a limit #. Via
standard methods (the ones used in Chapter 3 of [15]), we show that this 6 does
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indeed satisfy the original evolution equation and exists on the same time interval as

the 6°.

Local Existence:

Now, the first goal is to get an energy estimate on % independent of €. Now,

dE
o= [ @00 )

Bounding 6% is fairly straightforwards (if tedious), so the main difficulty is the high

degree term. The core idea here is that after differentiating 6§ twice (and performing

some algebraic manipulation), we get an equation of the form

Oy = Xe | 5 A (i) + TEA50) + ToX el + Y5

ao,t

Here, A = 0, H, the T§ are L>, and their derivatives are H s=3. (Proving this fact
is nontrivial, but uninstructive for a high level understanding of our proof as a whole.
We refer the reader to Section 4 and the first half of Section 5 for the details.) So,
applying the s — 2 derivatives to 6, , via the product rule, we see that every term

has a bound of the form |0, Y||s-s]|0||3, except for the following terms:
[ 0228) | A 0028) 4 YA 028 + o0z
Exploiting the fact that A'/? is self-adjoint, we have
[ A0, + (D) (MDY + 50 (2507
Here the first term is strictly negative, since

. ]
| T 00,07 =~ 0,6



For the T§ term, we cannot dispose of the (Ax.0560°) factor, but we can separate

it via use of Young’s inequality
/(X63396)(AX63296)T§ < /(AX66296)2 + /(XﬁiﬁE - T5)°
Since 0° € H® and Y§ € L, the second term can be bounded directly. To bound

the first term, we make use of the dissipative surface tension term from before, and

it can be shown that
[z - Ja a0 <11
Finally, to bound the Y§ term, since 6¢ € H® and 9, Y5 € L?, we can integrate by
parts, obtaining
—1 € 50€\2 < € el2
S0 (D3 5 1065 1
Therefore, in the end we obtain an energy estimate of the form

dE el

at ~

Which in turn, is sufficient for local existence.

Uniqueness:

The strategy for proving uniqueness is similar to that used to prove local existence.

dE

‘> but this time the energy we are

Once again we consider an energy estimate
concerned with is that of the difference between two solutions. Given 6, ¢, we let

Eq = 3]|6° — ¢°||3, and aim to bound

dEd o € 5 P 5 € B} € 4
W B /]R(e - ¢ )(9 - ¢ )t + (eaa - (baa)(e - (z) >0‘C“7tda
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Once again we decompose (6¢ — ¢°), into groups of terms,
(0= ) = xs {;XaAB(ee —0°) + T sxs(0 — ia)l
+ Xs [T9X5A(9€ — ¢°) + Troxs (05, — ¢i)}
+Xs {TH + T2+ T13:| + (xe = xo) (X '07)

The A? term still functions as a dissipative term, which is necessary to bound
the Tg and Ty terms after differentiation. The Y;y term can be dealt with using
an integration by parts, while the remaining Y contain remainder terms. The main
difficulty is in successfully bounding the remainder terms involved, as the Lipschitz
bounds necessary prove to be very technical in nature, even if the strategy involved

is similar to the lemmas proved for local existence.

Global Existence:

Now, the continuation criteria for the existence of the #¢ is that their H® norm must
remain bounded, and the arc-chord condition must hold. However, it is simple to show
that if ||6¢||s is sufficiently small (the precise condition being that |[0¢|| e~ < ¢ < /2
for some constant c¢), then the arc-chord condition will hold automatically. This
implies that for small initial data, if Cil—f < 0, then the 6° will exist globally, and
therefore so will #. Furthermore, while an exponential bound was used for % during
the proof of local existence, it’s simple to see that the vast majority of terms contain
powers of ||6¢||s of order 3 or higher. Additionally, most (though not all) of the
second-order terms can be shown to be strictly negative, such as —Z||A%2x0,6|2..

9



Therefore, our goal is to show a bound of the form

dE
< —eallo2+ call 011+ callr £+ .

and in particular, if ||6%]], is sufficiently small, then 4 < 0, and so the ° and

therefore 6 exist globally in time.

1.5 Outline of the paper:

In chapter 2 we set up the basic equation of motion, getting the formula for #;,. In
chapter 3, we then mollify said equation, and the resulting formula for 5 is the start-
ing point for the remainder of the proof. Chapter 4 is devoted to some useful Lemmas
bounding the various terms in the equation of 8, and the energy estimates for local
existence are proved in chapter 5. In chapter 6 we tackle the problem of uniqueness,
and finish the proof of local existence. Finally, chapter 7 introduces tighter bounds
for some of the same terms under the more stringent conditions we require for global

existence, letting us finish the proof of global existence in chapter 8.
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Chapter 2

Equation of Motion:

Now, Darcy’s Law gives
]
v=—vr—(0,90) (2.1)

Where v(z,t) is the incompressible velocity, p(z,t) is pressure, p is viscosity, p is
density, and ¢ is gravity. Furthermore, we assume that u = uy, p = p; for x € Qy(¢),
and p = po, p = po for x € Qy(t). Finally, we assume that Q;NQy = 0, Q; U, = R?,
and 09;(t) = z(a,t) = {(z(, 1), y(,t))|a € R}. (For reference, we will let €25 be

the section below the curve.)

Now, define ® : R*> — C by ®(x,y) = z + iy. In particular, ®(z(a,t)) =
O(x(a,t),y(a,t)) = z(a,t) + iy(a,t). The arc length is s, = (22 + 32)/2, and
the unit tangent and normal vectors are

7?: (momya)’ f = <_ya7wa)

Sa Sa

11



The angle between the curve and the horizontal is

0(a, t) = arctan (%)

and we have

t = (cos(0),sin(0)), 7 = (—sin(f), cos(f))

to = 0,1, Mg = —041 (2.2)

Now, defining U to be the normal component of the velocity and V' to be the

tangential component, we immediately obtain

(x,y)r=Un+ Vit

Therefore,
d Ya ]— Yatlo — TatYa
0, = — t —) = .
¢ dt are an<ma) 1 + (ya/xa)Q x?x (2 3)
_ yatxa - xatya i(&?i + yi)(Ua + gaV) o Ua + vea ‘
a4y x2 +y2 T sa
since
(2,9)at = Uat — 0,Ut + Vol + 0,V
1
= S—(xa(Va — QQU) — ya(Ua + QQV), ya(Va — 0aU) + xa(Ua + HQV))

To simplify the equations, we choose a parametrization such that s, = 1. Fur-
thermore, we will choose the boundary conditions to be lim, 1+ y(c,t) = 0, and

limg 400 (m(oz, t) — a) = ¢ for some constant c. As a consequence, we have that

Sat = Va— 0U =0 (2.4)

12



Since the interface is a vortex sheet, the normal velocity U must satisty U = W -n,

where the Birkhoff-Rott integral W is

SOV = 1 pICON

2w ) z(@) — z(a)

where 7 is the vortex sheet strength. Furthermore, note that

W0) o [ —al@)zal0) )
T e g = Ve o =0

Therefore, we have that

L [ A) —m(@))
*W)a =551V / (@) (ola) = 2(a)??

oLy [ (e ale) ) sl

- 2mi Zo () B Zo() ) (2(a) — 2())?

= [ (L 2) o =

Now, integrate by parts to get

oy, - py [ () ) L

“ 2w Zo () 22 () — z(a)

Next, we approximate z(a) — z(a') by z,(a’)(a — ), splitting

(W), = P(A1)" + O(A2)" + O(Ry)" + P(Ra)”

13



where

. Za(a) Yale) 1 /
o(Ar)" = 27 Pv/za(a’) za(a’)(a—a’)da

. —Zala) V(') Zaa (@) 1 :
(A)" = 27i PV/ 22 (o) zo(a) (a0 — a’)da

oy =500 [0 () )

O(Ry)" = l@PV/ V(O‘/)Zaa)(a/) ) (Z(a) 1 B 1

Separating A; into a Hilbert transform plus a commutator, we have

o) = 20 (%) = Lt + 2|

=) ==
21 za 21z, 21 2

Since z, - 25 = s = 1, we have

Now, since s, = 1, therefore |z,| = 1, and in particular,

D(t) = 24, P(D) = izg

And therefore, we have that

where

14
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Similarly,

— —1 1
D) = tH () = () - ] ()
21 23 2124 Zeo, 21

Since i - b = Re(®(a)®(b)*), we have

SIN
_

Where

B, =7 (_zéi [H (22)2] (vsz‘))

However, Re (zaa . (zza)*) = Re(@(fa)(b(ﬁ)*) =1{,-n =6, and therefore

&
I
Ja
-2
>
&
+
&

Similarly,

_1 (6764 A
A2.ﬁ:Re<—H(W ))—l—Bz.n
2 2o
:_—1H YRe(Zaa?s) | + B+ 1

2 «
=By-n

since Re(za02)) = t, -t = 0. Therefore, combining the previous results, we have

W, = h— i+m (2.6)

where m = B; + By + R + R».
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Defining the integral operator K [z]| by

K[Z](f(a)) = QLm/f(O/) (z(a) _1 2(of) za(o/)(la - a’))da/ =0
we have
wr-spdosbles)
+ 2o K] (i) — 2K (7§§a>
Now,

Y =TRq — Rya — QA#SQW . tA
= M2 g the Atwood number. Substituting in

where R = (p1 — p2)g, and A, I

Yo = Sasin(f), k = 0,/s4, and s, = 1, we obtain
Y = T0pa — Rsin(0) — 24, W -t (2.9)

Next we want to rewrite the equation for 6;,

U, + V0,

Sa

0; =U,+ V0,

= (W )at Vg =Wy A+ Wity + Vo

=W, -+ (V—W-D)b,

:%+m-ﬁ+w—w$)ea

Differentiating the equation for v, we get

Yo = TOaaa — Rcos(0)f, — 24, (W, - t+0,U) (2.10)

16



Substituting this in and using our equation for W -, we re-derive (1.1)

1
0, = %H(eaaa) - §H((RCOS(9) + 2A“U)90‘)

—AMH(W%—WL%)+(V—W-f)0a+m-ﬁ

Next we’ll split up into surface tension and non-surface tension terms. Namely,

define
W =71W*" 4+ W
1 %
(I)(Wst)* = (Ck ) dO/
2mi ) z(a) — z(a)
W =W — 7w
Similarly,

Ut=W"-a, U=W-n
cht - USteon Va = Uea

Furthermore, for convenience, we will define

k(a,t) = k[0)(a t) = — A0

_ Rcos(0)
2

Then, since H(H(f)) = —f for f € L?, we have:

A
0, = gH(Gaaa) -7 (7“0(190@ + AHH(U“QQ))

+ [H(k@a)—FT(VSt—WSt-f)ea—FTAZ@aWSt-f] (2.11)
A R in(0)0, + A0, i+ (V — W - )0 h— AH(m -t
—|—2 sin(0)0o, + A0, W - + (V=W 1) +m-n—A,H(m-t)
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Chapter 3

Mollified Equations:

The next step is to create a mollified version of (2.11), the solution of which we will

refer to as 6. First we define z§ by
at) = / cos (6°(c’, 1)) + i sin (0°(o’, 1)) da’ (3.1)
0

Note that the value z(0) is irrelevant to the equation of motion (2.11), as only

terms of the form z(«) — z(a’) and z, appear. Now, define the mollified equation by

A
b = DH o) v (OBt + A, (085 )

+ Xe |:H(k‘ XGQ )—FT(VStE Wsts te)XEQE +TA2 (Xees)Wste te:|
(3.2)

A
+ T‘LRXG(Sin(XEOE)XEH;> +AZX5( x5 VV€ t€)

~

+xe[(Vﬁ—W€‘fﬁ)xﬁ€1+xe< ) — Ay H(me - )

18



where . is a standard mollifier, and

¢ = (cos(6°),sin(6)), n° = ( — sin(#°), cos(6°)) (3.3)
D(Whe) = QLM,PV / %da’ (3.4)
O(We) = %PV/ %da’ (3.5)
Ushe = Webe . pf U = W - a (3.6)

Do Vb = Ustefs 0,V = UH" (3.7)
ke = M — AU (3.8)

Note in particular that as e — 0, our mollified equation (3.2) approaches the
original evolution equation, (2.11). Our first goal is to use Picard’s theorem to prove
that a solution to (3.2) exists on some time interval [0,7°]. To this end, we define an

open subset O of H*® by

|zd,€(a) — Za.(a)
/

O=1{0eH |0, < d, | > doVa, o € R} (3.9)

To apply Picard’s theorem (the specific version we're using is Theorem 3.1 in [15]),
we must show the right hand side of the evolution equation maps O into H® and is
Lipschitz continuous. Proving these properties is time consuming but ultimately not
difficult for the mollified equation, the details are not included here. Applying Pi-

card’s theorem then gives us the following:

Lemma 3.1. Let 1,¢,dy,dy > 0 be fived. Suppose that 6y € O. Then there exists

19



some T¢ > 0 and 6° € C([0,T¢); O) such that 6°(-,0) = 6y, and for all t € [0,T¢), 6°

satisfies (3.2).

Next we wish to show that the solutions, ¢ exist on a common time interval
[0,T"), which we will do by proving an energy estimate uniform in e. To this end, we

differentiate (3.2) with respect to alpha. This gives

T A
Oie = 5 X< (H(0,6°) = 7xe {f(xﬂa)(xe@aaa) +A.H (Uét’ﬁxeeé)}

A
— TXe (TM(XEQZLO&)2> — TXe <AMH(USt7€X€92a)) + Xe [H(k;XEQSX)}
+ Xe [H(kxeb50)] — Txe [(WEH - E)xe05] + Txe [(V“’e — Wete . ) Xgefm]
(3.10)
+ AL XC [b«e@z@)vvstvﬁ A (xe85) (WP - fg)]
) A“R in(v.0) v 05 + A% (. 0°)W€ - £

+ OaXe 7 Sln(XG )XG ot ,u(XE a) ’

+ OaXe {(‘76 — W)X +me -0t — A H(mE - fe)}
Also, we have

Ust,e — Wst,e ChE — BE Wst,e . tAe
(0% (6% (0%
and as in the non-mollified case, we have that

X H (05,00)

Wst,e . ff — oo + mst,e . ff 311
¢ 2

Now, we define the operator 9;! by

o7 (o) = / " fa!)do! (3.12)

20



Note in particular that 9,0, (f) = f, while 9;'0,(f) = f(a) — f(0). Therefore,

H (05 N .
lfét,e X (2040(0() 0;11[7315,5 . te mst,e . TLE
H (05 o .
[fst,e X é aa) 8;1 (92”787&,6 . € mst,e . ne) C

for some constant C'. Now,
H(Uxb5,) = 05 0 H(U* X b5,) + C
= 0" H(US X 050) + O3 " H(U X 05 00) + C

[e7e7e)

Expanding Us" and pulling U®"¢ through a commutator, we obtain

acx

_ 1 € €
H(Ust,exeeza) _ aaliH[(Xeeaa)H(Xee )]
+ 0, H [(xla0) (O, - 1+ m - i)

+ 0, (U H (Xebna)) + O3 [H, U (b 0a) + C

[e7e76 aocx

Next, we pull x.0¢,, through the commutator and use the fact H* = —1I to get

—1 1
H<U8t’exe‘9;a) - 78071 [(Xeega)(xeegaa)} + 56071 [H7 X€63a] (H(Xeegaa))
+ 0, (U H (Xebna)) + O H, U] (Xeb0a)

O H [(xeb50) (—OSWSH - i€+ mobe - )] + C
Similarly, we have that
HUU ) = B (H O 0E) — ()00 19
+ H((x05)m™ - i)
-1

1
- 7(X€ezaa)(X69;) + §[H7 Xﬁeg] (H(Xﬁegaa))

— H((xe05)0W" - 1) + H (x5 )m™* - )
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And finally, applying

N —H(6¢ (. 0° -
W;t,e SfE = ( G;X 0404)) + mst,s .- t€ (313)
we obtain
. —H 96 606 R
W ity = ()t )

T T
= ZOL X (Xb) + SO H, 0] (x5) — (x5 -

Therefore, rewriting (3.10), we have

[67e%6]

0, = X gH (D) + TNl + TS+ TS+ TS+ C (3.14)

Here, T{ cancels out, since

A A
Ti = %(Xeefx) - %(Xeefx) =0 (315)

T¢ contains terms proportional to H(x.b5,,), or

TS — KH (O, — T A (U H (v 00) + %eg(xeeg)ﬂ(xeega) (3.16)

[67e76

T¢ contains the terms

. —TA . TA, . .
TS = TH(X€9040¢)2 + T#aa ! [(Xfeaa>(X€9aaa):|
+ T(vst,e o Wst,e . fE)XEQ;a + TAi(Wst,e X .EG)XGQ(EXOC (317)

AR . - - .
+ g sin(x.0°) (xebs,,) + Ai(xﬁga)W€ A (V= W)y 05,
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Finally, T§ contains the remaining terms,

Y5 = A H (X)W - £) — Aur H (6 )m* - 7€)

A, T A, T
— “E-[H, x b5 H (x.b5 )—%3;1[H,X69;Q]H(x696 )

2 (676707 [676701%
— A0 H [(x 050 ) (05 W5 - £ - mhe . )]

— A O H, U)X b e + [H, K X0

aocx

(3.18)

~ T
+ H (K x05) — 7(xeds)m™ - 1 + 5 OCOR)H, 05) (xe05a)

. AR
+ T AL (x05) O (W5 - ) + g (x05)? cos(x0°)
+ A% (Xb5) D (W - 1) + (xc05)Da (V= W - 1)
4 O (me - 7) — A H (me - 1)

The final equation is obtained by differentiating once more,

€
eaa,t

= Xe | 5 A% (xefie) + TEACH5) + Tixebina + 15 (3.19)
where A(f) = H(Oaf). Here, T§ is derived from Y, and is
TS =k — TA U + geg(xeeg) (3.20)
Similarly, T§ comes from T§,
—7A,

- . AR
T = —5 - (Xbia) + (VO = W)+ AL(WE - 1) 4 == sin(xH) (3.21)

Finally, T% again contains the remainder terms,

T5 = a5+ K H (i) + 5 H (0i) (Oixc05 o

(V=W ) a(xeb0) + AW - )0 (X 050) (3.22)

AR
+ ; COS(X69;)<X€02a)<X€92)
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In the following sections, (3.19) will be the starting point for our energy estimates.
In particular, the next section is devoted to bounding the individual terms contained

in the T;.
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Chapter 4

Some Necessary Bounds:

oF

Now, in order to estimate o

we will want to bound the Sobolev norms of the T5.
However, as many of the terms in the T§ depend on U€, V<, W€, and m€, which in turn
can be expressed via the nonsingular integral operators K|[z§], [H, f], and the vortex
sheet strength 7. Therefore, our immediate goal is to find bounds for K[zg], [H, f],

and v¢. We start by establishing the relationship between ¢ € H*® and the deriva-

tives of z,.

Lemma 4.1. Suppose that 0° € H*. Then, we have that 25 € L> and 25, € H*™!,
with bounds

26l = 1 (4.1)

[1z6alls=1 S 110G s—1 (1 + [105]1375) (4.2)

Proof of Lemma 4.1: Now, since z§, = (cos(6°),sin(6¢)), we have that |z5| = 1, and
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therefore z{, € L trivially. Furthermore, we have that
2oq = 05 ( — sin(6°), cos(6°))

and in general, every term of 95712¢  will be of the form

1] owe-1

i11+...in=8

where T, being the leftover unit vector, satisfies |T| = 1. Therefore, since
1105 6°|| oo < |]05]|s—1 for 1 <i; < s — 1, we have that
I T1 @i6° Tl < 110262 - (1026 pos - -oe - 10226 oo ) ||T o=
i1t oin=s
< 10118y
Therefore, since 1 < n < s, we have that |07 ; < ||65|]s-1 + [|05]]5_;, and

[l28alls—1 < CHOGIs—1 (L + 10G]171)

as desired. O

Now, we will define for convenience the divided differences ¢; and g as follows,

f( f (o)

o] = LY = /@) /fa (ta+ (1 — t)a')dt (4.3)

Q2[f] =

fla) = f(o) = (e = ) fa(o >_/ (t = 1) fanlta + (1 —t)a')dt  (4.4)

(a—a’)? 0

These expressions will show up frequently within the following equations, most no-
tably inside the integral operator K|[zg] and commutation with the Hilbert transform

[H, f]. Furthermore, we have the following facts,
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Lemma 4.2. Let 6° € H*. Then, qi[z5] € L™, g5 € H*™', and 0% qs[z5] € L' for

1 <k < s—1 with respect to both o and o’. Furthermore, the respective bounds are

||~ <1

llgalls—1 S ll26alls—

10862ll2r S (14 ll26alli-2)4/1104+22g] e

Proof of Lemma 4.2 The bounds for ||qi||z~ and ||g||s—1 follow immediately from
their integral representations and Lemma 4.1, since 25 € L™ and 25, € H*™'. To
bound the L! norm of ¢’s derivatives, we will split the L' integral into two parts,
bounding the behavior near a = o' via d,¢s’s integral representation, and the behavior

at infinity using the fractional representation. To be specific, we have

zg(a) —zg(@f)  2[z5(a) — 25(a) — (a — ')z ()]
(v — /)2 (a — /)3

_ /lt(t 1)t (ta + (1 — )a')dt

aonZ =

Via characteristic functions, we can rewrite this as

1
a04(]2 = Xl|a—a'|<1 (/ t(t — 1)Z;aa(t0£ + (1 — t)o/)dt)
0

zo(a) =z (o) 2[z5(a) — 25(a) — (o — a’)z5 ()]
+ Xla—a/|>1 ( (@ — o) (a— o) )

Similarly, we have in the general case that

’a]oiCIQ‘ S hi+ ha

1
0
By = Xl R e e 110024 L~
2 la—al|>e o — o/)? o — o/ U o= o
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Here ¢ is a constant to be defined later. Note that

1260l an—2 + |[26] | oo
la — a/|?

h'2 < X|a—a/|>c

Now, since ||Xja—a/|<cl[22 S VC, ’|X|‘o;1a;\/|>c

2 < \/LE’ [125]] = < 1, we have that

1]l S V/el05 24l 2

1 1
LIPS /e + %HZZQHHF?
Choosing ¢ = W, we have

zgllp2

1062lr S (14 |l25allr-2)\/ 1105224 |2 (4.6)

as desired. O

With bounds on ¢; and ¢y, we now have the necessary tools to bound K|[z§],

Lemma 4.3. Let 0 € H®, and suppose that the arc-chord condition is satisfied, that

18, that there exists do > 0 such that

|zd,€(oz) — Zg.(a)
a— o

| > do (4.7)

Then the integral operator K[z5](f) satisfies the following:

K[z : H® — L™
0. K25 : H' — H*!

0uK|[25) : H® — H*?
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Proof of Lemma 4.3: Now, the L bound on K|[z§] is immediate from Lemma 4.2,

since

(e}

K = 57 | 1=y ~ =)
(

_ L [ panyal@oza) - (o) - ze)
2 zg (o) (o — o) (i) — zg())
_ L [ f@) el

As a consequence,

1 1
1K zg (N < ClIFllzz - llgallzz - IIEIILOO Al Ml (4.8)

«

Since qil is bounded by the arc-chord condition, therefore K : H® — L.

Now, to bound 9, K[z5], we use the fact that the integral is of the form

O /P1 - Py(a, @) - Py(ar, @)

where P, = Z{((CZ: ,))

, Po=q € L? 0, P € L', Py = qil € L* so long as the arc

chord condition holds, and d,P; € L?. Therefore, we have that

k+1
1
1067 K[zl < ||f||L2(HQ2!|L2!|3’““—I|L2+Z|| adellua 1057 Jq ||L°°) (4.9)

7=1

Therefore, letting k = s — 2, we obtain 9,K[25] : H® — H*2. Finally, we note

that if k = s — 1, we have

s—1
s i . a1
O K 23] 2 S ||f||L2(HQ2HL2Ha —llz2+ D 104l 110; E“L"O)

7j=1

%052
+y|/ Dag2 ]d]da||Lz
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However, the last term can be dealt with by using the fact that ¢s[25] = 0w q1[25]

and integrating by parts, giving us

s—1

S € S 1 ) s—j 1
NS K [zg]ll 2 S 1 S]] <HQzHL2H8aaHL2 + D 10121122 ]EHL“’)
j=1 (4.10)

€ S € 1
+ ([l 2ll28al L2 + [ fallz2)10aa [2g] | ot [| ——5 | 2
e

Therefore, if f € H', then 9,K|[25] € H*~!, completing the proof. O

With K[z bounded, the next task is to estimate our other integral operator,

[H, f].

Lemma 4.4. Suppose that f is an L function such that O,f € H*™' with s > 6.

Then,

[H, f]: H* — H*?

with the bound

HH, f1s—2 S VI falls—1 (L + [ fl[zee + [ falls—s)llgl|22 (4.11)

Proof of Lemma 4.4: By definition, we have ||[H, f](g)||zz < 2||f||z=||g||r2. For the
rest of the argument, we imitate the proof of Lemma 4.2 to obtain bounds on the L'

norm of 9%q;[f], and apply them to the equations
A1H. N)9) = [ sle)har(flae (4.12)

106LH, Fl(9)llz2 < llgllz2ll0nar[f]]] 2 (4.13)
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to finish the proof.

As before, we split 0,q1[f] into the area around o = o/, and infinity.

8aq1[f] _ fa(Oé)(Oé B O/) B (f(Oé) B f(O/» _ /OJ tfaa<ta+ (1 . t)Oé/>dt

(v — o)?

fale) , 2fll

aoqu[f] Smin(”fﬂtl’h""? ’04—0/| ’04—0/’2

In general,

Oaf(@)  N0a ' flle=  _[Iflle= )

lo—a|  Ja—aP T a— o[

Ohar[f] S min([[05 fl] 2,
And in particular, we have
05 [f]] S 1 + ha + hs

hi(a, ') = [[0E £ o Xja—ar<e

4.14
b 8] )
2(0[,0{) - |CE — O/| Xla—o/|>c
190 f Ik + 1]l
h‘S(OCaO/) = |Oé _1 Ck,|2 X|a—a/|>c

where ¢ is a constant to be determined, and yg is the characteristic function on the
set S. Now, clearly hy, hs € L', and making use of the fact that ||r1a,‘X|a_a/‘>cHL2 <
1/y/c, we have

O f ()

jor — o

10&H, (@22 < [1hallzellgllze + [Asll e [lgllzz + ] g(a)da'|| 2

la—a/|>c

1
S (ell05" fllzee + 110511122 + < (10af e + 1 Fllz==)) gl ]2

1

And choosing ¢ = —————, we have
& vV fallk+1

1015, f1@z2 S VI fallker (@ + 1 fllze + 10afll-1)llg]| 2

31



This completes the proof. O

However, while Lemma 4.4 is a powerful tool, it’s not quite sufficient for our pur-
poses, as the T§ contain terms that require additional degrees of regularity without
possessing any extra structure for f. Fortunately, if ¢ is in a higher order Sobolev

space, we can work around this.

Lemma 4.5. Suppose that f € L>,0,f € H" ', g € H" 7! and n > 2j. Then,

HH, 1@ < Mlglla—r vV 10af a1 (L + [[fllzee + [|0af |In-1) (4.15)

Proof of Lemma 4.5: Now, we break up 9" into 929"/ to obtain
. n=y n—1 L e
outit. Ao =013 ("7 ) [ (@) - @er o)
1=0
Next, we separate the sum into ! > j—1,1 < j—1 (noting that n—j > j), getting
Jj—2 n—j
out. i) =on Y (") )i ekriar o

=0

(") @) - @nma)

Now, since f € L>® and 0. f € H"7*% for 1 <[ < j — 2, therefore in particular

Ol f € H'*% and therefore by the previous lemma,

11, 0,106 "9l < A 110 fallyer (14110 2o +1106 fll;-0) 1105~ gll2 (4.16)
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Similarly, for j —1 <1 <n—j, we have that n — 7 — 1 < n—2j+ 1, and therefore
on—i-lg e HI 0! f € HI. Therefore, in particular, we have
1H (0500571 105 HIH 095 S Nglla—srall fallna (4.17)

Combining (4.16) and (4.17), we have that

N, f1@ e S Nglln—i+a v 11 0af [ln-2 (L + | fll e + 1100 flln-1)

as desired. O

With both K[z9] and [H, f] bounded, we can turn to the last reoccuring term in €.

Lemma 4.6. Suppose that 6 € H® and that the arc-chord condition is satisfied.

Then, 30| € H®.

Proof of Lemma 4.6: Recall that
¥ = —Rsin(x0) — 24, W° - {° (4.18)

By Lemma 5 in [1], we know that v € H°. Since sin(x.0°) € H*, we merely need

to show W€ -t € H*. Now,

(W) = o H() + K[z4](0) (119

Since ® () = z¢, and for any vectors a, b, we have a-b = Re(®(a)®(b)*), therefore

r-)/

€
ZOC

We. e — Re(;—%H( ) + Re (= K[=5)(7))
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Using the fact that Re(5-H(7)) =0, we get

%1, 1)) + Re(25 K24 () (4:20)

2 Z¢,

We. ¢ = Re(

We then use Lemmas 4.4 and 4.3 to get that W€ -t € H* 2 and therefore
v = xb, +7 € H*2 At that point, applying Lemma 4.5 and 4.3 again, we

obtain that ¥ € H®, as desired.O

With the necessary bounds on K|[z§], [H, f], and «y, we are now ready to turn our

attention to W€ and m¢.

Lemma 4.7. Suppose that 6 € H® and that the arc-chord condition is satisfied.

Then, On(W5H< - 1), 0,W € H*™', 0,(W*¢ - 72) € H™3, and 0.k € H*'.
Proof of Lemma 4.7: Recall from (4.19) that

(W) = H(L) + K=)0)

Now, we know from Lemma 4.3 that 9,K[z5](y) € H*', so we merely need to

worry about the first term. However, since - € H® by Lemmas 4.1 and 4.6, therefore

LH(X) € H*, and so 9,W° € H*L.

For Wt note that v* = x.05, € H*?, and therefore %H(zﬁ) € H*? and

Do (Wete . n) € H* 3. Next, recall from (4.20) that

. ¢ 1
W = Re(S2[H, —](v") + Re(24K[2()(1"))

«
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and so, as in the proof of the previous lemma, we can apply Lemmas 4.5 and 4.3

to obtain that d,(W*: - ) € H*~!. Finally, k¢ = ~fXf) 4 7¢ and therefore

Okt € H 1 is an immediate consequence of U¢ = W€ - nf. O

Remark 4.8. While not explicitly stated in the formulation, Lemma 4.7 gives the
necessary bounds for U¢ and V¢ as well, via the relations U¢ = W€ - n¢, and 9,V° =

U<,
Our final lemma of this section deals with the remainder term, m¢.

Lemma 4.9. Suppose that 6 € H®, and the arc-chord condition is satisfied. Then,

mc e H®.

Proof of Lemma 4.9: This follows from Lemmas 4.3, 4.5, and the equation

B(n')" = K00 2) + 21 ) (200 ) (1.21)
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Chapter 5

Energy Estimate for Local

Existence:

With the necessary lemmas proved, the next step is to bound Y through T%.

Lemma 5.1. Suppose that 6 € H®, and the arc-chord condition is satisfied. Then

0,5, Ys € H372 Y5, Y5 € L™, and 0,5, 0, Y5 € H*™3.

Proof of Lemma 5.1: To prove this lemma, we will seperate each Y€ into its indi-
vidual terms, and show that each term is a product of Sobolev functions that we’ve
already bounded through Lemmas 4.5, 4.7, and 4.9. In essence, we're checking that

the bounds we proved during the last section are sufficient to cover every term in 6, ;.

. 16 — . . . _ .
Now, we shall write Y{ = > .”, =, in the obvious way, with each Z; corresponding
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to the ith term in (3.18). Then,
[1Z1]]s-1 = [[ AW H (xb) 0™ - 1) |sor = At || Oxele )05 W - ]|y
[1Z1lls1 < AulIXeOlls—1 106 [s—1 (H0a (W - 2)|[s—z + [[W* - ]| 1)
Which is bounded by Lemma 4.7. Next,
1Z2ls-1 = | AuH ((xebe)m™ - 2) -1 < Apr|Xe0 | |s—a|Im™ - 2|1

which is bounded by Lemma 4.9.

AT
2

AT

[H, X 06 H (XeOaa)ls—1 = 5= H, XebOo] H (Xboaa)lls—1

[1Zsls-1 = |l

is bounded by Lemma 4.5. Similarly,

A,

10Zll-2 = 100 ( 2570, . i H ) )

A
< 7N | | [H7 XEQEQ]H(XEQZLCMQ) | |5—2
is also bounded by Lemma 4.5.

10:Zslls—2 = 110 (A,nang[<xgeza><—egwm e ﬁﬁ)}) [
= Ayl (XeB) (O )

< AutlIxeloalls—2 (OG- 8| + ([ - 2| |s-2)
is bounded through Lemmas 4.7, 4.9.

HaaEG | |s—2 - Haa (A/ﬂ—a;1 [H, USt’E]XEQE ) ‘ |s—2 - AMT| ’ [H, U8t7€]xe‘9;aa| |S—2

acx
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which in turn is bounded through Lemmas 4.5 and 4.7, since U = W - n.
|57l ls—1 = [1[H, EIxeb5alls-1
is also bounded via Lemmas 4.5 and 4.7.
[1Zslls—1 = [[H (kaxe0)[ls—1 < kgl ls—1llxe05 s
is bounded through Lemma 4.7.
[1Z0lls—1 = |17 (xee)m™ - o1 < 7l IxbE sl - |51
is bounded because of Lemma 4.9.
Es0lles = 1 Ol U 65 0t s < 2l 1,051 i)l
is bounded by Lemma 4.5.
[E11]fs—1 = ||TAZ(X5‘9§)3a(WSt’E 1|51 < TAiHXeg;”s—lHaa(WSt’e )]s
is bounded by Lemma 4.7. The bound on the next term,

AR

— € € AR
[[Z12]]s-1 = || 5 (x05)? cos(xed)|[s-1 < =&

2

[IxeO5 | [o-1 (1 + [10a cos(x)[s—2)
is immediate. The next pair of terms,
[1Z18]s-1 = [[A% (Xe05)Ba( W - 1|51 < ALIIXIE o1 [[0a (W - 1) |51

[1E1allsm1 = ([ (8200 (V= W i)[[—1 = [[(xcBe) (W - 1)]s—1

are both bounded through Lemma 4.7. Finally, the last two terms,

=15 ][s—1 = [|0a(m - )]s
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[Z16lls—1 = [|AuOaH (m* - 2?E)Hs—l = Aul|Oa(m® - £€)||s—1
are both bounded by Lemma 4.9. Therefore, 9, € H* 2. Now, recall from
(3.22) that
T = 0a X5 + K H(x i) + 5 H (i) (0 X5

+ (V=W )a(xebha) + ALV 1) a(xb50)

AR
+ —E— cos(xe05) (xPsa) (X05)

2
21
=05+ > &
=17

These terms can all be bounded using Lemma 4.7. Specifically,
|Z17]ls—2 = [[FeH (XcOao)lls—2 < NKG a2l Ixloalls—2

—_ T € € € T € € €
|[Z18l]s—2 = \|§H(X69aa)(9a><69a)a\|s—2 < §’|X66aa‘|S*2H9a“8*1HX66aHS*1
1210 [s—2 = [|[(VE = W ) a(xeb5) |s—2 < |WE - £ [s—al | xebsulls—2

[1Z20]ls—2 = [JAL(WE - )0 (Xebaa) lls—2 < ARNO (W 1) |52l Ixcbial ls—2

— A R € € €
|[Z21]|s—2 = | ; co8(Xelg) (Xelna) (X0 |s—2
AR
< —= (1 + 1100 cos(xeO5)||s—3) [ XOaalls—2lIxO5||s—2

2

Therefore, TS € H*™2

The final two T€,
TS = K = TAU™ + 265 (x.6)
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—7A . . AR
Tg = 5 (xebo) + (V= W)+ AL(W - 8) + = sin(x.8")

can both be bounded immediately from Lemma 4.7, finishing the proof.0

Our last lemma before the proof of our first main result is needed to handle the

low-degree term of %—]f; that is, to show that ¢ is L?.

Lemma 5.2. Suppose that 6 € H®, and the arc-chord condition is satisfied. Then,

s € L2,

Proof of Lemma 5.2: As in the previous lemma, we will split 5 into individual terms,
and show that each term is a product of Sobolev functions that we’ve already bounded

through Lemmas 4.5, 4.7, and 4.9. Recall from (3.2) that

- A
0; = §x3H (0faa) — TX (7M<X60§)(x692a) +AH(U St’EX€93)>

+ Xe {H(mee;) 47 (Ve — W) 0 + T A2 (x5 WP 56]

A : € € e\ 117€ fe
+ T“Rxﬁ(sm()(e@ )Xe‘%) + Ai)(E ((XEGQ)W -t )

~

+ Xe {(‘76 - W fe)Xeefx] +Xe(m - 2%) = Aux H(mS - 1)
11

As before, we will write 65 = > .~ =;, with each =; corresponding to the ith term

in the above equation. Bounding the first pair of terms is immediate, as

— T € €
Zille = 15 H e S 16
— A € € €
Il =11 - (3 et )l S 1161
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as long as s > 3. Next,
Elle = I = mxe (AMH(U“’EXEH;Q e < N6l V50 -]
which is bounded by Lemma 4.7.

1Zallz2 = [Ixe (H (kXx0)) 122 S 1061 2| Ko

Since k¢ = 7chs(9€) — A,U¢, this is bounded by Lemma 4.7.

~

1=z = [[xe (T (V0 = W i) x|z S 106122V = W ]| o
[1B6llze = xe(TAL (xO2) W ) S 106 [ 4|
—_ A;L . € € € €
[1Z7]l22 = 157 Rxe | sin(xe0)xeb ) [l < 110°]]221165] 12
|1Zsl]22 = HAixe((xe@;)VVe - fﬁ) ez S 10612 W - 1
[1Z0llz2 = [Ixe {(‘76 - W fﬁ)xﬁ&} ez S N2l [V = W -
1Z10llz2 = [Ixe(m® - )|z S [lm]| 2
1Z0llz2 = [| = AuxeH (me - )| 2 < [[me||2

Therefore, combining the above equations, we have that 6¢ € L?, as desired. O

Finally, with bounds on 6; and all the T§, we are now ready to prove our first

major result.
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Theorem 5.3. Let E(t) = 3 [, 0°(c, 1)* + (950°(ar, t))?dev, and suppose that

24(a) — 2¢(a/
16l < di, |22 = 2ale)

, | > dg
-«
Then,
oF
T < el
ot ~°
Proof of Theorem 5.3: Now,
ok
5 = /He(a)ef(a) + 020°(a) 050 (o) dex (5.1)

To bound [ 6(«)f;(cr), we note that 65 € L? from Lemma 5.2, immediately ob-
taining
/ 0°()b; () < eIl (5.2)

Therefore the main difficulty is bounding [ 950°050;. We start by using (3.19)

along with the fact that y. is self-adjoint to obtain
oo = [ oo,

[ 00090 2 (Xinbin) + [ (02090:7T;
We have the necessary bounds on the Y¢ from Lemma (5.1), so the main difficulty

is that some of the 6 terms in (5.3) have more than s derivatives. The T¢ integral is

the simplest to deal with, as it contains no such term and can be bounded directly:
[ ocauerer s < il (5:4)
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For the T§ integral, we expand via the product rule,

/ (D200 (T xebon) = / TE(9: X0 (0 x.0°)
s—2

v X (177) Jeense: e

=1

For the first term, we remove the 957!y .0¢ through an integration by parts, ob-
taining
€(9s € s+1 € 1 € s €\2 —1 € s €\2
TG (o 0) (05 x0°) = B TG00 (Iox0)” = 5 (0a75)(Tox0°)
To estimate the sum, we note that j < s—2, s+ 1—j5 < s, and bound them

directly to obtain
/Té(aixeee)(aiﬂxﬁ) R T 122% 1 (5.5)
Next, we expand the T§ integral using the product rule,

/ (B89 2(TEA (b)) = / TS VA X )
s—2 s — 2 '
+3 (027 [eman@rae

Jj=1

As before, we have that j < s—2, s+1—7j < s, letting us bound the sum directly.

For the other term, we use Young’s inequality to isolate the AJSx.6°, getting

1
[+ 5 [aoney

N | —

JRSCAVAICAYAE
Since the first term in this inequality can also be bounded directly, we obtain

2
Hs

/(XﬁiHe)@Z_Q(TEA(Xe@;a)) S (1517 + 1105 [s—5) [ xe0°]

+ /(a;+lxeee)2

(5.6)
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Finally, using the fact that A%? is self-adjoint, we take the remaining term from

(5.3) to get our dissipation term

-7

T [eaereatne) = [0 o) 6.7

And therefore, applying (5.4), (5.5), (5.6), and (5.7) to (5.3), we have

/ 050°050; < Cel”lls % / (A8 X H) — % / (AY205x.0°)? (5.8)
And combining this with (5.2) and (5.1), we get
S =05 fwone - 7 [ oy (5.9

Letting v = 95 x.0°, we have by Plancherel,

1 2 2
5 [ oy -3 [wrapay = [aore ) - Er ac

| (27r<

Since 7 > 0, therefore ](2”20 | — | is bounded above by a constant M,
independent of (. Therefore, plugging this back into (5.9), we obtain

)

S < C i, [1o(Q)Pdc < O+ A1

Which in turn, gives us the desired bound,

9E _ s

5 < (5.10)

concluding the proof! O

With the energy estimate proved, we can finally show that the ¢ all exist on the

same time interval.
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Lemma 5.4. Let 6¢ be as in Lemma 3.1. Then there exists some T' > 0 such that for

all € > 0, 6° is a solution to (3.2) on the time interval [0,T], and 6 € C(]0,T],O)

Proof of Lemma 5.4: Now, from the continuation theorem for autonomous differential
equations on Banach spaces (the version we use is Theorem 3.3 of [15]), each 6¢ can
be continued as long as it does not leave the set O. We will aim to show that the 6¢
cannot leave the set O in arbitrarily small time without violating the energy bound
from Theorem 5.3. Now, let T be the maximal time of existence for each #¢. Suppose
that there exists a sequence €, such that T — 0 as n — oo. Then, (passing to a

subsequence if necessary), we have that either
||067L('7T6n)||s > dl (511)

or
zfin (Oé, Ten) — Z;ln (O/a Ten)

a—of

| | < dy (5.12)

for all n. Suppose that (5.11) holds. Then, by Theorem 5.3,

Ten
€ € d €
o T = NleullE = [ Gl ol
0
™ _dE®™
:/ 277 gy
. dt

dE
dt

< 27|

|| oo
< Cehen
— 0

as n — oco. However, since 6y € O, therefore ||6y||s < di, and in particular,

16 (- T2 = 1l6o]Z > di — [16o][Z > 0
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a contradiction. Therefore, (5.11) cannot hold.

Suppose (5.12) holds. Again, by theorem 5.3, we have

zg' (@, T") — 2z (o, T)  zq(a, 0) — z4(c, 0) _ /a Zoen (B, T) — za(ﬂ,O)d

a—ao a—dao o a—ao

1 «@ Ten d
_ @ (B.D)dtd
oz—a’/a//o dt” (8,2)dtdf
1 « Ten
<[ [ st
o — o Jo
1 «@ Ten
T Wt
a—a Jo Jo

1 « Ten
<[] llgedeas
a— o Jo

< T 04| g2

IN

—0

since ||0;||z2 is bounded independently of € by Lemmas 5.1 and 5.2. However,

once again we have

2000, T) (@) zale,0) = 2u(0',0) _ zale,0) — (o, 0)

a— o a— o a— o

| —dy >0

and therefore, (5.12) cannot hold. Therefore, no such sequence of T can exist,
and therefore there exists some T" > 0 such that T > T for all €, and so the #° exist

on the time interval [0, 77, as desired.O
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Chapter 6

Uniqueness and Proof of Local

Existence:

So far we have proved that the 6¢ satisfy (3.2) and exist on a uniform time interval
[0, T]. However, while it is simple to show the #¢ converge pointwise to a limit 6, this
is insufficient for proving that 6 satisfies (1.1). Therefore, we will first prove that the

¢ satisfying (3.2) depends continuously on both € and the initial data 6.

Now, given two sets of initial data 6y, ¢o, we let # and ¢° denote the solutions to
the mollified equation. As before, we will bound d;||6€ — ¢°||» by bounding the energy
E4, which is defined by

1
Ea=51I6 - ¢/l (61)

47



Then, our goal is to bound

d
% = /R(@e = ¢")(0° = ¢")1 + (0 — 320)(0° — &) (6.2)

To be precise, most of this section will be dedicated to proving the following result:

Theorem 6.1. Let dy < 0o,dy > 0. Define the set O by

’zd(oz) — zg()

O=1{0eH |||, < d, | > doVa, o € R}

Suppose that 0¢,¢° € C([0,T); O) satisfy (3.2) with corresponding initial data

0o, ¢g. Then, there exists constants cy,co such that

dE
W< eallo = &I + eale +0)10° — ol

C C \/§ (&
165 = &°[[2 < |60 — o [2e*/? + 26—1(€+5)(6 1)

Remark 6.2. While we work with the mollified equation of 6¢ for the remainder of
this chapter, it is important to note that when € = 0, (3.2) collapses to the original
evolution equation, (1.1). In fact, by defining xo = I, (1.1) can be considered a
special case of (3.2), and the results of this chapter hold when applied to solutions

0, ¢ of the unmollified equation. This gives us the bound we’ll use for uniqueness,
16— ¢ll> < 7?1600 — ool |5

Conversely, when 0y = ¢¢, we have that E4(0) = 0, giving us the bound we’ll need
for local existence,
16°=0°|l2 < (e +9)
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To accomplish this goal, we first aim to rewrite (6¢ — ¢°), as

(= ) = xa | 0 = ) 4 T Tana(C )|
s Toxs 6 = ) + Tuoxs(ts - ) (63)

+ Xs {Tn + Yo + T13} + (xe — x8) (X '65)
Here, T;; contains the remainder terms that can be dealt with immediately, T,
denotes the terms that need to be expanded after differentiation, T3 contains the
remainder terms that scale with y.—xs, and the remaining T, are bounded collections

of terms. We begin by collapsing surface tension terms in (3.2), obtaining

T 1
6 = | FH ) — H (Reos(oc) 4 24,0 (85)|

(6.4)
’ye(Xfetex) € € Je € € e €  fe
+ Xe _A“T+(V — W t)x b, +me-n — A, H(m* - t)
Therefore, we can write
6
(0= &) = (xe — X)X '05) + > 6B (6.5)
i=1
where each of the B; correspond to the ith term in (6.4). Now,
T3 € §
By = A (xeb* = x59")
(6.6)
-7 3/pe -7 3/pe )
= 7()(5 — Xs)A(0°) + 7)(5/\ (0°—¢°)

For B, we first rewrite

S H((Reos(x) + 24,0°)(xc85)) = HOK (xeb)) — AL H (U™ (1.65))
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Therefore,

By = H(k“x.05) — H(K**x5¢0) — TAH(U 05 + 7 A, H (U x560)
= H(k(xe — x5)05) + H (kS — k%)x565) + H (K*?x5(65 — ¢°))
_ TAHH(USt’E’G(Xe . XE)gg) . TAMH((USt’E’G . Ust,é,d))x(sg;)

— TAH (U560, — 7))

We pull £%¢ and U*"%¢ through the Hilbert transform, incurring commutators,
By = H (K (xe — x8)05) + H((k%° — k) xs65)
+ kO xsH (60, — 67) + [H, k™) (xs (65 — 63))
(6.7)
— TAH (U (xe — x6)05) — TAH (U0 — UH5) 565, )
— TAUT O H (0, — 0)) — AL H, U™ (xs(0, — 67,))

For Bjs, recall that v¢ = 7x 05, + 7, and so

—A —rA A,

M € €\ __ M € €y _ T "Hxe €
2 /Y (Xfea) - 2 (Xfeaa)(xeea) 2 ’7 (XGea)
Therefore,
—T7A A A A,

By = — (X0aa) (X05) + 5= (X600a) (Xaa) = 5777 (Xe0) + 5777 (Xoa)
We begin by separating the y. — xs terms,

—A TA, TA

Bs = TMVG’G((X Xs)05) — T((Xe — X6)064) (X605) — TM(XWZQ)(XW;)
TA A, . o A
+ 2“(X5¢ia)(><5¢i) - 7“7 O(xs05) + 7“76’¢(X5¢i)
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At this point, we expand, obtaining

—A A
By = — 9 (e = x6)05) = 5 (e = x6)05) (6565)
T (a0, — ) (i) — o (a0 s — ) (69
A A
= (Y =3 (xabl) — 7 (s (0 — ¢2))

2

The remaining B; are straightforwards,

2

By = (V=W -1 ((xe = xs)05) + (V = W - 1) (xs(05 — 0,)

(6.9)
+((V =W — (V=W )*) (xs0;)
Bs = m®? - a0 — m®¢ . 3% (6.10)
Bs = —A,H(m" - 19) + A, H(m*? - £*9) (6.11)
Therefore, returning to (6.3), we see that Tg contains one term from Bs.
Yo = o (xa0d) (6.12)
Ty contains two terms from Bs,
Ty = k% — 7A,U? (6.13)
T contains two terms from B3 and one term from By,
Tio =~ (ot — F (V- WD) (6.14)
T, contains most of the remainder terms,
Ti = H((k" = k*)xs0;) + [H, k(x5 (05 — 62))
AU 0, — 6) — - Pt (619)

2

+ Bs + Bg
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T, contains the set of terms that must be expanded after differentiation; one

term from By and one term from Bj.

Tio = —TAH (U0 — U?) x5 ]

(6.16)
+[(V =W — (V= W - 1) (xs05)
Finally, Y13 contains all the terms that scale with (x. — xs)-
Tis = 5 (x = X)A(0) + (V= W - D ((xe = x0)05)
+ H (K (xe — x5)05) — TAH (U™ (xe — X5)05,) (6.17)
= B (e xa)f) — T (e~ xa)) )

dE,

o4 in terms of €4, and [|0 — ¢[|5, we only

Remark 6.3. As our goal is to bound
need concern ourselves with groupings of terms of the form (Q“Y — Q%¢). Anything
else can be safely bounded by a constant and subsequently ignored. Because of this,
the contents of Yg, Yo, and Yo are largely irrelevant, as the (6 — ¢) component has

already been isolated. As the terms in Y1, T2, and Y3 lack such a decomposition,

they must be bounded individually.

The next concern is obtaining a suitable equation for (¢ — ¢°), . We begin with

the decomposition of Y19 4,. Recall that

(67076

1 .
U;t,e — §X€H<96 ) o 9;<Wst,e . te) + mst,e A ’TALE

and

1 .
SHE0:) —me

(V=W 1) = SH((50)05) +
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Therefore,

TlQ,aa =

—TA#H [(Ust,eﬂ . Ust,5,¢)X66)e }

— TAHH[H(Xeegaa - X5¢5aaa)x59t€:va]
— SAH[H (X = X5Fhaa) X0

BV §0) = G )] ot )

. mst,e,@ . ﬁﬁ,e + m5t55’¢ . ﬁ6’¢i| X592>
(6.18)

+ (X605a) [(V =W - ) — (V = W - £)7]

(67076

+ T (Xo0a0) [H (Xba)00) — H((Xs000)00)]

5 0605) [H (X)) = H((x565) 6]
5 060) [H(Xcb500)05) = H((Xs56h00)85)]
+ 0 (B[ (77785 = - £0) = (3028 — e 29)])
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After expanding and pulling various terms through commutators, we obtain

TlQ,OéOé = _TAMH [H((Xe - X(S)e;aa)xéegca] - %AMH [H((Xe - X(S)g;aaa)xf;e;]
+ T(X(SQZZCX)H(G;((XG - X&)Q;a)) + g(X(Se;)H(e;a((Xe - X&)Q;a))

+ 5 (abe) H (05((Xe = X6)0500)) — TALH [(USF = U™9) x50,

l\'Jl\\

+ 7 Au(X600) (X5 (O — Faca)) = TAWH, X60i0) (X6 H (Baca — Paca))
2 A 605) (O = rne)) = 5 AuH. X602 (X H (O = D)
+ 7 A0 H ( (O (Wt o) — gh (s . )| Xw;)
+ T A0, H ( [ = el e gt s Xaeg)
+ (Xo0aa) [(V = W - 1) — (V = W - 1)]
+ 7(Xo06a) 0 X H (U — D) + T(X600a) [, 03] (X5 (0 — Poa))

+ T(X562Q)<X5¢6aa)H(02 - ¢g¢) + T(Xéega)[Ha X&¢ia](9; - ¢i)

5 0000 X H (B = ) + 5 (X605 [H, B (X6 B — Fh))
5 000) (X60%0) H B = Bh) + 5 (X85 [H. X5630] B — Fh)
5 OO XS H (O — D) + 5 (0605 H, 5] (50— D))
5 (X0) (X600 H (8 = 88) + 5 (8 [ X560l (05 — #5)
0 (Ot [(53°00% - e 89) = (%68 = m - 59)])
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Therefore, our equation is

(06 - gbé)aa t —

Where

= X6 _XJA ( ¢aa) + TTI4X§<9aaaa - ¢aaaa):|

+ Xs

+ Xs

+ X5

2

T15X5A( oo ¢oza) + T16X6( aao gbaocoz):|

(6.19)
Tl?XéA( ¢o¢) + TlSX(S( ¢ao¢) + T19X5A(9 ¢):|
T20X5(0a — Pa) + Yo1 + T221 + (Xe = x8) (X2 1 050)
1 €
Tiy=Tg+ §AuX59a
T € €
Ti5="Tg+ §(X56a)904
T]_G = QTT&O‘ =+ TlO + TAHX(SQ;(]
Tir = 2T g0 + T(xs05, )05 + = (X(;eﬁ )0<., (6.20)

Tis = Y800 + 27104
T19 - T9,aa

TQO = TlO,oza
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T, contains the majority of the remainder terms,

T21 _ —TA#H [(Ust,GO Ust5¢)X 0

aaa]
— TAM [Ha X(Se;oz] (X5H( aaa ¢aaa)>
— S AWH. Xo85) (xsH (0 aaaa))

(6787670 acox

+n%@ﬂ(kJWWW-ﬁ%—¢3W%W-ﬁﬂhw@
+ 7 A0 H ( R R Xae;)

+ (x40,

[67e76

(V= W50 — (v = W - §)59]

T(X60a0) [H, 05) (x5 (05 — Pora)

T(X6050) (Xo D) H (05, — ¢2) + (X500 ) [H, X500l (05 —

(Xa05) [H, O5a) (6 (0ia — 90a))

(xs05) H, 0] (X5 (Fana — Paaa)

MI\] l\'JI\l l\DIﬂ l\DIﬂ

€ 1~e79 € _ 60 10\
+@Qm%ﬂgvea7n )~ (5

Finally, Y55 contains those terms that scale with y. — xs.

T

Yoo = —7AH [H((Xe = X5)00a0) Xo0an] — 5 AuH [H((xe —

aco 2

T(Xo0a) H (05((xe = X8)050)) + 3

T
+ §<X59¢€1)H(0<61((X )ana)> + TlS,aa

(Xs05) (X6Dha) H (050, — B0s) + %(X&QZ)[H; X600 (0sa

(x605) (XsBea) H (05, — ¢2) + (Xaee)[H X6Paal (05 —

1 )
S0 —m* t‘s"")D + Y1100

+ 2 (xa05) H (850 ((xe —

(6.21)
)
— Do)
)
)efxoaaa)X(Se;}
X&)Qfm)) (6.22)

With the equations fully constructed, we now begin proving the lemmas necessary

to bound T5;. We begin with a Lipschitz estimate for mollifiers,
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Lemma 6.4. Let n > 0 and suppose that f € H". Then,
(e = x5) flln—1 < (e + )| f]n

Proof of Lemma 6.4: We begin by proving that ||(x.f) — fllz2 < €||f||1. Now, by the

definition of a mollifier, we have

(xef) = fll2 = (/R (/RXE(ZJ)(J”(:U) ~ flz— y))dy)zdx> 1/2
([t

= (/R (/Ryxe(y)ql[f]dy)de> 1/2
< /R ( /]R (yxe(y)ql[f])de)l/2dy
<[ ( / (ql[f])2d$)1/2|y|xe(y)dy

R R
< a1l / lylxe(y)dy

< €lflh

Now, note that

O = xa) fllze < lIxef = fllee + lIxaf = fllzz < (e +0)|[f]h

Finally, since

1057 (e = x0) )2 = [ (xe = x8) (@™ Nllze < (e +8)]|05~" f]s

we have that
11(xe = X5) Flln-1 S (€4 )| f]]n
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as desired. O

Lemma 6.5. Let f,g € H3. Then,
[Isin(f) —sin(g)[2 S [If = gll2

|| cos(f) —cos(g)ll2 S I1f = gll2

As a consequence,

[E0 = 2]y S 116° — ¢°|]2
1A — 22?)]5 < [16° — ¢°|]a

1287 = 2a°ll2 S 116° = ¢°)l2

Proof of Lemma 6.5: Now, for any values a, b, we know that | sin(a)—sin(b)|, | cos(a)—

cos(b)| < |a — b|. Therefore, it is immediate that
[|sin(f) = sin(g)[|> < |[f = gl

[l cos(f) = cos(g)ll> < IS = gllr2

Now,

8aoz(Sin(f) - sin(g)) = faa €08(f) = (fa)?sin(f) = gaa c05(g) + (ga)” sin(g)
= (faa = Jaa) cos(f) + gaa(COS(f) - COS(Q))

— (f2 = g2)sin(f) — g2(sin(6°) — sin(¢’))
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Therefore,

[10aa (sin(f) —sin(g)) 2 < [|f — gll|| cos(f)l| L + || cos(f) — cos(g)]]22]|gaallz
+1f = gllm [ fa + gallzeel| sin(f)] |

+ | sin(f) = sin(g) ||z |gal[Z~

And, using the fact that f,g € H3, we know that f., ga, Gaa € L. Therefore, as

|| sin(f) — sin(g)||z2 was bounded previously, we have that

[Isin(f) —sin(g)ll2 S 1 — gll2 (6.23)

as desired. Similarly,

8aa(COS(f) - COS(g)) = —faa Sin(f) - (fa)2 COS(f) *t Yaa sin(g) + (ga)2 COS(g)
= —(faa = Yaa) sin(f) — gaa(sm(f) - sin(g))
= (fa = g2) cos(f) — g2 (cos(f) — cos(g))

Once again, we write

[10aa (cos(f) — cos(g))l|zz < [If — gllall sin(f)l[z + | sin(f) — sin(g)l| 2| gaal | L
+1f = gllm 1 fa + gallreel| cos(f)] |z

+ [ cos(f) — cos(g)|]zz|lgall7o

And as before, since || cos(f) — cos(g)||r2 was bounded previously, we obtain

[l cos(f) = cos(g)ll2 S IIf = gll2 (6.24)
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Finally, regarding ¢,7, and z,, we let f = 6°,g = ¢°, and note those bounds

- €,0

are an immediate consequence of the facts ®(t%%) = 25%, ®(R%?) = i25%, and 259 =

cos(6°) 4 sin(#°). Therefore, the lemma is proved. O

With the trigonometric functions bounded, we next look at the commutator,

[H, f].

Lemma 6.6. Suppose that f € L, O,f € H*™', and g%, ¢g® € L?. If1 < j+k < 5-2,
then

102 1H, f1(85(s° — ") 112 S 19 — %2

Proof of Lemma 6.6:

Now, via repeated integration by parts, we have

4H. (0K - 9°) = [ @l ols’ ~ )il

— (1 [ (6 %) - b’
And so, applying Lemma 4.2, we have that

15[H, f1(95(9" = 9”2 < 1lg” = 9°ll12 - |05 [£]] | 2
(6.25)

Slg” = 9%l L2

as desired. O

Our next goal is to get some Lipschitz bounds for the divided differences analogous
to Lemma 4.2.
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Lemma 6.7. Suppose that ¢, ¢° € H*, both satisfying the arc-chord condition. Then,

we have that

25" — 257Nl < 11267 — 220112 S 116 = ¢l (6.26)
llaol2g” — 2 ler S 116° = &Il (6.27)
10aarlzg" — 2"l S 1167 — ¢l (6.28)
105a1l=5" = 22N S 116° = ¢l (6.29)

Proof of Lemma 6.7: Now, (6.26) follows immediately from the integral representation

Of q1,
1
nleg? ~ 4% = [ (50 590+ (1 - aya
0

Applying Lemma 6.5, we see that

llarl=g” = 23°Nll2 S 11257 — 202112 S 116° = &°)ls

For (6.27), recall from (4.4) that

@mzﬂk—nmmwuuwwm
(o)~ Fe!) (0 — ) ful)
(v — o)?

alf] = fald)

a—of

Therefore, we can write

1
%@%ﬁ—%ﬂ=maw«(/a—n@£ Mma—u—wde
0

al25’] = a207] — (250 (o)) — 22%(a))
a— o

+ X|a—a/|>1
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This gives us the estimate

1
10ag2l2g" — 2ll1r < ||X|aa’|<1(/ (t = 1)(#50 — zad)(ta — (1 = t)o/)dt) [l
0

a2 — 2"] = (25°(e) = 22°(a))

e} 8]

+ HX|afa’\>1 HL1

a— o

S llzea — Zad

0 5, Xla—a'|>1
o + laalzg” — 20Nl | === 12

_O/

6 : Xla—a/|>1
11" @) = 2@ el =

S 16°—6°)l2

as desired. The proof for d,q; proceeds exactly as that of ¢o = J. ¢, with the
only difference being « substituted for o/ in some places. As such, it has not been

included here. Finally, for 92¢[f], we write

(o — &) faala) = 2(er — ) fa(@) + 2(f (@) — f(e))

(a — /)3

_ /1 2 fonalta + (1 — t)a')dt
0

82@1 [f]=

Once again, we plug in f = 22’9 - zj"b and separate into the regions |a — /| < 1

and |a — o/| > 1, obtaining

1
a1’ — 23%] = Xja—arj<1 ( / (250, — 208 ) (ta — (1 — t)o/)dt)
0

20(0) = 258(0)  20aq[zg” — 2]
+ X|a—a/|>1 o— o a—ao
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Taking the L' norm and applying (6.28), we get

1
02ales” ~ Vs < omaer ([ PGeit = 252000 - (1= 0t
0

€,0 d,
+ HX , 222(00 - Z(oi’g(a) B Qaa(h [Zd — 24 ¢] H L
la—a/|>1 a—ao a— o L

rS ||X|Oé—06'|<1||L2||Zgza - Zaaa||L2

X /1>1 ;
+H;—a!|L2(HQ1[ — 2972 + |I255(e) — 202 (a)||12)
S 16— ¢l

as desired. O

Lemma 6.8. Suppose that 0,¢ € H?, both satisfying the arc-chord condition. If

f € H?, then

IKT=10f) = K1l S 1167 — 6] (6.30)

Proof of Lemma 6.8:

Now, by definition,

KI5 — K[9(F) = —L/—ﬂ@(e%%q ___wla I

27ri 258 () 2’0] 220 ()2 §’¢]

Combining terms and expanding the denominator gives us

et —F@) (@l 120 (@) al"] - 6l (@alz) |,

[z 1(f) — N 00 0 8,0 da
27”2a "(a)za ()i 2 | [3”]

For ease of notation, we denote =D ] by Fla,’]. Since 0¢, ¢°

2miz8% (a)23% (o) [Zd lai(z

satisfy the arc-chord condition, the denominator is bounded away from 0, and so

1
1 <1
iz ()28 (@) [ ]ql[2§¢]H
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Next, we expand the term within parenthesis, obtaining
/ Fla, o] ((92 2] = qalzg D20 (@) [27] + ol ) (250 (@) = 2% () 2]
Pl @O - ) ) do

We shall denote the three terms by 77,75, and T3 respectively. To be specific, let
T = / Fla, a')(ga[25"] = aal2”) 257 ()1 [247]
7, = [ Flolalf):0@) - @) a4
7= [ Flo sl (@)@l - o)

T, and T3 can both be bounded immediately from Lemma 6.7,

, , €, 0, €
1Tall2 < |IFll2llg2(25 V1201 (257 = 25%) (@) an[237)]l2 S 116° = ¢°)12 (6.31)

T3]z < 11FlallgalzgNl2126° (') (@] = a5 DIl S 116 — 6]l (6.32)

T, requires a little more effort. First off, the L? bound again follows from Lemma

6.7,
Tl < 1F e l(@ls]) — ol 1209 @)l o~ < 1165 = &l (6.3
To bound 82T, we first expand,
it = [l - wlf o2 ( [ Floaste@)anl ) o
v2 [ owlzi®) - wli Do [ Flo et @nls?])ao
+ [ Shlales - cm[zf/“’])( [ Flasalsi¥(an, [z:}‘f’])da'
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Using the fact that g = d.¢q, we integrate by parts, obtaining

T = [(wlei”) -l D3 ( [ Floslo(@alsi ) o
~2 [ aulal -l D000 [ Floa 80l )ao
- [t - i vo ([ Floalo @l )ao

And once again applying Lemma 6.7, we have
82T 12 < 11(aelzs®) — el 2D 1122 ( [F [a,angwaf)ql[zgﬂ)||Lw
T 205 = a2l 11 10u0 ( [F [a,ang%f)ql[zgﬂ) I

#0225 - 5Dl [ Flos 22l ) e

S 16° = 6°ll2
And so, combining the above with(6.31), (6.32), and (6.33), we see that

IEL=10f) = K1l S 1167 — 62

as desired. O

We next turn our attention to the vortex sheet strength,

Lemma 6.9. Let 0°, ¢° € H*® with s > 6, and each satisfying the arc-chord condition.

Then,

17! =222 S 116° = &lfz + (€ +6)
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Proof of Lemma 6.9: Now, recall that v*? is defined by the integral equation,

€,0

A €,0 !
79’ = 7xb5, — Rsin(x0°) — Re( #Za / V(@) da')

i) 25 (a) = 25" (o)

We define the integral operator J[z,4] by

Jzdf = Re(z—,a/LO/)do/)

i zg(a) — zg()

And so, we can rewrite the equation for 7% as
(1 + 22 J50)7 = 7l — Rsin(xf)
This in turn lets us rewrite the equation for 45 — %%
(I+ %J 25"y = (1 +%J 237" = Xl — Rsin(xc) = TX500 + Rsin(xs56”)

Expanding, we get

A

(1+ 2T (077 =25 + (S 1651 - 22 0001) (%)

™

= 7(Xelha — Xo0aa) — R(sin(xc0%) — sin(xs¢"))
Rearranging the terms, we see that
A € € € €
(I T ?HJ[Zdﬂ]) (ry ?— 75#5) = T(XE - X5>0aa + TX5<9aa - ia)
— R(sin(x.8°) — sin(xs¢?)) (6.34)
_ _J 6,9 o ﬂ{] 5,(]5 (57(15
(ZE71247 - ZET12590) (+52)

By Lemma 5 in (1], we know that (I + %J[zé’a])fl is a bounded operator from

L? to L?, so it is sufficient to bound the right-hand side of (6.34). Furthermore, via

66



Lemmas 6.4 and 6.5, we have that

IT(Xe = X6)05all22 < (e +0)
17x5 (050 — Soa)llzz S 116 = ¢°ll2
|| R(sin(x0) — sin(xs¢°))[| 2 < 16— ¢°[]2 + (e +9)
Au

Therefore, all that remains is to bound || (%J 25— —-J [22’¢]) (79| 2. However,

we can decompose

1 1 1 1
2@ — zal@)  zald)a—a) <zd<a> “2al@)  zala)a - a'>>

Applying this to J[z4] and recalling the definition of K|[z4], we have

H(i) +27rzaK[zd](f))

1 Za

T2y

Jzd)(f) = Re(

Pulling the first term through a commutator and noting that for any real function
f, Re(FH(f)) =0, we obtain

Tl (f) = Re(Z221H, 21(f) + 22K [24)(F)

i Za
and in particular,

(erﬁ 1

(=71 = TN () = Re(=f=H, —5](2"7) + 2n 2 K[z (7))

67
R EHL(M 200 K [259)(+59))
6( i [ a257¢] 7 )+ TZq [Zd ] Y )
€0 5,6 1 5.0 5,0 1 1 8,6
< r(? — OH, 5l (") + Iz H, —5 — 551"

+ |21 (25" — 227 K[ 1(79)]

+ 2120 (K [25"] = Kl23°)) (7))
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Taking the L? norm and applying Lemmas 6.6 and 6.8, we get

1 1
6,9 67 s €, ) [ —_— ’
(1251 = T2aD )2 S 11287 = 25202 + |I[H, 0 Za,¢>](75¢)HL2

11267 = 200ee + 1K (25" = Kl2aD (%) 12
S116° = ¢l

Therefore, || (%J[zg’e] — %J[22’¢])(’76’¢)||L2 < 10¢ — ¢°||a, as desired. O

With Lipschitz bounds on ~, K[z4], and [H, -], we now have the necessary

for bounding W and m.

Then,

[[m? —m®®[ly 110 = @[l + (e + )

Proof of Lemma 6.10: We begin with m*? — m®¢. Now,

€,0

€ * N 7 !
(me? —m) = (5 = K[ (L))

8K — K1229) (o))

+ 25K (Lg)a = (L55)a

Zo Za
B )
+%[ ’<z§9>z (zgvlqﬁ)?](z‘:é)(%)“)
i gl e o)

tools

Lemma 6.10. Let <, ¢° € H® with s > 6, and each satisfying the arc-chord condition.

(6.35)



For simplicity of notation, we write

where T; represents the ith term in (6.35). Now, 77 can be bounded via Lemma

6.5,
Il < 1250~ SRR (gl S 10 -l (630
T, follows from Lemma 6.8,
€0
Tl < 128 (K 1257) = K001 (Cag)e) S 116 = 1 (6.37)

For T3, we expand the integral and integrate by parts,

€ € %
7, = 2 0) /1 EAEN e L Y N W
2 280 (o) 22 (a) " 2200 23]
€ € 5,
_z'(a) / ( Ay el g,
2mi zf{g(a’) zi’¢(o/) “ zg’¢(a’)Q1 [Zg’d)]

However, as in the proof of local existence, for 0 < j < 2, 970,/qa [zg’d)] € L' and

: 50 '
Oor (229( ) [25°]) € H?, therefore ||8£%|| 1 is bounded, and therefore
23 % () q1 ]z

76,9 ,yé,¢>
1T5]12 S 125712l — =55 l22
Za Za

8,0 ~€,0 6,00,
Za¢7 —Zq 7 ¢

5 || 0 0,0 ||L2
Za Ro

S 120970 — 269959 | 2

SIIA? = 26 + 270 = )

And so, applying Lemmas 6.5 and 6.9, we have

1T3l2 S ll2a? = 267122 + 17 = 7*?llz2 S 116 = ¢°[|2 + (e + ) (6.38)
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T, can be immediately bounded via Lemma 6.5,

€0 25,¢ 1 €,0

zZ.
Tyl|s = ||2—"[H
1Talle = |7,

](25,9(7

51 (28 (Cg)a) |2 S 11267 = 222012 S 116 = ¢°ll2 (6.39)
(za”) 2

For Ty, we note that [H, f](g) = H(fg) — fH(g) and write

6,0 1 1 €,0
z Y
Ts=">H — 250 )a
5 2 (((229)2 (zg¢)2) (239) )
209 1 1 76’9
_ o H €,0 o
o (G~ e )
1 1
~ ||< 69)2 - (Zg¢)2||2
0,p\2 €,0\2
<G (6.40)
(z07)2(25")?
(2(5,¢ + Ze,@)(Z(S,(Z) o 26’9)
S” = 5220;92 = ||2
(2a”)?(za")
S 1287 = 251s
S 10— 6l
T is an immediate consequence of Lemma 6.6,
6,0 1 €,0
z 2l
T — |2 H €0 _ o,o\( | N
ITill = 15 U (57 = ) ol
€,0
€ v
S N5 = 28025 al (6:41)
S0 = 6l

Finally, 77 is dealt with similarly to T3, via expanding the integral and integrating
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by parts.

X 1 5o A0 L
_ fa - Gy (L
I =< -H, (Zgﬁb)Q] (20 ((229 )a (zﬁgd’)a))
[0 ,(;5 / /
o /ql[(zg;qs)z]za (a )(( ge)a (Zg’(b )a’)da
_ o o aa/ 5,¢ / d /
2 / (229 zg’d)) (Q1[<Zg¢>>2]za (a )) @

Once again, we use the fact that for 0 <7 < 2, 8300/(]1[@] € L', and 0,25% €

H?, and therefore

,.yeﬁ

€,0
Za

9,6
T 5112~ Trglle S 10 = &l + (e +0) (6.42)

And so, combining equations (6.36) through (6.42), we have that
[[m? = m®ly S 110 = ¢ll2 + (e +6) (6.43)

as desired. O

Lemma 6.11. Let 0¢, ¢° € H* with s > 6, and each satisfying the arc-chord condition.
Then,

[We? 490 — Woe - §29]]; S 110° — ¢ + (e + )

W ae? — W a2y S {105 — @2 + (e +9)

WS G = WS 9 1[0 = 6+ (e +0)

Proof of Lemma 6.11: Now, recall that

€,0 €,0
i

N Za € €, €
Wwel . fel — Re( 5 H(F)) + Re(za’eK[zde](’y )

€,0
= Re(za [H, !

—al(0") + Re(zE KL 107))
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Therefore, we have that

260 1

(W80 = (O 05 = Re(C5 (1, —510) + Reli KIag 1)
259 1
- Re(Z[H,—5]07)) — Re(AK[2471(:°%))
260 _ 0.0 1 209 1 1
:Re( < % < [H: 5,0](7 ))+R (2 [H? 0 T¢]<769))
259
4 Re(EHH, —5) (070 = 19) + Re((25" - 22°)Klzal(r)
+ R3O K [ — 590 (59) + Re(:30K 5917 = 4°9)
S

Where T} denotes the ith term of (W -£)%¢ — (W - )%¢. Now,

59 z&,qﬁ 1
11|12 = 2—2 ) 6,9 ~ « 2 5 - 2

T2l = [|Re(Z— 22 [H, —51 (") [l2 S ll25” — 25%112 S 116° — |

259 1 1. . 1 1 .
HT2H2—HRQ(Q_[H,W—W](V’H))WSJH 69——!!2 16° = ¢°l2

Zo o Za

6¢) 1

175112 = 1Be (G 1A, 5107 =)l S 10 = 7*llsz S 116 = &' lla + (e +0)

1T4llz = [ Re((26” — 2a) K[zl “Dll2 S 11287 = 227112 S 110 = ¢° 2
€, 6, €, € 5 €, €
1T5]l2 = | Re(20 K125 — 23" 1()lle S K25 — 22172 < 1165 — 6112

1T5ll2 = 1Re(20 K 2517 = ¥*Dl2 S 177 = +*lle2 S 1107 = 6]z + (e +6)
And combining these bounds, we see that
W80 — 5% 899, S 6 = 6 + (e + ) (6.44)

For W - n, we have

Wi = Re(“2H(1)) + Re(izaK[24)(+))

2 Za
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e A Z;ﬂ 76,9 . . .
(W -n)? — (W - n)‘s"lS = RQ(TH(ZG’G )) + Re(zza’eK[zd’e] (v%%))
20 1 .
- Re(%-H(5)) - Reliz K [2)0°))
239 o Zg’¢ 7576’ Zg’d) 76,9 76,0
= Re(P () Re (P m( - 1)
Za ZOL ZOC
Zi’¢ VE’Q - 76’¢ €0 5,6 €0
+ Re(P-H () + Reli(:5” = 23°) K[ (7))

+ Re(izy K25 — 231 (7)) + Re(iz0 K[zy*1(v" = 7))

Note that we can obtain the equation for W* - # or W - @ simply by replacing ~y
with 7! or 4 respectively. Now, Tio, T11, and T, can be bounded in exactly the same

way as Ty, Ty, and Ty were, as
1T50ll2 = | Re(i(25" — 25") K [2a) (7"))ll2 S 11287 = 2a°ll2 S 116° = ¢°)]2
1Tull2 = ||Re(iz5? K [25" = 23”1 (v)ll2 S 1K[25" = 2321 )2 S 116 = &l
1T1all2 = [|Re(iz3 K [23°)(v" = 7"Dl2 S 117 =7 llee S 116° = ¢°[[2 + (e +0)
As it turns out, 77 and Ty can also be bounded analogously to T} and 75,

€0 _ 0,0 €,0

Za Zoz7 Y €, s €
Tl = [|Re (5~ H(Z)) ] S 11267 = 26212 S 16" = L

€,
«

4,9 €,0 €,0
b2 v v 1 1 .
| Ts||2 = ||Re(=2-H(—5 — ))”ZSH_N __z‘W”QS”H — |2

0
2 &0 250

Finally, the Sobolev norm of Ty cannot be bounded directly due to the &% — ¢

term without a non-singular integral to block derivatives. For the L? norm, we obtain

Zi’d) ’76’6 - ’YM) 0 5,6 e s
Talle = [1Re (5= HO—=) s S 11 = 2*llx S 167 = &Il + (e + 0)
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and combining this with bounds on the other T}, we get
WP as? — WO @2 < |10° — ¢°||2 + (€ +6) (6.45)

Furthermore, if we consider the non-surface tension part of Ty, we obtain

. B PN < st s <
1Falle = 1Re (2 =) S 15— 491l S 110 6ll + (e +6)

(o7

and again, combining this with bounds on the other T} (which can be obtained in

the exact same way as the bounds on the original T;), we get our final bound of
IW? - sl — W 2%, <1165 = ¢°||o + (e + 6) (6.46)

concluding the proof. O

With these lemmas complete, we are now prepared to bound the remainder terms

in TH, le, Tlg, Tgl, and T22. To be SPGCiﬁC,
Lemma 6.12. Let 0, ¢ € H®, both satisfying the arc-chord condition. Then,
1Ta1ll2 S 116 = @12 + (e +6)

IT12]|r2 S 10— ¢°]2 + (e +6)
[ Ta1]|z2 S 16— ¢°]2 + (e +6)
[ T3]l < (e +0)

[ Ta2l[ 2 S (€ 49)
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Proof of Lemma 6.12:

We will begin with T1;. Recall from (6.15) that

TH = H((k'e’e - k5’¢)X692) + [Ha k&(ﬁ] (X(;(e; - (bi))

S A X € jng €
— TALH, U (x5(0, — ) — (3% = 3) (xatl)
+ Bs + B
6
i=1
where Z; represents the ith term in (6.15). Now, k%% = M — AuWﬁe -ned,

and so by Lemmas 6.5 and 6.11, ||[k%% — k%®||y < [|0¢ — ¢°||2 + (€ + ). Therefore,
1Zll2 = [H (k7 = k29)xs05) 112 < |67 = k%[l X505 12 S 116° = ¢°||2 + (e +0)

= and Z3 can be dealt with via Lemma 6.6,

[1Z2ll2 = [I[H, K (xa (05, — da)ll2 S 1xa (0 — do)llze S 1107 — 6”12

1Zs]l2 = [T ALLH, U*9) (05, — 60)112 S HIxs (0 — 90)l[22 S 1167 = ]2

=, is immediate from Lemma 6.11

- A € jng €
[1Zall2 = 157 (7 = 7)) (el S 1177 = 37112 S 116° = @[]z + (€ + 6)

Finally, =5 and Zg both follow from Lemma 6.10.
1Z5]l2 = [[m? - 22 —m - 7229y
s [ T B A PR [ (e g |
< |(m? = m®)|Jz + [|m*| |22 — 22| 5
SO = ¢ll2 + (e +9)

5



IZ0lle =11 = AH 80— md . 59,

< AllmE? = 3 EO Yy + A - (0 = )

< All(m? = m®®)[ls + AulJm® ||| [£50 — 9]

S 16° = ¢°lf2 + (e +9)
And therefore, combining the above equations, we see that

1Tullz S 116° = ¢l + (e + ) (6.47)

Next we consider T15. Recall from (6.16) that

Yo = —TAH (U™ — U9)xs05]

+ [V =W — (V=W - 1)) (xs05)

Regarding the first term, we can apply Lemma 6.11

T ALH (U0 = U0) 50612 S U — U2 | 2] x 505 || o

(6.48)
S10° = @ll2 + (e +6)
And for the second, recall that
Ve,@ — /gg(Weﬁ . ﬁeﬁ)
VO v = [ (6= G R (W) (W ))
Therefore, we have that
V? =V oo S 165 = dalliall(W - 7)) 12
+ ool l|(W - 2)%0 — (W - 2)*?| 2 (6.49)

S0° = @°ll2 + (e +6)

76



This gives us the desired bound,
IV =W — (V= W - )] (xab) |2
SNV =W — (V=W )% | | [ xa05 |12
SN0° =l + (e + )

And again, combining (6.48) and (6.50), we obtain

1T 12llz2 S 116° = @l + (e +6)

7

(6.50)

(6.51)



Finally, recall from (6.21) that

T21 — _TAMH[(Ust,EQ Ust(5¢)X 0
—7A [H X(Seaa] (X5H< aox

T
- EA#[HJ X(;Qg] (X(S‘H(e(&xaaa

aaa]

)
aozaa))

+ A0 H ( (Wt ety — g (e o) m)

+ TAHaaH ([ . mst,e,@ . ,ﬁeﬂ + mst,6,¢ . ﬁ6’¢] X(Se(ex)

+ (X60s00) [(V = W - )7 —
(X505 [H, 65) (x5 (65,0, —

T(Xs050) (Xo 000 ) H (65, —

(X695) (X5 0a) H (65,

l\DI\H l\.’JI\\ l\DI\l l\DI\]

+
Q)

(Xabe)H, 06,0] (s (00 —
(Xs05) (Xs0ha) H (0 —

(Xﬁee )[H7 0, ]( (Q;aa -

(V- w-1)*]

)

90) + T(Xs0%a) 1, X365 (O — 62)
)

+ 5 O [H, X5 (05, — 60)

aaa))

(X596)[H X6Daol (05 — 02)

1. ) L ;
<<X69€) [(575,90; _met . te,é)) _ (576,¢¢i —m5%. té’d))]) + Y1100

Where again, each =; corresponds to a single term in the equation for Ys;. Now,
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=7 is immediate from Lemma 6.11,

1Z7]l22 = || = TAH [(U*0 = U*)x505 00 ] 22

S HUst,e,O - Ust,e,qSHLQ

S 16— @l + (e +9)
Both =g and =g require Lemma 6.6,

1Zsllze = || = TALH, x6050] (axs H (0 — Fon)) 122
S IxsH (00 — d00)l12
S 16— ¢l
1Z0ll22 = || = TALH, x505] (O3 x5 H (0 — D)) |12
S IxsH (05 — Foa)ll12
S 16— ¢l
For =4y, we have
Enollx S I[A "9 - 89) — g (W5 54)] ot
S sl (1165 = galla W - 20 [+ [[@g [ |[Wete? - 440 — Wetde . 22| )
S 07 = ¢ll2 + (e + )
For =1, we use Lemma 6.10,
[Enallee S 1] =m0 49 20| ot [l S 116° = &1l + (e + )
For =15, we apply Lemma 6.11 and (6.49), obtaining

1Z12llz2 S [IX608aallz2l|(V = W) = (V = W - )| S |6 — ¢°|2 + (€ + )
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The next nine =; are either consequences of Lemma 6.6 or can be bounded directly,

[Zaellie = 1) 05 (O = S22 S X305 = )1 S 116° = &7l
IZullis = lr(catie) 0505 H 8 = 6212 S 105 = 622 S 116° = 1l
Zusllz2 = lIr(csbe) L, Xodhal 6 — 681122 5 1185 = 6l S 116 = 61l
- T € € € € €
[Zaellix = 15 00682 [H. ) (x5O = 622 S 5005 = )1 S 1167 = &7
2
- T € € € €
Zllee = 150082 (x50 ) H (O~ ol S 115 = Sl S 1187 = o7l
2
- T € € € €
[Zasllee = IGO0 H. X302 O = Sl S 1105 = Sl S 116° = 1l
2
- T € € € € €
[Zaslles = 150602 [H. 02 OO = S22 S 50050 = )1 S 1167 = &7
- T € € € €
[Zaollie = 115 00602 o) H 0 = 68l S 105 = 6122 S 116° = 1)

- T € € € €
[1Z21lz2 = 115 (Xl [H, Xobanal (0 = 60)1z2 S 1105 = allz S 1167 = 612

Finally, =y is a consequence of Lemmas 6.9 and 6.10,

— € 1~e € € N3 1~ 1
[Z2llze S 1106s05) [ (G705 = m= - £4) = (5378 — 5 - 59)] ||
€ 1~e € 1~ € N3 n
< Il (153905 — 237205 s + [l - 150 — 5 9]
]'~6 € ]'~ € Te 7
S ll57%8% = 336 + 1m0 — e 9]

SIF =7l + 115 lallos = 6l
[ = m39) 0y S (00— 859)

S10° = @ll2 + (e +9)
Therefore, combining the bounds on all the Z; with (6.47), we get

1 Tarllze S 116° = ¢°l]2 + (e +9) (6.52)
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as desired. Finally, the bounds for Y13 and Y9y are immediate consequences of

Lemma 6.4, as every term contains a (x. — xs) factor. O

Our last lemma before the proof of Theorem 1.2 is mainly for convenience, proving

that every non-dissipative term in (6 — ¢);’s L? norm can be conveniently bounded

by [[6 = o[-

Lemma 6.13. Let 0, ¢ € H®, both satisfying the arc-chord condition. Then,
T )
165 = 6 + 5XGA%(0° = ¢)l22 S 107 = @[ + (¢ +0)

Proof of Lemma 6.13:

Now, recall from (6.3) that

T

€ 4§
(0 —¢)t+2

AP0 — ¢°) = x5 {TTgxzs(@fm — ia)}
i [Tgxw(@ﬁ %)+ Taos (0, — ¢i>}
+ Xs {Tn + T+ T13:| + (xe — X&)(Xe_lef)

Then, since Yg, Y9, and Tig are bounded by a constant, it’s clear that
16 [TTsX5 (050 — Do) + Toxs A0 — 6°) + Troxs(0 — ¢o)]llr2 S 1105 — ¢°l]2
And by Lemma 6.12, we know that

x5 [T+ Taz + Tus] 2 S N0° = ¢°l]2 + (e +6)
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Finally, by Lemma 6.4, and the fact that xy'0¢ is H', we have

(e = x8)(x'0D)1l22 S (e +6)

Therefore,
1(6° = %) + X5A3(9 )2 S116° = ¢°[]2 + (¢ +9)

as desired. O

Proof of Theorem 6.1:
First off, from (6.2), we have

dE,
= [ = =t O = L)~ P

We will begin with the simpler term in [, (6 — ¢°)(0¢ — ¢°),. Now, plugging in
(6.3), we write
.
[ =0 =)= [ - o) hene - o)
R R

+AW—&M S I )

Now, the first term is strictly dissipative, as

(6.53)

/@ﬁw%iﬁmw—wwii/mwmw—sto (6.54)
R 2 2 Jr
Furthermore, by Lemma 6.13, we know that

Aw—wm &)t RN~ )

<116 =l 16 — &)+ N0 — 0 (6:55)

SN0 = @°l13+ (e + OlloT — ¢l
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Therefore, applying (6.54) and (6.55) to (6.53), we obtain

/R (6 — ") — 60 < 116 — &I + (e + 8)][6° — &l (6.56)

For [o(0aa — Paa)(0 — ¢)aays, recall from (6.19) that

(06 - ¢5>aat X6 [7X§A ( ¢aa> + TT14X§(9aaaa - ¢aaaa):|

+ Xé T15X6A( oo Qsoza) + T16X6( aoo ¢aaa):|

e rnxéA( — 90) + T1sXs(0un — bua) + TrxsA (0 — ¢>}

+ X6 TQDX&(QQ - (ba) + T21 + T22:| + (XE - )( Xe 102404 t)

Therefore, we denote

11
/ (0 — )0 — Vol =3 2, (6.57)
R i=1

where each Z; corresponds to the ith term in (6.19). Now, Z5 through Z;; are all

immediate from Lemma 6.12, since
ZH = /(ega - ¢ia)(Xe - )( lecexa t)
R
<105 = SBallzell e = X5) (00 2 (6.58)

S (e + 0107 = ¢"[l2

Zuo= [~ 8 Tor <11 — Al Tl
A (6.59)

< (e + )07 = ¢"[]2

Zo = [ (6~ R Tor < 1185~ 0ol Va1
R (6.60)

S0 = @°l3 + (e +O)lloT — ¢l
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Ts = /R (050 — 20)xs (Taoxs (05, — 62))

< 1050 = Doallz2ll05 — allzz | Lol

S0 = ¢ll3

Z7 = \/(eza - ¢6aa)x5 (T19X§A(95 - ¢5))
R

<1650 — Dallz2ll05 — @2 L2 ]| Yol | 1o

S0 = ¢°ll3

Zs = / (65, — 8 s (Tass (8 — 60.)
R
<05 — Dol 321 T 2o

S0 = &Il

75 = / (65, — & )xs (Tames A (O — 7))
R
<05 — 2l 32l Taz| | oo

<67 = ¢ll3
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Z4 can be dealt with via an integration by parts,
Z4 - /(9201 - ¢ia)x5 (TIGX(S(Q;(M iaa))
R

- / (05 (05— 5) (05 (B — 6a)) Y

_ / % [0a(X5(0 — $20))*] 16

1
=~ [ 500 ~ )P T
R

(6.65)

1
< §H93a — @321 Ti6,all Lo
< 16° = &I

~

To bound Z5 and Z3, we must take advantage of the fact that Z; is a dissipative

term.

-7
Zi= [ O = ) 5N G~ ) = 5 [ 0005 - ) (600
R R
For Z,, we integrate by parts twice,
Z2 = /(eza - ¢io¢)X§ (T14X5<02ao¢a - iaaa))
R
= / T(Xg(@;a - ¢g¢o¢))(X§(0¢€)¢o¢aa - ¢o¢o¢ao¢))T14
R
=7 [ (8 = ) P14 = (605~ 050 (5B, — ) T
R (6.67)
T
== [ (600 = ) PT1a+ 5 [ (0606 = 620 Tt
7— €
< T||X5( aaa aaa)||L2||T14||L°° §||9aa - ¢ia||%2||T14,aa||L°@

€ T €
< 7lXoAOa = Paa)llz2Tralloe + 11050 = daallZ2lT1aaall
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For Z3, we apply Young’s inequality,
Z3 = /(ega - ¢ia)X5(T15X6A(0;a - gbia))
R

= [ (06065 — R (6B — R T
R (6.68)

1 ) 1 ) )
S P /(X5(6aa - (bia))QT%E) + _/ |:X5A(6aa - ¢ia)]
2 Jr 2 Jr

1 € 1 €

5”90404 - (béaa’l%?”Tlf)H%m + QHXISA(eaa - ¢ia)“%2

As in the proof of local existence, we will let v = x5(05, — ¢,) and apply

Plancherel to let the dissipative term absorb the troublesome parts of Z, and Zj3.

Combining (6.66), (6.67), and (6.68), we see that
2+ 2yt 25 < Il = 1+ (I aall= + Il = ZIIAY2] 2,
<clip = @1+ [ QPG + rllTallim)i2nP - Fi2mcP] dc
<clip - I+ [ PP
S 16— o°113
And therefore, combining the bounds of the various Z;, we see that

/R(%a — Gaa) (07 = " )aasda S 107 = @[3 + (e + O)l6° = ¢l (6.69)

And combining this with (6.56), we have that

aE

SN0 = SPIE + e+ 8) 10— (6.70)
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This in turn implies

dE
—d < ClEd + CQ(G + 5) 1/2
dt
dFE
e’clt—dtd <cre By + cy(e+ 5)6’6”Eé/2
d
D18 < e+ et
i(e_cltEd)
dt Clt/2
clt/2E1/2 = (E—I—(S)
d

e—Citfp < = 5 —c1t/2
dt ¢ = 2(e+ Je

Integrating with respect to time, we get

CISE < —c18/2
/dt\/ 4(s)ds / (e+d)e ds

Ve atEy(t) — /E4(0) < Z(e+40)(1 — e~ 1t/?)

(&1

VEa(t) < V/E(0)et? + 2 (e 4 §)(e2? — 1)

C1
Since /Eq4(t) = H«9€ — #°||2, this in turn implies our desired result,
2
16 = 1l < 10— aloe + E2 (e iy oy (@)

&

concluding the proof. O

With everything else ready, we can now finish the proof of local existence.

Proof of Theorem 1.1: This argument proceeds in several steps. First we use Theorem
6.1 to show the 6¢ must converge to an C([0,T], H?) function 6. Then we will use
the uniform bound on |[|#¢||, along with interpolation to prove that § € H*® for any
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s’ < 's. After that we will prove that this § does indeed satisfy the equation (2.11),

and finally conclude that 8 € C([0,T], H®).

Let T be as in Lemma 5.4, and let €, ¢ > 0. Then, by applying Theorem 6.1 to

6<, 60, we have that

02\/§

&1

V2 o1 T/2
C1

16— 6]z < (e +€) (e~ 1)

< (e+€)

S (e+€)

and so, it’s clear that the §¢ form a Cauchy sequence in H2. Therefore, as € — 0,

the 6¢ converge to a limit 6 in C([0,T], H?).

Next, we use the interpolation inequality from Lemma 3.8 in [15], namely that for

any 0 < s < s, there exists a constant C such that
[vlls < Cullolls™™"*[v]l5"" (6.72)
for all v € H®. We apply (6.72) to the subsequence of #¢. In particular,
16— 61 < Cllo” = 6 lly "/ (2d1)""* — 0

Therefore, the #¢ form a Cauchy sequence in H*', and 0 € C([0,T], H*).

Now we show that 6 satisfies the evolution equation (2.11). Now, by definition,
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we have
t t
0(a, t) = Op(c) +/ 05 (o, s)ds = 98‘/ B(a, s)
0 0
where B denotes the right hand side of (3.2). Since we’ve established convergence

in H* for sufficiently large s’, we can pass to the limit, obtaining

e—0

O(a,t) = Op() +/0 lim B(«, s)ds = 0y(«) +/0 B(a, s)

where B is the right hand side of (2.11). Therefore, taking the derivative, 8 does

indeed satisfy (2.11).

Finally, we look at the problem of the highest regularity. We start by fixing ¢
and noting that the 6¢(-, ) are uniformly bounded in H®. Therefore, by the Banach-
Alaoglu theorem, there exists a subsequence that converges weakly to some limit in
H*. Since the 6¢(-,t) converge to 0(-,t) in H*, therefore this subsequence must con-

verge to 0(-,t). Therefore, § € H® pointwise in time.

It remains to show that 6 € C([0,T], H*). We start by showing weak continuity.
For ¢ € H™*, we let [¢, 6] denote the dual pairing of H~* and H* through the L?
inner product. Since s’ < s, H~* is dense in H~*, and for any ¢ € H—*, there exists a
sequence ¢, € H~* that converges to ¢ in H~*. Now, since §° — 0 in C ([0, T]; H),
therefore

[0, 0°(, )] = [, O(-, 1))
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uniformly on [0, 7] for any ¢, € H=*'. Now, suppose that > 0. Then, we have

Hd),@(,t)] - [¢796('7t)]‘ < H¢79(’t)] - [¢m9(>t>]| + Hd)nae(vt)] - [¢n>06('vt)H
+ |[¢n, 0°(, £)] = [0, 0°(, )]

Since ¢, — ¢ in H~* and 6, ¢ are uniformly bounded in H®, therefore by selecting

n large, we have
0
16,60,2)) — 60,00, )]l < 5
€ € 6
|[¢79 (7t)] - [¢n79 (7t)” < §
And since ¢,, € H*', by picking e small, we then have
. )
60,6 1)] — [0, 600 <
And so, combining these equations, we get
[0, 60, 1)) — [, 6°(-, )] <0

and so 8¢ — 6 in H® uniformly in time. To prove weak continuity, we use a similar

argument. Once again, let 6 > 0, and consider

6,6.0)] ~ 16,00 )] < 116,60, )] 6.6, O]l +1[6,6°C. 1] — [6,6°C. )]
+116,00,8)] = 16,6, 1]

Because 65 — 6 in H* uniformly in time, by choosing e small, we again have
6,600 ~ [9.6°C.1)] < 5
6,002 ~ 0,6, < 5
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And since 6¢ € C((0,T]; H*), we can bound

6.6, 0] — [6.6C. 0]l < 5

for |t — t| small enough. Therefore, combining these equations, we see that

0,60, )] = [0, 6, 1)]| <6

and 0 is weakly continuous in H®. To finish the argument, it is sufficient to
show that ||6(¢)||s is continuous with respect to time. First we will show that 6 is

right-continuous in H?® at ¢t = 0. Now, for fixed ¢, we know that

10()]]s < limsup[|6°(2)|]s

e—0

Subtracting ||0y||s from both sides and applying Theorem 5.3, we know

: : " dE°
16()]s = [16o]ls < limsup [[6°(£)[[s — [|6ol]s < hmsup/ o St Cen
e—0 e—0 0 t
And sending t — 0, we know that limsup,_,o, [|0(-,t)[|s < [|6o||s. However, since

0 € Cw([0,T]; H*), we have that liminf; o4 ||6(-,¢)||s > ||6o||s. Therefore, 6 is right-

continuous at t = 0.

To finish the argument, note that since 7 > 0, integrating equation (5.8) with
respect to time implies a bound on fOT [|A3/2x0°||?dt that is independent of e. This
implies that the limit @ is in L2([0, 7], H*™!). In particular, for almost every T, €
[0, 7], we have that v(-,Ty) € H*™'. However, by taking v(-,Tp) as our new initial
data and repeating the above construction with s + 1 replacing s, we have that
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0 € C([Ty, T'], H®) for § < s+ 1. Since Tj is arbitrary, in particular, this implies

0 € C((0,T); H*), and combined with right continuity at zero, we have
0 € C([0,T); H?)

as desired. O

Proof of Theorem 1.2: Now, by Theorem 1.1, we know that a solution 6 to (1.1) with
initial data 0(t,0) exists. Furthermore, given two solutions, 6,¢ € C([0,T]; O), by

applying Theorem 6.1 with e = § = 0, we obtain

1160 — ¢l]2 < [|60 — dol[2e™"/2

<160 — ol 2”2

S (100 — ol 2

Taking the supremum, we obtain

SUP]||9—¢||2 < 160 — o2 (6.73)

te[0,T

And in particular, when 6y = ¢q, then 8 = ¢, and the solution 6 is unique. O
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Chapter 7

Bounds for Global Existence:

Now, from Theorem 5.3 and Picard’s theorem, we know that a solution #¢ will exist

until either [|6¢||s — oo, or the arc-chord condition is violated. Furthermore, while

bounding 22, all but a few of the terms can be shown to scale with |[¢||2 or a higher

power, with most of the exceptions being dissipation terms.

This inspires the assumption ||6¢||s < ¢ < 1 for some small positive constant
c. Note in particular that this bound additionally implies the arc-chord condition.
Then, the lowest powers of ||0°||* dominate, as >, ., cx||6¢]|¥ < [|6¢||s. Our goal is to

show

8E € € €
5 =1 [2(=co+ D enll]12) S N6°113 - (=1) < 0

k>1

This will bound [|6¢]|s < ¢ for all time, which in turn will give us the global exis-

tence for 6.
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However, while most of the terms in [, 956;056¢ are ultimately bounded with the
same techniques as before, bounding fR 0c6 is more difficult. Because of this, for
the duration of the proof of global existence (Chapters 6 and 7), we will additionally
assume that the Atwood number A, is zero. With this simplification, our equation

for 05 changes to

e LH(0 ) + xeH (

—Rcos(x0°) .
dt 9 oo —Xﬁea)

2 (7.1)
+ Ye [(Ve — We. EG)XeQZJ + Xg[mﬁ . ﬁe]

First, we take note of a technical Lemma that will be useful later.

Lemma 7.1. Suppose that f € L' and g € L?>. Then we have the bounds,
1
1 ([ a=ostat - o0 a@alle Sl @2
0

II/ (/Oltf(taJr(1—t)a’)dt>g(a/)da’l\m S A gl 22 (7.3)

1/ ( k(1 )it )g(e )12 % 1L gl (7.4)

Proof of Lemma 7.1: For (7.4), we use the u-substitution § = o/ — ﬁa, and consider
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for any h € L?,

[t [ ([ st 1= oayan)taaa'da

= [ty [ ([ 1t =0man) a0+ asaa
<[/ ( / h(a)g(%mrﬂ)da)f((l—t)ﬁ)dﬁdt
<Ilbllellglies [ [ S s - nayas

1
< el f

S 1Al ez llgl 22l 1] e

Therefore, since h was an arbitrary L? function, we have proven (7.4). The in-
equalities (7.2) and (7.3) can be proved with the same change of variables, as the

extra constant in the equation causes no complications. O

Now, the first term from 6; we bound is m* - n°.

Lemma 7.2. Suppose that ¢ € H®, and that there exists a small constant ¢ such that

110°||s < ¢ < 1. Then, we have the estimate
[l |2 S OG]772 110 2

Proof of Lemma 7.2: Now, recall from (4.21) that

Y — e FeTae v Za L eqer
(I)(m ) = ZaK[Zd] (aa(%» + Z[HJ (Zg)g](zaaa(%))
Using the facts
d(n) =iz



we obtain

/

wenl il

Vo —wl] | allen(a) + 25 (0)
e P P A ey e

Now,

Re(z5) = cos(69)

«

Re(zg,,) = —05, sin(6°)

ax

Im(z5) = sin(0°)

«

Im(z,) = —0; cos(6°)

[e7e7

In particular,

|| Re(250) | < [10]122]16°)] 2
[Hm(z) L2 < [16°]] 2
Using the integral representations for ¢; and ¢, we also obtain
1
Re(qu2]) = — / (t = DRe(=5, (ta + (1 — )a'))dt (7.5)
0

Re(q1[25)]) = _/o Re(z5,,(ta+ (1 —t)a'))dt (7.6)

Now, using conjugates to make the denominators real, we have

e o [P [ ABY), [~k n )
i = e 525 o (A ( BN
| lE)eale) + zg(a’))(zg(a)?z@(a’))*)]

|26 ()22 ()2
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Now, each term in m¢ - n¢ will contain either one of Re(qq[z5]), Re(qi[25]), or one
of Im(qi[25)), Im(z;). Since |z5| = 1, and |¢1[zg]| is bounded above and below (by

one and the arc-chord condition respectively), we have

[Im - 2lz2 < (lvalleall0°N ez + [ ez 08 ) 106N L 10N 2 < (1061 1Z2 16|12

This concludes the proof. O

Remark 7.3. It’s worth noting that this proof fails to bound m¢ - ¢, due to its reliance
on real and imaginary parts. This is because while we can find one L? term in ~¢,
and a second in either go[z9] or ¢1[z¢], obtaining the third L? term necessary for the
bound requires finding a copy of sin(#¢) via taking the correct real or imaginary part.
However, in m¢ - t¢, this term is not guaranteed, which derails the argument. This in
turn is the reason the A, = 0 assumption is needed, as it removes the troublesome

H(me - 1) term in 65.

The next term we turn our attention to is (V¢ — W€ - £€)x.0,.

Lemma 7.4. Suppose that ¢ € H® and that there exists a small constant ¢ such that

110||s < ¢ < 1. Then, we have the estimate

Ve =Wl S ¥ 2105122

Proof of Lemma 7.4: We will bound [[V¢||z and [[W¢- ][ seperately. Recall that

0V = (W* - i)
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Therefore, we know that
(e AR S TAR A PAT (1.7
Therefore, we will start by proving
W22 < 117 re (7.8)

Now, recall from (4.19) that

B(V) = g H(L) + 5KLE)
Therefore, we have that
Wi = Re(E (D) + K H0) (79)
Now,
re(EHC e < 13 HC M S Il (7.10)

Therefore, we only need to worry about the second term, in which case,

(i) = Re( ) [ 00

As in the previous lemma, we use complex conjugates to put all complex terms in

the numerator, obtaining

€ *

@) [ e el
Ry | F@P e ) (7-11)

Finally, after multiplying things out, each term will contain y¢(a’) € L?, along with
either Re(qq[25]) € L', or Im(ga[25]) € L? and at least one of Im(q;[25]), Im(z.(’)) €
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L?. Furthermore, the denominator is bounded away from zero due to the arc chord

condition, therefore
| Re iz K[2g)(v)) |22 < [0 210G 22161 2 (7.12)
And combining (7.10) and (7.12) with (7.9), we get
(W= a2 S Iyl (06122110 22 + 1) S 11|
proving (7.8). Combining this with (7.7), we have
Vel S M2 1105]] 22 (7.13)
as desired. It remains to bound ||[W¢ - £¢||z~. For this, we consider
1 (0] ()

W) = :

"o ) zg(e) — Z5(a)
O OO S S
C2mi ) zi(a)(a— o) + 10 )(zg(a) —z5(a) 25 (o) (o — o/))d

«

do/

Now, using the fact that ¢ = 2, we have that

e o) [ (e

)
wola) — z(@)  zla)la—a
1

= (57 [ 100 e gy~
(el i) )
= Re(% / ;[[022] /01 tzi,(ta+ (1 — t)o/)dtdo/)
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€  Je € € 1
[IWe -t S 17|22l 2aal 2] =] e
% (7.14)

S M2 11661z

And so, combining (7.13) and (7.14), we obtain
V=Wl < M1 l2 105 e

as desired. O

The next lemma focuses on bounding the Taylor series of the cos(x.0¢) term.

Lemma 7.5. Suppose that 0¢ € H'. Then for n > 1, we have the estimates
/Xe9€/\(x596)2"+1 S el 752 X082 [ O° 17

Proof of Lemma 7.5: We rewrite

96 2n+1)

/XGQGA((XEGC 2n+1

Xelg (xe0°)" [H, (x0)"](x0°)

XeQE(XeQE)%H(Xe@e)

== [
? XOo[H, (X)) (x0)" " -
/
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For the first term, we expand,

/ Nl H, (0" ()™ dx
R

/RXGQE(OO/R (/Oln(X69€(ta+ (1 — o))

X x5 (ta+ (1 — t)o/)dt) (Xeﬁe(a’))nﬂda'da

néé/olxeﬁz(a)xeeg(ta+(1_t)a/>(xeee<a,))nﬂ

X (xeO(ta+ (1 — t)o/))n_ldtdozda'

1
< nl b 2 / / () / e () [ (fr + (1 — D)) drdldt
0 R
2 2 2 ! ]‘ 2
< nflxef 757 xS, — 0°(a)|*dadt
< nl I [ [ o)

S DA A A

The second term can be dealt with similarly,

/R e () H, ()] (x ) dox

o s 0) (0 (@) "B (fr (1~ )

X X () (x b (b + (1 — £)a)) "™ dtdada’

1
<l [ @it [ @)ldsta+ (1 = Oa')ldo'dode

b
< IO 1222 eS| | 2| | x O° 2/ / X0 (o) || x5, (o) | dedt
I = el bl | = [ (@)t )

S Ixed (175 2|22 1xe 0 |22
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Now, for the last term, note that

-1
o € €\2n €y —
[t e = [ 5

_ _1 € e\2n+1
= 2n+1/><69 A((xc0)™ )

0o ((xe8)*" ) H (x")

Therefore, we have that

2n + 2
2n+1

[ oes ) = = [l ool

- / el (XY TH, (xe)] (x°)

And using these bounds in (7.15), we obtain

BN S 2 e e

as desired. O

Remark 7.6. We use cosine’s Taylor series because the lowest degree term in [ 6° -

X H (R0 y ) becomes

-R -R -R
[ Sneaoue) =57 @ = Fjar

which is entirely negative and an important dissipative term in the final equation.

€

taar @and updates the various bounds

Our final lemma switches focus from 65 to 6

we used during the proof of local existence.
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Lemma 7.7. Suppose that ¢ € H® and that there exists a small constant ¢ such that

16°]

s < c <K 1. Then the following estimates hold:
K [z (N[ S N f 1|22l 105 ]] 2

106K (250 -1 S FITIIOS117
16 < 1161
W5 - e S 110511
10a((8aWV) - D)l[5-5 S 116/ 11605111
10a((0W) - D)l]s—2 S 161V 1165151
[l < 1105 ]2

€ 32
110am®|[s1 S 11651122

Proof of Lemma 7.7: The basic idea behind proving all of these is to simply take the
bounds we found during the proofs of the local existence lemmas, and reduce to the
lowest power of #¢. We'll start with (4.8), getting

. 1 1
T2 (Dllze S 12 - [lgal]z2 - |Ia|le Al M=

«

5 ||f||L2||q2||L2 (7-16)

Sl 22106 2
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Now, recall from (4.9) that

) 1 1
10K =512z < 11112 (||q2||m||aa—||m ; ||5aQ2||L1||—||L°°)
1 q1
<1zl a + VTrmllze)
< (612 + /T
Similarly, from (4.10) we have

1

S € s 1 < i S—7J
2K [zl 2 S (S]] (H%HLQH%ZHL? + D 1104210 ];“Lw
j=1

€ S € 1
Al llee + 1l Bl | — o
QI[Zd]
s—1
< 1fl <||Q2||L2 Y gl + ||a;q1[zzmu)
j=1
< 1l TP

And therefore,

10K 25 o1 < 1IFI1L1165)112

as desired. Now, the bound on 4¢ is immediate from (4.18), since
117l = [I = Rsin(6)[|s < 11671

Next we’ll bound m¢. Recall from (4.21) that

B(n)" = K[ (00 1) + 2 o) (40n( )
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Therefore,

Il S 1T28] (@a( L)) a2 + [ (z1> 1(50u(2) i

) L 7.19
E ) 2 1l122]10a( a)ll (7.19)

S 061221 0a —||L2 Hllal—=z

S 0221105 2

Also,

1
[105mlze < 110828 ] |2 ]| K [2] (0 <z€ DIz + 1067622 |l[H (26)2](220a(216))||m

k
i e . c ’y
+ > 110, P26l 108K (28] (9a () Il 2

j=1 o

1
G (0 )

+ 1108 zell |04 H

. v 1 cna
< 1K= (M;))HL@ +||H )21<zaaa<;>>||Lw
1 . ol
+Z||63K )l 11041 (ze>21<zaaa<z—e>)||p
€ € € 1
S 05211652 + 110K [25] (Pa <Z N1 + 110a[H (25 0a( 6))ka1
< ||96||L2||9€||H2+||—||Hz||ee||”2 +125.0al ||k 3\/|I8 -1
However, since [|7||; < [165]1j41 for 7 > 1, and [|26]|z~ = 1, [|0a 2 |l; S l25all; S
|]9;||j~, we have
l10Fme]| 2 < 1165112
And in particular,
10am®||s—1 S (1651122 (7.20)
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Finally, recall from (2.6) that

~  H(y0¢
W;.t€: (2 a)+me_te
Now,
IWe - | < NH (O |z + [Jm© - ] e
< |[H (O + 11651122
S 06!
Additionally,
100 (We - 8)|[s=s < [[H(v05)]s—2 + [10a(m)[]5—3
< I lls-2ll0) s—2 + V110151116 |s
S N0 s v/ 1160651
Similarly,

[10a(We - £)[ls=2 < [1H(FO) |1 + [10a(m)[s—2
< A Ms—a 1652 + VI10&] s 1167115
S 6V 106 s

finishing the proof. O
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Chapter 8

Proof of Global Existence:

Theorem 8.1. Suppose that the Atwood number A, is zero and ||0||gs < ¢ < 1 for
a small enough constant c. Let E = % [(0°)* 4 (950°)?. Then,

dE

’r <0 (8.1)

Proof of Theorem §8.1: Now,
o= [ @) (3.2
Our goal is to show that the negative sceond order terms in ‘fi—f dominate the

equation, and that every other term is either of at least third order (and therefore
negligible), or can otherwise be absorbed by the dissipative terms. We shall begin

with [ 66. Recall from (7.1) that

d T
—0° = —2H(6° H
y7 5 XeH (0iaa) + X (

—R cos(x0°)

9 Xeeg)

+ Xe [(V6 —we. {E)Xﬁg} + Xe[m - 1]

107



Now, using the fact that A'/? is self-adjoint, we get
—T
JopeHe. = [ Foea )
—T
= [y
(8.3)
—T
= ST IA 3
<0

Next, we note that cos(x.0°)x05 = Oasin(x.f) and expand via Taylor series to

obtain

Joner(FEENE ) = S [amasinten)

=52 Gty (A

|
— (2n+ 1)!

(8.4)

Now, for the n = 0 term, we again use the fact that A'/? is self-adjoint, getting

—-R

€ € —R € —R €
7 [ o = 55 [ = i

For the rest of the sum, we apply Lemma 7.5,

96 A 06 n+1 < 95 95 ontl
2 ;(2n+1)!/(xe A (xe ;22n+1 '/X A((xe0)™ )
Y IO b5 72 e 72
n=1

YDA Pl

And therefore, we have (for some constant C),

. —Rcos(x.b0° . -R . . .
Jonen(FEND ) < SR+ Cl el (89
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For the next term, we estimate directly and apply Lemma 7.4,
Jodove = wee i) = [ [ve-we i)
< It llzelIxebil [z [V = W | (B0)
SER PR AT R
Finally, using Lemma 7.2, we know
/€6X€(m€ ) <10 g2l fm 0|2 S 1057 1162 (8.7)
Therefore, combining (8.3), (8.5), (8.6), and (8.7), our final result for 6 is
/9596 S A0 L2 + 116532 16°) 32 (8.8)

Next we need to bound [(950°)(9:65). As before, we have

/ (926°)(2365) = / (02670576, (8.9)
—T
B = X[ A (i) + TEA(xeB50) + LK) + 5]

Substituting A, = 0 into (3.20), (3.21), (3.22), and (3.18), we have

T5 = K+ 505, (x.b5) (8.10)

A

TS = (Ve —We - i) (8.11)

T; = aocTZ + k;H<Xe€ga) + %H(Xeega)(G;Xeez)a + (VG - We- fe)a(XGQZa) (8'12)

T = [H, k9 (xeb,,) + H(kEx0S) — 7(xe0s)msbe - £
(8.13)

+ 5 (Xl [H, 05) (xbia) + (XOe) (V= W )a + (m© - 7)a

N
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—R

First we will bound the YT§ term. Since k° = =* cos(f) when A, = 0, it’s simple

2

to see that
1065 |55 < 11601531105 15—5 + 1051135
Te E < ||g¢ 2 g¢ 2 < g¢ 2
175 + 5 llzee S 0z + {1020 < 11072
€ R < € € € € < €12
175 + S lle2 S 0] 2oe 1022 + 110G ] 106122 < 116°] [z
Now,
s €\ 95— € € —R s € s €
[ @z et = 5 [ @ixaois
€ R s € s €
+ (TS + E)(aaXGG )A(aaxee )

j=1

Using the fact that A'/? is self-adjoint, we have

R

R - R
S [@oraone) =5 [@Es)? = gl <o

2

The sum can be bounded directly, since for 1 < j < s — 2, we have

[ @@ A 30 S 1075 -all0,67
S 1000131 (110°[1s-3] 1051 |s—3 + 1165 [2—2)
S 105113

And finally, using Young’s inequality, we have (for any constant c),

S ( - 2) [@er@rgae: )

(8.14)
(8.15)

(8.16)

(8.17)

(8.18)

(8.19)

R 1 R c
[+ Donernine) < o [t 5@ + 5 [ (1o
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Therefore, choosing ¢ = ||0¢|| s, we have

ok 4 8596 2
H ||H2|| « ||L2+||9€|H5 A82X506H%2

S 061 + 116 ars [[ A x 6772

R
s+ Do) <

HS

And so, combining (8.18), (8.19), and (8.20), we have

Ay 072 (8.21)

Hs

/ (03X 0952 (TEA (b)) < 116511y + [16°)

Now, the T§ term in 42 is

[ @99 (o) = [ L3009 )
s—2 59
23X (177) Jeene: e
j=1
As in the local existence proof, we integrate by parts in the first term, getting
-1
[ v e = 5 @)@ S 0Tl 1030 (322)

For the sum, we have

5—2
§s—2 j —J € s ne €
Z ( j ) /(82)(596)(8&TE)(82+1 Xe0) S 11950 12||0aaalls—3l10a TGl s—5  (8.23)

j=1
Since 9, Y5 = (V€ — W€ - 1), = W - ¢, therefore applying Lemma 7.7 to (8.22)

and (8.23), we have

/(3ZX69€)3Z_2(TEXE9EM) S 1102012110600l ls—sl 0] s v/ 1108 s (8.24)
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Finally, there’s T,
T A~
T7 = ko H(Xboa) + 5H(Xb0) (0axb0)a + (V= W 1)a(xebi0)
0 ([ 0t) 4 HOG2) = O™ -+ SO 01Ot

+ 04 ((Xgeg)(w —We i), + (m©- ﬁﬁ)a)

Now, through repeated applications of Lemmas 4.5 and 7.7, we obtain

— R . €\ e €
[1Z1lls-2 = [15 sin(0°)05H (x50 )52

S [1sin(0%) |52 16| |s—2] 105l s—2

= 7- € € €
[Z2]]s—2 = ’|§H<X€0aa)<0aX€9a)a"5—2
S 105alls—2l105x 0551

S 105alls—2l 1651131

1Zslls-2 = [|(V = W< £)a(xebia) 52
S (IWe - ]z + 10a(We - €)[1s-5) 10501 ls—2

S0V 0E] s 1105alls—2

|1Zalls—2 < I[H, ) (xboa)lls
S 0aalls—2 v/ 1100k ]s—2
S N0aalls—2 V110652
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|[Es]ls—2 < |[H (kgxeba)]s-1
5 Hk;Hs—lHefos—l

S ORI

[1Zslls—2 < {17 (xebe)m™ - ]
S N0 s=1 ([ [m™ | zoe + [|0am™|-2)

3/2
<612

- T € € €
[1Z7lls—2 < 115 (xel)H, 05 (xeOoa )51

S N10alls1l10aalls—2 v/ 1166115

[1Zs]ls—2 < [J(xbe) (V= W allsmn
SO s=1 (W - il e + [[8a(We - 1)[5-2)

S 10alls—1 1165 v/ 1166115

[1Z0]ls—2 < [[0a(m® - 2%) |51
S g lsms + lImelze |03 7 2

€ 113/2 € €
S 6N + 1165 21165151
Therefore, combining the bounds on all the =;, we have

€ €13/2
175 =2 S 1651123 (8.25)
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And therefore,

A N LA PR (320
Finally, as in the local existence case, the SFA%(x.05,) term in 65, , gives us
Jowoson o uie) = [y = iaonsl 20
Therefore, combining (8.21), (8.24), (8.26), (8.27), and (8.8), we have
02 < N — AP0t e + 105 el 1

10131+ 1101 AL x "7

+ 11050 2 105aal ls—3l10s V1165115

s ne € 13/2
+11026° 2105122

(8.28)

Simplifying, this becomes
dE € S € € €
— S —IIN20 [T — [[AY205x T2 + (105113 [10°]1

e15/2 € S €
16511272+ 11691721 ADE xb°] 2

S

10520 2106 aalls—3 v/ 110615

€ 5 2
+ 1651122

Next, we collapse the positive terms to get

dE € S € € S € €
TR —[[AY20%[ 72 — ([N x0 172 + (ORI + [IADXO°172)116°]]2
However, since [105]s-1, [|A05x0° |22 < IAY20° |2 + [[A*20;xc0°]| 2, we obtain

dE

o S (IAY20°| |2 + JIAY205 07 [72) (=1 + [167][57%) < 0 (8.29)

114



Therefore, £/6°||; < 0 for all time t, and therefore 6¢ exists globally in time. O

Proof of Theorem 1.3: By Theorem 8.1, we know that ||6¢||s is non-increasing, and
therefore ¢ can never leave the set O. Therefore, the maximal time 7" in Lemma 5.4
is infinity, and so applying Theorem 1.1, we know that 6 € C([0,00); H®), as desired.

O
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