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ABSTRACT

BRAIDS AND OPEN BOOK DECOMPOSITIONS

Elena Pavelescu

John Etnyre, Advisor

In this thesis we generalize Alexander’s and Bennequin’s work on braiding knots

and Markov’s theorem about when two braids represent isotopic knots. We also

reprove Eliashberg’s theorem on the transversal simplicity of the unknot in a tight

contact structure using braid theoretical techniques. Finally, we look at possible

changes in braid foliations induced on a surface.
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Chapter 1

Introduction

In [2], Alexander proved that any knot in R3 can be braided about the z-axis.

In [6], a paper which marked the start of modern contact topology, leading to

the Bennequin inequality and the definition of tightness, Bennequin proved the

transverse case for (R3, ξstd). Following a review of known results and background

material, in Chapter 3 we generalize Bennequin’s result to any closed, oriented, 3-

dimensional manifold M , by looking at on open book decomposition for M together

with a supported contact structure.

In [17], Markov gave an equivalent condition for two braids in R3 to be isotopic.

This is the case if and only if the two braids differ by conjugations in the braid group

and positive and negative Markov moves. In [18] Orevkov and Shevchishin proved

the transversal case for (R3, ξstd). A different proof was independently obtained

by Wrinkle in [23]. In Chapter 4 we generalize Markov’s theorem to any closed,
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oriented, 3-dimensional manifold. We prove the transverse case and recover the

topological case previously proved in [20] and [21].

In [10], Birman and Wrinkle proved that exchange reducibility implies transversal

simplicity. As a consequence, Birman and Menasco’s paper [8] shows that the

m-component unlink is transversely simple. While exchange reducibility does not

seam to work in more general settings, the unknot remains transversely simple in

a tight contact structure. Eliashberg proved this fact in [11]. Later, Etnyre ([14])

proved that positive torus knots are transversely simple. In Chapter 5 we reprove

Eliashberg’s original result using braid theoretical techniques.

In Chapter 6 we look closer at foliations induced on an embedded surface S ⊂ M3

by the intersection with the pages of an open book decomposition (Σ, φ) for M3 and

we show how adjacent saddle points can be changed with respect to the coordinate

on S1, generalizing a result of Birman and Menasco ([8]). .
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Chapter 2

Background

In this chapter we review some of the definitions and results that we’ll be using

throughout this thesis.

2.1 Contact structures

Definition 2.1.1. Let M be a compact, oriented 3-manifold and ξ a subbundle of

the tangent bundle of M such that ξp = TpM ∩ ξ is a two dimensional subspace of

TpM for all p ∈ M . Locally, ξ can be written as ξ = ker α for some non-degenerate

1-form α. The plane field ξ is called a contact structure if α ∧ dα 6= 0.

Such a plane field is completely non-integrable, that is ξ is not tangent to any

surface along an open set. If ξ is orientable then ξ can be written as ξ = ker α for

a global 1-form α. Depending on whether α ∧ dα > 0 or α ∧ dα < 0, ξ is called

a positive or a negative contact structure. The contact structures we are working
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with throughout this paper are assumed to be oriented and positive.

Definition 2.1.2. A contactomorphism between two contact manifolds (M1, ξ1)

and (M2, ξ2) is a diffeomorphism φ : M1 → M2 such that φ∗ξ1 = ξ2.

Definition 2.1.3. An embedded disk D in (M, ξ) is called an overtwisted disk if

Tp∂D ⊂ ξ for all p ∈ ∂D and D is transverse to ξ along ∂D. If there exists such a

disk in (M, ξ) then ξ is called overtwisted. If it is not overtwisted a contact structure

is called tight.

On R3, consider the two contact structures ξ1 and ξ2 given by the 1-forms

α1 = dz − ydx and α2 = dz + r2dθ (given in cylindrical coordinates). These two

contact structures are contactomorphic and we are going to refer to them as the

standard contact structure, ξstd.

Unlike Riemannian geometry, contact geometry doesn’t exhibit any special local

behavior, as we can see from the following theorem.

Theorem 2.1.4. (Darboux) Let (M, ξ) be a contact manifold. Every point p ∈

M has a neighborhood that is contactomorphic to a neighborhood of the origin in

(R3, ξstd).

A proof of this theorem can be found in [1].

Definition 2.1.5. The Reeb vector field of α is the unique vector field vα on M

such that

i) α(vα) = 1
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ii) dα(vα, ·) = 0

Definition 2.1.6. Let Σ ⊂ (M, ξ) be an embedded surface. From the non-integrability

condition of ξ it follows that lx = TxΣ ∩ ξx is a line for most points x ∈ Σ. The

singular foliation on Σ whose leaves are tangent to the line field l = ∪lx is called

the characteristic foliation of Σ.

The characteristic foliation of a surface Σ determines a whole neighborhood of

Σ as it follows from the next theorem.

Theorem 2.1.7. If Σi ⊂ (Mi, ξi), for i = 1, 2 are two embedded surfaces and there

exists a diffeomorphism f : Σ1 → Σ2 which preserves the characteristic foliations

then f may be isotoped to be a contactomorphism in a neighborhood of Σ1.

2.2 Gray’s theorem

The following theorem is of vital importance in proving the generalization of Alexan-

der’s theorem on braiding links (Chapter 3).

Theorem 2.2.1. ( Gray ) Let {ξt}t∈[0,1] be a family of contact structures on a

manifold M that differ on a compact set C ⊂ int(M). Then there exists an isotopy

ψt : M → M such that

i) (ψt)∗ξ0=ξt

ii) ψt is the identity outside of an open neighborhood of C.
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Proof. We are going to look for ψt as the flow of a vector field Xt. If ξt = ker αt,

then ψt has to satisfy

ψ∗t αt = λtα0, (2.2.1)

for some non-vanishing function λt : M → R3. By taking the derivative with re-

spect to t on both sides the equality will still hold.

d

dt
(ψ∗t αt) = lim

h→0

ψ∗t+hαt+h − ψ∗t αt

h
= lim

h→0

ψ∗t+hαt+h − ψ∗t+hαt + ψ∗t+hαt − ψ∗t αt

h
=

= ψ∗t (
dαt

dt
) + ψ∗tLXtαt = ψ∗t (

dαt

dt
+ LXtαt).

This gives

ψ∗t (
dαt

dt
+ LXtαt) =

dλt

dt
α0 =

dλt

dt

1

λt

ψ∗αt (2.2.2)

and by letting

ht =
d

dt
(log λt) ◦ ψ−1

t (2.2.3)

we get

ψ∗t (
dαt

dt
+ d(ιXtαt) + ιXtdαt) = ψ∗t (htαt) (2.2.4)

If Xt is chosen in ξt then ιXtαt = 0 and the last equality becomes

dαt

dt
+ ιXtdαt = htαt (2.2.5)

Applying (2.2.5) to the Reeb vector field of αt, vαt , we find ht = dαt

dt
(vαt) and have
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the following equation for Xt

ιXtdαt = htαt − dαt

dt
(2.2.6)

The form dαt gives an isomorphism

Γ(ξt) → Ω1
αt

v 7→ ιvdαt

Where Γ(ξt) = {v|v ∈ ξt} and Ω1
αt

= {1-forms β|β(vt) = 0}. This implies that Xt

is uniquely determined by (2.2.6) and by construction the flow of Xt works.

For the subset of M where the ξt’s agree we just choose the αt’s to agree. This

implies dαt

dt
= 0, ht = 0 and Xt = 0 and all equalities hold.

2.3 Transverse and Legendrian arcs

Definition 2.3.1. In a contact manifold (M, ξ), an oriented arc γ ⊂ M is called

transverse if for all p ∈ γ and ξp the contact plane at p, Tpγ t ξp and Tpγ points

towards the positive normal direction of the oriented plane ξp. If γ is a closed curve

then it is called a transverse knot.

Definition 2.3.2. In a contact manifold (M, ξ), an arc γ ⊂ M is called Legendrian

if for all p ∈ γ, Tpγ ⊂ ξp, where ξp is the contact plane at p. If γ is a closed curve

then it is called a Legendrian knot.

Around a transversal (or Legendrian) knot contact structures always look the

same. Using Theorem 2.2.1 we can prove the following two lemmas.
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Lemma 2.3.3. A neighborhood of a transverse knot in any contact manifold is

contactomorphic with a neighborhood of the z-axis in (R3, ξstd)/z∼z+1.

Lemma 2.3.4. A neighborhood of a Legendrian knot in any contact manifold is

contactomorphic with a neighborhood of the x-axis in (R3, ξstd)/x∼x+1.

Definition 2.3.5. Let K ⊂ (M, ξ) be a null homologous knot and Σ ⊂ M a surface

such that ∂Σ = K. Let v ∈ ξ|∂Σ be the restriction to K of a non-zero vector field

w ∈ ξ on Σ. Denote by K ′ the push-off of K in the direction of v. The self-linking

number of K is sl(K) = lk(K, K ′) = K ′ · Σ (algebraic intersection).

2.4 Open book decompositions

Definition 2.4.1. An open book decomposition of M is a pair (L, π) where

i) L is an oriented link in M called the binding of the open book

ii) π : M rL → S1 is a fibration whose fiber, π−1(θ), is the interior of a compact

surface Σ ⊂ M such that ∂Σ = L, ∀θ ∈ S1. The surface Σ is called the page

of the open book.

Alternatively, an open book decomposition of a 3-manifold M consists of a

surface Σ, with boundary, together with a diffeomorphism φ : Σ → Σ, with φ=

identity near ∂Σ, such that

M = (Σ× [0, 1]/ ∼) ∪f

∐
i

S1 ×D2

10



where

(x, 1) ∼ (φ(x), 0).

Note that

∂(Σ× [0, 1]/ ∼) =
∐

i

T 2
i ,

each torus T 2
i having a product structure S1 × [0, 1]/ ∼. Let λi = {pt} × [0, 1]/ ∼,

λi ∈ T 2
i . The gluing diffeomorphism used to construct M is defined as

f : ∂(
∐

i

S1 ×D2) → ∂(
∐

i

T 2
i )

{pt} × ∂D2 → λi.

The map φ is called the monodromy of the open book.

Theorem 2.4.2. (Alexander, [3]) Every closed oriented 3-manifold has an open

book decomposition.

Definition 2.4.3. A contact structure ξ on M is said to be supported by an open

book decomposition (Σ, φ) of M if ξ can be isotoped through contact structures so

that there exists a 1-form α for ξ such that

i) dα is a positive area form on each page

ii) α(v) > 0 for all v ∈ TL that induce the orientation on L.
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Lemma 2.4.4. A contact structure ξ on M is supported by an open book decom-

position (Σ, φ) if and only if (Σ, φ) is an open book decomposition of M and ξ can

be isotoped to be arbitrarily close, as oriented plane fields, on compact subsets of

the pages, to the tangent planes to the pages of the open book in such a way that

after some point in the isotopy the contact planes are transverse to the binding and

transverse to the pages in a neighborhood of the binding.

Contact structures and open book decompositions are closely related. Thurston

and Winkelnkemper have shown how to get contact structures from open books.

Theorem 2.4.5. (Thurston, Winkelnkemper, [22]) Every open book decomposition

(Σ, φ) supports a contact structure ξφ.

Proof. Let

M = (Σ× [0, 1]/ ∼) ∪f

∐
i

S1 ×D2

given as before. We first construct a contact structure on Σ× [0, 1]/ ∼ and then we

extended it in a neighborhood of the binding. Let (ψ, x, θ) be coordinates near each

of the binding components ((ψ, x) are coordinates on the page, with ψ being the

coordinate along the binding, while θ is the coordinate pointing out of the page)

and consider the set of forms

S = {1− forms λ such that : dλ is a volume form on Σ

λ = (1 + x)dψ near ∂Σ = L}

To show that the set S is non-empty let λ1 be a 1-form on Σ such that λ1 = (1+x)dψ
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near ∂Σ. Let ω be a volume form on Σ such that ω = dx ∧ dψ near ∂Σ. The form

ω−dλ1 is closed and since H2(Σ) = 0, there exists a 1-form β such that dβ = ω−dλ1

and β = 0 near ∂Σ. Then λ = λ1 + β is an element in S.

Note that for λ ∈ S, then φ∗λ is also in S.

Let λ be an element of S and consider the 1-form

λ(p,t) = tλp + (1− t)(φ∗λ)p

on Σ× [0, 1] where (p, t) ∈ Σ× [0, 1] and take

αK = λ(p,t) + Kdt.

For sufficiently large K, αK is a contact form and it descends to a contact form on

Σ × [0, 1]/ ∼. We want to extend this form on the solid tori neighborhood of the

binding. Consider coordinates (ψ, r, θ) in a neighborhood S1 ×D2 of each binding

component. The gluing map f is given by

f(ψ, r, θ) = (r − 1 + ε,−ψ, θ).

Pulling back the contact form αK using this map gives the 1-form

αf = Kdθ − (r + ε)dψ.

We are looking to extend this form on the entire S1 ×D2 to a contact form of the

form h(r)dψ +g(r)dθ. This is possible if there exist functions h, g : [0, 1] → R3 such

that:

i) h(r)g′(r)− h′(r)g(r) > 0 (given by the contact condition)

13



ii) h(r) = 1 near r = 0, h(r) = −(r + ε) near r = 1

iii) g(r) = r2 near r = 0, g(r) = K near r = 1.

1

1

AAAAA

h

r

DD

PSfrag replacements

h

δh

−1− ε

1

r

(a)

1

1
r

K

g

EE

PSfrag replacements
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δg

K

1

r

(b)

Figure 2.1: (a) h function (b) g function

The two functions h and g described in Figure 2.1 work for our purpose. The

conditions i) and ii) are obviously satisfied and if δh and δg are such that h < 0 on

[δh, 1] and g = 1 on [δg, 1], then iii) is satisfied as long as δh < δg.

In [15], Giroux proved there exists a correspondence between contact structures

and open book decompositions.

Theorem 2.4.6. (Giroux) Let M be a closed, oriented 3-manifold. Then there is a

one to one correspondence between oriented contact structures on M up to isotopy

and open book decompositions of M up to positive stabilizations.

Definition 2.4.7. A positive (negative) stabilization of an open book (Σ, φ) is the

open book with

14



i) page Σ′ = Σ ∪ 1− handle

ii) monodromy φ′ = φ ◦ τc, where τc is a right-(left-)handed Dehn twist along a

curve c in Σ′ that runs along the added 1-handle exactly once.
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Chapter 3

The generalized Alexander

theorem

3.1 Preliminaries

In [2] Alexander proved that any link in R3 can be isotoped to a link braided about

the z-axis. In [6] Bennequin proved the transverse case, that is that any transverse

link in (R3, ξstd) can be transversely braided about the z-axis. The goal of this

chapter is to prove a generalization of Bennequin’s result. Throughout this section

M is a closed and oriented 3-manifold.

Definition 3.1.1. Let (L, π) be an open book decomposition for M . A link K ⊂ M

is said to be braided about L if K is disjoint from L and there exists a parametrization

of K, f :
∐

S1 → M such that if t is the coordinate on each S1 then d
dt

(π ◦ f) > 0

16



at all time.

Our proof reduces the general case to the (R3, ξstd) case proved by Bennequin.

Below we sketch the ideas he used in his proof.

Theorem 3.1.2. (Bennequin, [6]) Any transverse link Γ in (R3, ξstd) is transversely

isotopic to a link braided about the z-axis.

Proof. Let (r, θ, z) be cylindrical coordinates on R3 and let t be the parameter on

Γ. The standard contact structure is given by α = dz + r2dθ. The arcs constituting

Γ are either good (if dθ
dt

> 0 ) or bad (if dθ
dt
≤ 0). In order to arrange Γ into a braid

form, the bad arcs are moved through a transverse isotopy on the other side of the

z-axis. This requires that certain wrinkling, which we describe below, is done along

the bad arcs. Along a bad arc γ ⊂ Γ we have dθ
dt

< 0 and dz
dt

> 0, as the knot is

transverse. The projection of γ on a large enough r−cylinder looks like the one in

Figure 3.1. The wrinkling leaves the r coordinate unchanged and modifies the z and

θ coordinates. As throughout the wrinkling dz
dθ

increases and r remains constant the

arc remains transverse to the contact planes. An arc γ ⊂ Γ is said to be shadowed

by another arc γ′ at (r, θ, z) ∈ γ if there exists (r′, θ, z) ∈ γ′ with r′ < r.

i) By introducing a wrinkle as in Figure 3.1 on the bad arc γ, it can be arranged

that γ doesn’t go all around the z-axis.

ii) By introducing a wrinkle as in Figure 3.1 on the bad arc γ, it can be arranged

that γ is not shadowed by any other arc.

iii) A non-shadowed bad arc γ is transversely isotoped to a good arc as in Figure

17
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3.2. This isotopy keeps the θ and z coordinates of γ fixed, while it decreases the r

coordinate until the arc hits the z-axis. This guarantees the trasversality as dθ
dt

< 0

makes dz
dt

+ r2(t)dθ
dt

> 0 at all time.

iv) As the initial number of bad arcs is finite, and a whole bad arc γ can be

resolved at a time (dz
dt

> 0 on γ so no two parts of γ ever shadow one another

throughout the process), after finitely many steps Γ is isotoped to a braid form.

3.2 The generalized Alexander theorem

Theorem 3.2.1. Suppose (L, π) is an open book decomposition for the 3-manifold

M and ξ is a supported contact structure on M . Let K be a transverse link in M .

Then K can be transversely isotoped to a braid.

Proof. The idea of the proof is to find a family of diffeomorphisms of M keeping

18



each page of the open book setwise fixed and taking the parts of the link where

the link is not braided in a neighborhood of the binding. A neighborhood of the

binding is contactomorphic to a neighborhood of the z-axis in (R3, ξstd)/z∼z+1 and

there the link can be braided, according to Theorem 3.1.2.

In the neighborhood N = S1 × D2 of each component of the binding consider

coordinates (ψ, x, θ) such that dθ and π∗dθ agree, where π∗dθ is the pullback through

π : M \ L → S1 of the coordinate on S1.

As ξ is supported by the open book (L, π), ξ can be isotoped to a contact

structure ξε that is arbitrarily close to being tangent to the pages of the open book.

Consider a 1-form λ on Σ such as in Lemma 2.4.5. On Σ × [0, 1] take λ̃ =

(1−θ)λ+θ(φ∗λ) and consider the family of 1-forms given by αt = λ̃+K 1
t
dθ, where

t ∈ (0, 1] and K is any large constant. This family of 1-forms descends to a family

of 1-forms on Σ× [0, 1]/ ∼.

Both ξ1 = ker(α1) and ξ are contact structures supported by (L, π) and so they

are isotopic. Therefore, without loosing generality, we may assume ξ = ker(α1).

Note that for t → 0, αt defines a plane field almost tangent to pages.

For large enough K, the family of 1-forms {αt}t is a family of contact 1-forms

as:

αt ∧ dαt = (λ̃ + K
1

t
dθ) ∧ (dλ̃) = λ̃ ∧ dλ̃ + K

1

t
dθ ∧ dλ̃ > 0

Note that dλ̃ is an area form on the page while dθ vanishes on the page and is

positive on the positive normal to the page. This implies that the second term of

19



the sum is always positive and therefore αt is a contact form for sufficiently large

K. We want to extend this family to the whole M , so we need to patch in the solid

tori neighborhood of the binding. Let (ψ, r, θ) be coordinates near each binding

component. As in Theorem 2.4.5 the map f used to glue the solid tori is given by

f(ψ, r, θ) = (r − 1 + ε,−ψ, θ).

Pulling back the contact forms αt using this map gives the family of 1-forms

αf,t = K 1
t
dθ − (r + ε)dψ.

We are looking to extend this form on the entire S1 × D2 to a contact form of

the form h(r, t)dψ + g(r, t)dθ. These two functions do exist, as we can take h, g :

[0, 1]×(0, 1] → R3 with h(r, t) = h(r) (as defined in the proof of Theorem 2.4.5) and

g(r, t) similar to g(r) defined in the proof of Theorem 2.4.5 except g(r, t) equals K
t

near r = 1. Denote the extended family of forms also by αt and by ξt the family of

contact structures given by ξt = ker(αt), t ∈ (0, 1]. By Gray’s theorem there exists

a family of diffeomorphisms ft : M → M such that (ft)∗ξ = ξt. Let vt be the Reeb

vector field associated to αt, that is the unique vector field such that αt(vt) = 1 and

dαt(vt, ·) = 0.

As announced, we would like that the family {ft}t fixes the pages setwise. Fol-

lowing the proof of Gray’s theorem, ft is given as the flow of a vector field Xt ∈ ξt,

for which we have the following equality of 1-forms

ιXtdαt,f =
dαt,f

dt
(vt)αt − dαt,f

dt
(3.2.1)
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We already know that such a Xt exists but would need it to be tangent to the page.

First notice that dαt

dt
= − 1

t2
Kdθ and choose some vector v ∈ TΣ ∩ ξt. Applying

both sides of 3.2.1 to v we get

dαt,f (Xt, v) =
dαt,f

dt
(vt)αt,f (v)− dαt,f

dt
(v) (3.2.2)

As v ∈ ξt = ker(αt) and v has no θ-component, the equality is equivalent to

dαt(Xt, v) = 0 (3.2.3)

As dαt is an area form on ξt, the above equality implies that Xt and v are linearly

dependent and therefore Xt ∈ TΣ ∩ ξt (Xt = 0 will be 0 at singular points).

We are now looking at the singularities of Xt. On Σθ there are no negative elliptic

singularities away from the binding as the contact planes and the planes tangent

to the page almost coincide, as oriented plane fields (a negative elliptic singularity

e would require ξe and TeΣ to coincide but have different orientations). Thus, for

each θ, all points on Σθ, except for singularities of Xt and stable submanifolds of

hyperbolic points, flow in finite time into an arbitrarily small neighborhood of the

binding. Define Sθ as the set of points on Σθ that are either singularities of Xt or

on stable submanifolds of hyperbolic points. Let S = ∪Sθ as θ varies from 0 to 2π.

First, note that we can arrange the monodromy map φ to fix the singularities

on the cutting page, by thinking of φ as of a composition of Dehn twists away

from these points. For isolated values of θ, Xt might exhibit connections between

hyperbolic singularities. With these said, S has a CW structure with
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Figure 3.3: Wrinkling K in order to avoid intersections with S

1-skeleton: union of singular points and connections between hyperbolic singu-

larities

2-skeleton: union of stable submanifolds of hyperbolic singularities

If no bad arc of K intersects S then all these arcs will be eventually pushed

in a neighborhood of the binding. Before changing the contact structures through

the above described diffeomorphisms we can arrange that the arcs of the link K

where K is not braided avoid S by wrinkling as necessary (as in Figure 3.3). This

wrinkling, which we explicitly describe below, may increase the number of arcs

where the link is not braided but this is fine, as these new arcs avoid S.

By general position, we may assume K ∩ (1 − skeleton of S) = ∅ and K t

(2 − skeleton of S) is a finite number of points. A small neighborhood in D of

a point p ∈ Sθ ∩ K is foliated by intervals (−ε, ε), in the same way as a small

disk in the xy-plane centered at (0,1,0) in (R3, ξstd). It follows from Theorem 2.1.7

that p a has a neighborhood in M which is contactomorphic to a neighborhood of

q = (0, 1, 0) in (R3, ξstd). Consider the standard (x, y, z) coordinate system in such

a neighborhood. The contact plane ξq is given by x + z = 0. To make things more

clear visually we make a change of coordinates (we also call the new coordinates
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(x, y, z)) that takes this plane to the plane z = 0. As at p the contact plane and the

plane tangent to the page almost coincide, we may assume that the tangent plane

to the page at q is given by z = εx and that the link K is given by z = ε
2
, y = 1

in a δ-neighborhood of q, δ > 0. The wrinkling takes K to K ′ with the following

properties:

i) K ′ is given by z = 3ε
2
, y = 1 in a δ

3
-neighborhood of q

ii) K ′ is given by z = ε
2
, y = 1 outside of a 2δ

3
-neighborhood of q

iii) dz
dx

> 0 along K ′ in a δ-neighborhood of q.

While condition i) takes care of the K avoiding S along its bad zone, condition

iii) takes care of the link remaining transverse throughout the wrinkling.

After making the necessary wrinklings, fε(K) has all bad regions in a neighbor-

hood of the binding so there is a transverse isotopy Ks, 0 ≤ s ≤ 1 taking fε(K) to a

braid K ′
ε (as described in Theorem 3.1.2). Then f−1

ε (Ks), 0 ≤ s ≤ 1 is the transverse

isotopy we were looking for as it takes K to the braided knot f−1
ε (K ′).
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Chapter 4

The generalized Markov theorem

4.1 Geometric Markov theorem in an open book

decomposition

Let M be a 3-dimensional, closed, oriented manifold and (L, π) an open book de-

composition for M . Consider K ⊂ M a knot braided about L, k ⊂ K an arc that

lies in a neighborhood N(L) of the binding, and D ⊂ N(L) a disk normal to the

binding, with ∂D oriented according to the right hand rule.

Definition 4.1.1. With the above notations, a positive (negative) geometric Markov

move is given by connecting ∂D and k through a half twisted band whose orienta-

tion coincides with (is opposite to) that of the page at their tangency point.

Theorem 4.1.2. (Orevkov, Shevchishin [18]) In (R3, ξstd) two braids represent

transversely isotopic links if and only if one can pass from one braid to the other by
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braid isotopies, positive Markov moves and their inverses.

Our purpose is to prove a result similar to Theorem 4.1.2 in an open book

decomposition.

Theorem 4.1.3. (topological case) Let M be a 3-dimensional, closed, oriented man-

ifold and (L, π) an open book decomposition for M . Let K0 and K1 be braid rep-

resentatives of the same topological link. Then K0 and K1 are isotopic if and only

if they differ by braid isotopies and positive and negative Markov moves and their

inverses.

This topological version has been previously proven by Skora [20] and Sundheim

[21]. Our proof for this case immediately follows from the proof of the transverse

case, as one does not need to worry about transversality throughout the isotopy

and if transversality is not required both positive and negative Markov moves are

allowed.

Theorem 4.1.4. (transverse case) Let M be a 3-dimensional, closed, oriented man-

ifold and (L, π) an open book decomposition for M together with a supported contact

structure ξ. Let K0 and K1 be transverse braid representatives of the same topo-

logical link. Then K0 and K1 are transversely isotopic if and only if they differ by

braid isotopies and positive Markov moves and their inverses.

Proof. First we should note that an isotopy through braids is done away from

the binding. As the contact planes almost coincide to the planes tangent to the
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pages this isotopy is also transverse with respect to the contact structure. Let K0

and K1 be transverse braid representatives of the same topological knot K and

{Lt}t∈[0,1] a transverse isotopy from K0 to K1. We parametrize the isotopy by

L : tS1 × [0, 1] → M , such that Lt defined by s → L(s, t) is a parametrization of

Kt, where s is the positively oriented coordinate on each S1.

Let θ be the positive coordinate normal to the page. A bad zone of L is a connected

component of the set of points in tS1 × [0, 1] for which ∂θ
∂s
≤ 0. Denote by B the

union of all bad zones of L.

We would like to take all the bad zones of L in a neighborhood of the binding. This
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X

PSfrag replacements

θ
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Figure 4.1: Wrinkling in order to avoid intersections between B and S

way the proof is reduced to the standard case proved by Orevkov and Shevchishin

in [18]. For this, we need a family of diffeomorphisms of M that keep each page of

the open book setwise fixed and take the bad zones of L in a neighborhood of the

binding. We have already constructed the needed family of diffeomorphisms {ft}t

in the proof of Theorem 3.2.1. The ft’s are described by the flow of a family of

vector fields {Xt}t. For each θ, all points on Σθ, except for the set Sθ composed

of singularities of Xt and stable submanifolds of hyperbolic points, flow in finite
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time into an arbitrarily small neighborhood of the binding. The isotopy L has to

be arranged in such a way that B ∩ S = ∅, where S is the union of all Sθ’s as θ

varies from 0 to 2π. We are going to arrange that by wrinkling as necessary. We

describe the process below.

On B we have ∂θ
∂s
≤ 0. We make the arc l ⊂ B∩S a good arc if we arrange ∂θ

∂s
> 0

along l. To do that, for a fixed t and x ∈ l look at the graph of θ as a function of

s. Introduce a small wrinkle around x, as in Figure 4.1. For each point x ∈ l, this

wrinkle is the same described in Theorem 3.2.1 and thus it can be arranged to be

transverse. In [18] it was shown that this wrinkle can be done continuously for all

values of t along I.

4.2 The standard braid group and Markov moves

Let S be an orientable surface and let P = {p1, ..., pn} ⊂ S be a set of n distinct

points. A braid on S based at P is a collection of paths (α1, ..., αn), αi : [0, 1] → S

such that:

i) αi(0) = pi, i = 1..n

ii) αi(1) ∈ P , i = 1..n

iii) α1(t), ..., αn(t) are distinct for all t ∈ [0, 1].

The concatenation of paths defines a group structure on the set of all braids on

S based at P up to homotopy. This group, which does not depend on the choice of

P , is denoted by Bn(S), and it is called the braid group on n strings in S.
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This group was first introduced by Artin in [4], for S = R2. The braid group of the

plane has the following presentation:

〈σ1, ..., σn−1|σiσj = σjσi, |i− j| > 1, σiσi+1σi = σi+1σiσi+1, i ≤ n− 2〉

where, if we project the strands on a generic vertical plane, σi interchanges the ith

and the i + 1st strands and leaves all other strands unchanged.
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Figure 4.2: (a) Braids representing σi and σ−1
i (b) Positive Markov move

Definition 4.2.1. With the above notations, a positive (negative) Markov move

in R3 is given by the map m : Bn → Bn+1, b → b · σn (b → b · σ−1
n ). Geometrically,

a Markov move is equivalent to a adding and extra strand linking the z-axis once.

4.3 Braids in an open book decomposition

A description of the braid group of an orientable surface is given by Bellingeri in

[5]. The braid group Bn(F ), where F is an orientable p-punctured surface of genus

g ≥ 1 with p ≥ 1 punctures, admits the following presentation:

Bn(F ) = {σ1, ..., σn−1, a1, ..., ag, b1, ..., bg, z1, ..., zp−1|R0, ..., R7},
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where the relations R0, ..., R7 are as follows:

(R0) : σiσj = σjσi, for|i− j| > 1

σiσi+1σiσi+1σiσi+1, fori ≤ n− 2

(R1) : arσi = σiar, 1 ≤ r ≤ g, i 6= 1

brσi = σibr, 1 ≤ r ≤ g, i 6= 1

(R2) : σ−1
1 arσ

−1
1 ar = arσ

−1
1 arσ

−1
1 , 1 ≤ r ≤ g

σ−1
1 brσ

−1
1 br = brσ

−1
1 brσ

−1
1 , 1 ≤ r ≤ g

(R3) : σ−1
1 asσ1ar = arσ

−1
1 asσ1, s < r

σ−1
1 bsσ1br = brσ

−1
1 bsσ1, s < r

σ−1
1 asσ1br = brσ

−1
1 asσ1, s < r

σ−1
1 bsσ1ar = arσ

−1
1 bsσ1, s < r

(R4) : σ−1
1 arσ

−1
1 br = brσ

−1
1 arσ1, 1 ≤ r ≤ g

(R5) : zjσi = σizj, i 6= 1, j = 1, ..., p− 1

(R6) : σ−1
1 ziσ1ar = arσ

−1
1 ziσ1, 1 ≤ r ≤ g, i = 1, ..., p− 1, n > 1

σ−1
1 ziσ1br = brσ

−1
1 ziσ1, 1 ≤ r ≤ g, i = 1, ..., p− 1, n > 1

(R7) : σ−1
1 zjσ1zl = zlσ

−1
1 zjσ1, j = 1, ..., p− 1, j < l

(R8) : σ−1
1 zjσ

−1
1 zj = zjσ

−1
1 zjσ

−1
1 , j = 1, ..., p− 1

To get a feel of how these generators look and interact, think of the braiding as

being done in a small enough neighborhood of one boundary component (here the
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monodromy map is the identity) and of the generators zi, ai and bi as being elements

in π1(page) (see Figure 4.3). These generators should not be though of as lying on

a specific page but intersecting the pages transversely between different values of

θ. A generator given by the topology of the page can be parametrized by c :

[0, 1] → Σ × [θ1, θ2], c(t) = (γ(t), δ(t)), where γ : [0, 1] → Σ and δ : [0, 1] → [θ1, θ2]

is strictly increasing. While the stabilizations given by the Markov moves will

always be assumed to be performed on the nth strand of a n-strand braid, the

loops representing the generators given by the topology of the page will always be

assumed to come out of the first strand of a braid.
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Figure 4.3: Generators of the braid group of a surface.

In an open book decomposition the Markov moves are defined in the neighbor-

hood of each binding component in the same way as in the standard model. The

action corresponding to the conjugation in the standard model should take into
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account the monodromy map. We are going to fix the monodromy page, call it Σ0,

and we are going to read all the braid words starting at this page and moving in

the increasing θ direction.

First, there is an action given by b → σ · b · σ−1, where σ is a word in the braid

generators σi’s. This is not influenced by the monodromy map, as φ is identity near

the ∂Σ. We are going to refer to this as to a b-conjugation.

Second, there is an action given by b → c · b · φ−1(c−1), where c is any of the ai,

bi, zi or their inverses. We are going to refer to this as to a t-conjugation. Note that

by applying the monodromy map to the loop representing φ−1(c−1) when passing

through Σ0 we get a loop representing c−1.

4.4 Algebraic interpretation of the Markov theo-

rem in an open book decomposition

In this section we make the connection between the braid isotopies mentioned in

section 4.1 and the elements of the braid group introduced in the previous section.

Theorem 4.4.1. Let M be a 3-dimensional, closed, oriented manifold and (L, π)

an open book decomposition for M . Let B0 and B1 be closures of two elements of the

braid group. Then B0 and B1 are isotopic as braids in M if and only if they differ

by b- and t-conjugations in the braid group. They represent the same topological
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knot type if and only if they differ by b- and t-conjugations and stabilizations in the

braid group.

Proof. Away from the binding the contact planes and the planes tangent to the

surface almost coincide, thus a braid isotopy is equivalent to a transverse isotopy.

We are going to have a look at the two different types of actions.

For a b-conjugation: If we see the braid generators in a small enough neighborhood

of the binding, such a conjugation will preserve the braid isotopy class. The arcs

involved in the conjugation may be assumed close enough to the circle r = ε, z = 0,

which is in braid form for ε > 0. When projected on the cylinder of radius R,

where R is large enough that all points p on the strands involved in the conjugation

are such that r(p) < R, the braid conjugation represents a sequence of type II

Reidemeister moves.

For a t-conjugation: In this case, the conjugation is a sequence of conjugations

with the a, b and z generators or their inverses. Let (p, θ1) ∈ Σθ1 be the starting

point of a loop lc representing the element c and (p, θ2) ∈ Σ2 be its ending point.

Let (p, θ2) ∈ Σθ2 be the starting point of a loop lφ−1(c−1) representing φ−1(c−1)

and (p, θ3) ∈ Σθ3 be its ending point. We want to isotop lc · lφ−1(c−1) to the curve

{p} × [θ1, θ3]. The cutting page Σ0 interposes itself between lc and lφ−1(c−1). As we

move lφ−1(c−1) through Σ0 and apply the monodromy map φ to it we get a new curve

l′c−1 representing c−1. We want to isotop lc · l′c−1 to the curve {p} × [θ1, θ3]. This is

certainly possible, as the the arc lc · l′c−1 is disjoint form Σ0 and can be isotoped in
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Σ × [θ1, θ3] around the topology of the page to {p} × [θ1, θ3]. This isotopy can be

realized so that the θ coordinate is left unchanged and thus it is an isotopy through

braids.

We now look at the converse. We assume that two braids are isotopic in the

complement of the binding and want to see that they are related by b- and t-

conjugations. Fix again the cutting page Σ0 and consider a braid β which may be

assumed to intersect Σ0 in a small neighborhood of L1. We want to arrange that

the isotopy fixes the endpoints of β on the cutting page. If this is the case, the

isotopy can be seen in Σ× [0, 1] and the and the problem is reduced to the product

case discussed in Section 4.3 and thus are represented by the same word in the braid

group.

If the endpoints of β on the cutting page are not fixed, we can modify the

isotopy in such a way that they remain fixed. Given an isotopy βt from β0 = β

to β1 we construct a new isotopy β′t where β′0 = β0 and β′1 is β1 after some b-

and t-conjugations and such that the intersection of β′t with Σ0 is fixed. Say that

the endpoint of one of the strands of β, describes a curve γ ⊂ Σ0 troughout the

isotopy. First, modify the isotopy such that right at the endpoint of γ, the strand

strand looks like {p} × [0, ε]. Then, slide {p} × { ε
2
} along Σ× { ε

2
} back in a small

neighborhood of L1 such that {p}× [0, ε] is replaced by γ1 ·γ−1
1 ⊂ Σ× [0, ε]. Now, by

shifting the whole isotopy by ε in the negative θ direction we find that the endpoint

of the given strand on Σ0 is left unchanged by the new isotopy. The isotopy βt is
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left unchanged on the other strands. We repeat the process for all other strands.

Notice that we can do this without having the corresponding γ strands interfere

one with the other, by nesting them with respect to the θ direction.

In the geometric version of the theorem we talked about stabilizations, without

regard for the involved binding components. In building the algebra behind it we

assumed that the braid elements σi lie in a neighborhood of some chosen component

of the binding, L1. The Markov moves are therefore obvious when performed with

respect to this binding component, but not so if they are done with respect to a

different binding component. We would like to see how is this second stabilization

written in terms of the generators of the braid group.
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Figure 4.4: Stabilization about a second binding component

34



Let ln be the nth strand of the braid, the outermost one when viewed with

respect to the L1 binding component. Consider the cutting page Σ0 given by π−1(θ0)

and a curve α : [0, 1] → Σ × [θ0 − ε, θ0], α(t) = (γ(t), δ(t)), where γ : [0, 1] →

Σ and δ : [0, 1] → [θ0 − ε, θ0] is strictly increasing, such that γ(1) belongs in a

small neighborhood of a different binding component, L2. We may assume that

ln ∩ Σ× [θ0 − ε, θ0 + ε] is of the form {p} × [θ0 − ε, θ0 + ε]. We isotop ln such that

{p}× [θ0− ε, θ0 + ε] follows γ ·γ−1 in Σ× [θ0− ε, θ0 + ε] and perform a Markov move

with respect to L2 that can be either positive or negative (see Figure 4.4(a,b)).

Figure 4.4(b) pictures the braid just after a negative Markov move. We look at this

case, as the positive one is similar. We want that the monodromy map φ fixes the

points of intersection of the braid with the cutting page. For this, following the

earlier procedure, we isotop the intersection of the resulting arc with Σ0 back along

γ to a neighborhood of L1 (as in Figure 4.4(c)). After an additional isotopy outside

of a neighborhood of the binding and after passing γ through the cutting page Σ0

(as in Figure 4.4(d,e)), we find that, in the braid group, a negative stabilization

with respect to L2 is given by b → b · σ−1
n · w where w is a word representing the

loop γ · φ(γ−1). Similarly, a positive stabilization with respect to L2 is given by

b → b · σn · w where w is a word representing the loop γ · φ(γ−1).
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Chapter 5

On the transversal simplicity of

the unknot

In [10], Birman and Wrinkle proved that exchange reducibility implies transver-

sal simplicity. As a consequence, Birman and Menasco’s paper [8] shows that the

m-component unlink is transversely simple. While exchange reducibility does not

seem to work in more general settings, the unknot remains transversely simple in

a tight contact structure. Eliashberg proved this fact in [11]. Later, Etnyre proved

in [14] that positive torus knots are transversely simple. In this chapter we reprove

Eliashberg’s original theorem using braid theoretical techniques.
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5.1 Braid foliations

Definition 5.1.1. Let (M, ξ) be a 3-dimensional contact manifold. A topological

class of knots T is called transversely simple if any two transverse representatives

of T having the same self-linking number are transversely isotopic.

Further, we are looking at how an embedded surface in M may sit with respect

to an open book decomposition (Σ, φ) for M . This ideas were first introduced and

studied by Birman and Menasco. Let U ⊂ M be an embedded unknot together with

an embedded disk D such that ∂D = U . By Theorem 3.2.1, U may be assumed to

be braided about the binding of (Σ, φ). The intersection of D with the pages of the

open book induce a foliation on D, the braid foliation.

We may assume that D is in general position in the following sense:

i) D intersects the binding L transversely, finitely many times in such a way that

up to orientation the binding and the normal direction to the disk coincide

ii) In a neighborhood of such an intersection point D is radially foliated (as in

Figure 5.5(a))

iii) All but finitely many pages Σθ meet D transversely and those which do not

are tangent to Σθ at points which are either saddle points or local extremes

with respect to the parameter θ.

iv) The tangency points described in iii) are all on different pages
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v) U has a neighborhood N(U) in M such that N(U) ∩ D is foliated by arcs

transverse to U . Also, the oriented foliation lines go from inside D transversely

towards U in this neighborhood.

We would like to isotop D such that there are no singularities given by local extremes

with respect to the parameter θ. This requires few more definitions and results.

Definition 5.1.2. Let F be an oriented singular foliation on Σ. Let Γ ⊂ Σ be a

properly embedded 1-manifold. We say that Γ divides F if

1) Γ t F

2) Σ \ Γ = Σ+ t Σ−, Σ± 6= ∅

3) ∃ a vector field −→w on Σ and a volume form ω on Σ such that

i) −→w directs F

ii) −→w is expanding ω on Σ+ and contracting ω on Σ−

iii) −→w points out of Σ+(and into Σ−).

Definition 5.1.3. A vector field −→v on a contact manifold (M, ξ) is called a contact

vector field −→v if its flow preserves ξ.

Definition 5.1.4. A surface Σ ⊂ (M, ξ) is said to be convex if there exists a contact

vector field −→v transverse to Σ.

Theorem 5.1.5. For a convex surface Σ as above there exists a dividing set Γ given

by the points on Σ where −→v ∈ ξ.
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Lemma 5.1.6. (Legendrian Realization Principle) Let γ be an embedded 1-manifold

on a convex surface Σ such that each component of Σ \ γ intersects a dividing set

Γ. Then Σ can be isotoped through convex surfaces such that γ is Legendrian.

Lemma 5.1.7. Let (Σ, φ) be an open book decomposition for M and ξ a supported

tight contact structure. Let S ⊂ M be an embedded surface. Then S can be isotoped

in such a way that its braid foliation has no tangency points given by local extremes

with respect to the parameter θ.

Proof. Assume there exists a tangency point p of S with a page, given by a local

extreme with respect to θ. We are going to show that S can be isotoped in such a

way that the singularity at p is eliminated. Near p the surface S intersects the pages

in concentric circles cθ with cθ = ∂Dθ, Dθ ⊂ Σθ a family of disks. Moving through

the fibration away from the tangency point we must arrive at a circle γ0 ⊂ Σ0

containing a singular point p0. There are three cases we need to consider.

Case 1: The curve γ0 bounds a disk in Σ0 (as in Figure 5.1(a)). In this case,

using the 3-ball

B =
∐

θ

Dθ

composed by disks in between p and γ0, we can isotop the part of the surface on

the side of γ0 containing p so that both p and p0 are eliminated.

Case 2: The curve γ0 is not trivial in homology (as in Figure 5.1(b)). In this case

γ0 is non separating so it satisfies the hypothesis of Lemma 5.1.6 and if the page

would have been a closed surface γ0 could have been Legendrian realized. If so, the
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disk bounded by the Legendrain curve γ0 on S would be an overtwisted disk, contra-

dicting the hypothesis. We can still apply Lemma 5.1.6, by taking Σ′ = Σ0 ∪idL
Σ 1

2

and looking at γ0 ⊂ Σ′. The surface Σ′ is closed, with dividing curve Γ = L.

Case 3: The curve γ0 is trivial in homology but does not bound a disk in Σ0 (as in

Figure 5.1(c)). Consider Σ′ as defined above. The curve γ0 ⊂ Σ′ may not satisfy

the hypothesis of Lemma 5.1.6, as there might be a component of Σ′ \ γ0 which

does not intersect the dividing set, Γ. If so, then consider a non-separating curve δ

in this component. The curve δ can be Legendrian realized. This can be done by

looking at an annulus neighborhood of δ. This annulus has a neighborhood contac-

tomorphic to a neighborhood N of the annulus in the xy-plane in (R3, ξstd)/x∼x+1.

The neighborhood N can be replaced with a new neighborhood which introduces

two new singularity lines and two new components to the dividing set. The new

surface has a dividing set Γ′ = Γ∪{δ1, δ2}, where δ1 and δ2 are curves parallel to δ,

in a small neighborhood of δ (as in Figure 5.1(c)). With respect to Γ′, γ0 satisfies

the hypothesis of Lemma 5.1.6 and therefore can be Legendrian realized. This trick

was used by Honda in [16] and is called super Legendrian realization. As in Case 2
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this gives rise to an overtwisted disk.

In Chapter 2 we have introduced the notion of a characteristic foliation for an

embedded surface S ⊂ M . This foliation and the braid foliation described above

have the same distribution of singularities along S. In a neighborhood of the binding

L the contact structure looks like the standard one, dz + r2dθ and by perturbing

S we can make the normal to S and the binding align at the intersection points,

having a small disk around the intersection point radially foliated, as in Figure

5.5(a). Away from the binding the contact planes almost coincide with the planes

tangent to the pages and thus, modulo a small perturbation the two foliations also

coincide here. The two foliations are topologically conjugate by a homeomorphism

closed to the identity. This means that from the perspective of the pictures they

are the same.

Consider D a spanning disk for an unknot in M . It follows from the general

position requirements and Lemma 5.1.7 that D can be isotoped in such a way that

the singularities of its braid foliation are either elliptic, given by the intersections

with the binding (as in Figure 5.2(a,b)), or hyperbolic, given by saddle points of D

(as in Figure 5.2(c,d)). Further, condition iv) satisfied by a disk in general position,

implies that there are no foliation lines connecting two hyperbolic singularities in

the braid foliation of D. A generic braid foliation for D looks like the one in Figure

5.3. In this picture, the elliptic singularities are denoted by filled dots while the

hyperbolic singularities are denoted by empty dots.
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Figure 5.3: Induced braid foliation on D.
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A sign can be assigned to each elliptic or hyperbolic singularity in the following

way. An elliptic singularity is positive (negative) if the binding intersects the disk

D in the direction consistent with (opposite to) N , the normal direction to D (as

in Figure 5.2(a,b)). Define e+ (e−) to be the number of positive (negative) elliptic

singularities.

A hyperbolic singularity is positive (negative) if the normal N to D at the

intersection point, is consistent with (opposite to) the normal direction to the page

at that point, N ′ (as in Figure 5.2(c,d)). Define h+ (h−) to be the number of

positive (negative) hyperbolic singularities.

Definition 5.1.8. Let e be an elliptic singularity in the braid foliation of D, as

above. The valence of e, v(e), is defined as the number of hyperbolic singularities

adjacent to e.

In [6], Bennequin found a way of writing the self-linking number in terms of the

singularities in a foliation.

Lemma 5.1.9. Let U be an unknot spanning the embedded disk D and consider the

braid foliation of D as described above. Then sl(U) = (e− − h−)− (e+ − h+).

Definition 5.1.10. Associate to a foliation F of D the number

c(F) = e+ + e− + h+ + h−,

that is the number of its singularities, and call c(F) the complexity of F .
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5.2 Transverse stabilizations and braid destabi-

lizations

Lemma 5.2.1. Let e be a negative elliptic singularity in the braid foliation of the

disk D, ∂D = U , and let h be an adjacent negative hyperbolic singularity that is

also adjacent to U . Then U can be transversely isotoped (as in Figure 5.4(a)) so

that both e and h are eliminated.

Proof. The foliation we see on the disk V is the braid foliation. By slightly per-

turbing it we get the characteristic foliation on V . This foliation determines how

the contact structure looks like in a neighborhood of V in M . Using Theorem 2.1.7,

we look for a disk V0 embedded in (R3, ξstd), with the same characteristic foliation.

Consider the disc V0 ⊂ (R3, ξstd) traced by the isotopy

(s, t) → (t− 3s2, st− s3, 18s), t ∈ [−1, 1], s ∈ [−1.1, 1.1]

The disk V0 has the same characteristic foliation as V and for each fixed value of t,

the curve s → (t−3s2, st−s3, 18s), s ∈ [−1.1, 1.1] remains transverse to the contact

planes, as the form dz− ydx evaluates to 18+6s2(t− s2) > 0 on the tangent vector

〈−6s, t− 3s2, 18〉.

Lemma 5.2.2. Let e be an elliptic singularity in the braid foliation of the disk D,

∂D = U , such that v(e) = 1 and let h be its only adjacent hyperbolic singularity. If

h and e are of the same sign then U can be transversely isotoped so that both e and
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h are eliminated. We are going to refer to this isotopy as to a braid destabilization.

Proof. As the foliation is oriented in such a way that the flowlines go towards U

from inside D, e can only be a positive singularity. Up to choice of orientation

on the disk D the situation is identical to that of the previous lemma, except the

t-parameter should be chosen with the opposite orientation.

_

_

U

+ +

PSfrag replacements

U

(a)

+ +

U

PSfrag replacements

U

(b)

Figure 5.4: Part of D before and after the elimination of a negative hyperbolic singularity

adjacent to U .

Definition 5.2.3. A knot K is said to be obtained through a transverse stabilization

of a transverse knot K ′ if K = δ ∪ β and K ′ = δ ∪ β′ and β ∪ β′ bounds a disk with

one positive elliptic and one negative hyperbolic singularity (as in Figure 5.5(b)).

Here the term transverse refers to the position with respect to the characteristic

foliation.
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Note that through a transverse stabilization the self-linking number is decreased

by 2. The following is a well known lemma, but it’s only sketched in the present

literature. We give a more detailed proof.

Lemma 5.2.4. If K1 and K2 are obtained through a transverse stabilization from

two transversely isotopic knots K ′
1 and K ′

2, then K1 and K2 are themselves trans-

versely isotopic.

Proof. Since K ′
1 and K ′

2 are transversely isotopic we may assume K ′
1 = K ′

2 = K ′.

Let D1 and D2 be the disks given by the two stabilizations (as the shaded disk in

Figure 5.5(c)). Let e1, h1 and e2, h2 be the pairs of singularities on D1 and D2 and

α1, α2 the two Legendrian arcs formed by the stable manifolds of h1 and h2. We

may transversely isotop K ′ so that K1 \K ′ lies arbitrarily close to α1 and similarly

for K2 and α2. We can see this in Figure 5.5(c). The pictured part of the knot

can be brought towards the α-arc, as indicated by arrows, remaining transverse to

the characterstic foliation. The claim in the lemma follows from the following three

additional lemmas.

Lemma 5.2.5. There exists a contact isotopy preserving K ′ taking the endpoint of

α1 in D1 to the endpoint of α2 in D2.

Lemma 5.2.6. There exists a contact isotopy preserving K ′ taking α1 to α2.

Proof. Consider p1 the common starting point of α1 and α2 together with a neigh-

borhood N(p1) contactomorphic to a neighborhood of the origin in (R3, ξstd), N(0).
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Consider ξstd given by the 1-form dz + r2dθ. We identify α1 ∩ N(p1) with the arc

N(0) ∩ (θ = θ1) ∩ (z = 0) and α2 ∩ N(p1) with the arc N(0) ∩ (θ = θ2) ∩ (z = 0),

for θ1 6= θ2. There is an isotopy given by ψt(r, θ, z) = (r, (1− t)θ1 + tθ2, z), t ∈ [0, 1],

that takes N(0)∩ (θ = θ1)∩ (z = 0) to N(0)∩ (θ = θ2)∩ (z = 0). Pulling this back

through the contactomorphism gives an isotopy between α1∩N(p1) and α2∩N(p1).

A compactness argument completes the proof.

Lemma 5.2.7. Any two stabilizations of K ′ along a fixed Legendrian arc are

transversally isotopic.

Proof. Consider D1 and D2 the two stabilization disks that coincide along the Leg-

endrian arc α. By a small deformation we can assume they coincide in a small

neighborhood of the α arc. As described above, the knot of can be transversely

isotoped to such a neighborhood.
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5.3 In a tight contact structure the unknot is

transversely simple

Theorem 5.3.1. Let (M, ξ) be a 3-dimensional contact manifold supported by the

open book decomposition (L, π). If (M, ξ) is tight then the unknot is transversely

simple.

Proof. Considering an arbitrary representative of the unknot, U ⊂ M , and D ⊂ M

an embedded disk with ∂D = U . Using Lemma 5.2.1, the braid foliation on D may

be assumed to have no couples consisting of a negative hyperbolic singularity and

a negative elliptic singularity adjacent to U .

First, we show that any transverse representative of the unknot of maximal self-

linking number can be transversally isotoped to the trivial braid, that is a braid

bounding a disk foliated as in Figure 5.5(a). This proves the theorem in the maximal

self-linking number case. Second, we prove the theorem for arbitrary self-linking

number.

Assume now that U is a transverse representative of the unknot of maximal

self-linking number. The goal is to show that the foliation can be changed into one

of minimal complexity, i.e. such that c(F) = 1. We are going to see that due to

the maximality of sl(U), the foliation on D has no negative hyperbolic singularity

with both unstable manifolds going towards U . Having already eliminated the

negative hyperbolic singularities adjacent to U (as in Lemma 5.2.1), all singular
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points adjacent to U have positive sign.

Denote by EU the set of elliptic singularities adjacent to U . The elements of

EU are connected in between them through stable manifolds of positive elliptic

singularities. For e ∈ EU define v+(e) to be the number of such connections. If for

all e ∈ EU , v+(e) ≥ 2, then the graph with vertices the elements of EU and edges

the above connections exhibits a cycle. This cycle is the boundary of an overtwisted

disk. As ξ is tight, there must exist an element e′ ∈ EU with v+(e′) ∈ {0, 1}.

If EU contains e′ with v+(e′) = 0, then the disk D is foliated as in Figure 5.5(a)

(as it has only one connected component) and therefore c(F) = 1.

If EU contains e′ with v+(e′) = 1, then a neighborhood of e′ is foliated like in

Figure 5.5(b). In this case the complexity of the foliation can be reduced by 2

through a braid destabilization as in Lemma 5.2.2.

a b
a b a b a b

a
b a b

a b

PSfrag replacements

L1

L2

Figure 5.6: Isotopy between trivial unknots linking different binding components.

If the foliation on D has negative hyperbolic singularities with both unstable
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manifolds going towards U , we look at an inner most such singularity. Following

Lemma 5.2.1, its unstable manifolds together with part of U will bound a disk fo-

liated in a such a way that all singularities adjacent to the boundary are positive.

The same argument as above implies that U must have been obtained from some

unknot U ′ through a transverse destabilization as in Definition 5.2.3, contradicting

the maximality of the self-linking number.

If two transversal representatives of the unknot both have maximal self-linking

number, they are transversely isotopic, as by the above process can be both braid

destabilized by transverse isotopies to a trivial representative, with induced braid

foliation as the on in Figure 5.5(a). If the two trivial unknots are linking the same

binding component then one can isotop one to the other by first shrinking both

in a small enough neighborhood of the respective component, that looks like the a

neighborhood of the z-axis in (R3, ξstd)/z∼z+1. But what if through the destabiliza-

tion process the two unknots end up linking two different binding components, L1

and L2? In this case one of the unknots can be first dragged towards the opposite

binding component, linked through a braid stabilization (the reversed process de-

scribed by Lemma 5.2.2) with this and then freed from linking the initial binding

component through a braid destabilization. This isotopy is described in Figure 5.6.

To guarantee that the unknot remains transverse throughout the process the part

of the unknot used to link L1 is dragged towards L2 so that it remains in a small

neighborhood of an arc between U ∩ Σ0 and L2 in a chosen page Σ0. Using the
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(x, y, z) coordinates for this neighborhood (where (x, y) are coordinates on the page

and z is the coordinate normal to the page) the actual isotopy can be described by:

ft(x, y, z) = (x, t(1− (x
ε
)2), z), for t ∈ [0, 1] (see Figure 5.7)

Assume now that U is a transverse unknot which does not have maximal self

linking. In the braid foliation of D there must exist negative hyperbolic singulari-

ties having both unstable manifolds going towards U . Otherwise, as above, after a

transverse isotopy, D can be assumed to be foliated as in Figure 5.5(a), thus con-

tradicting the non-maximality of the self-linking number. Using the same argument

as in the maximal self-linking case, the part of the disk bounded by the unstable

manifolds of an innermost one such singularity together with part of U (α1 and δ
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in Figure 5.5(c)) may be assumed to contain a single singularity, a positive elliptic

singularity.

Therefore, in this case, U can be obtained from U0, a transversal representative of

the unknot with sl(U0) = sl(U)+2, through a transverse stabilization, as described

in Definition 5.2.3. An inductive argument completes the proof.
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Chapter 6

Surface changes

In the beginning of Chapter 5 we described a generic braid foliation induced on a disk

D bounding the unknot U . We also described ways of changing this foliation through

certain stabilizations and destabilizations. In this chapter we are concerned with a

different type of changes in a foliation, involving adjacent hyperbolic singularities

of the same sign. Originally studied by Birman and Menasco in [8] for (R3, ξstd) ,

this change in foliation is a key ingredient in proving that the unknot is exchange

reducible in (R3, ξstd).

6.1 Few preliminaries

Consider an open book decomposition (Σ, φ) for the 3-manifold M , a null-homologous

knot K ⊂ M , and a surface S such that ∂S = K. We are going to look at the

braid foliation on S, induced by the intersection with the pages. Following a general

53



(a)

K

PSfrag replacements

K

(b)

K

K

PSfrag replacements

K

(c) (d)

K

PSfrag replacements

K

(e)

Figure 6.1: Possible tiles in the decompositions of S.

position argument as the one on Chapter 5 and Lemma 5.1.7, there is a natural

way of decomposing S into tiles, according to the singularities of this foliation. This

decomposition was studied by Birman and Menasco in the standard case. The tiles

we are considering are either neighborhoods of a hyperbolic singularity (as in Figure

6.1(a− c)) or foliated disks as in Figure 6.1(d, e).

To each tile of type (a), (b) or (c) we will associate a sign, the same as the one

of its singularity.

6.2 Changing order of adjacent saddle points

Theorem 6.2.1. With the above notations, assume a decomposition for S contains

tiles T1 and T2 of the same sign which are adjacent at an arc going between two

elliptic points. Let h1 and h2 be the two hyperbolic singularities contained in T1 and

T2 and θ1, θ2 ∈ S1 such that h1 ∈ S∩Σθ1 and h2 ∈ S∩Σθ2 Then there is an isotopy

F taking S to a surface S ′ such that:

i) F (T1) and F (T2) are adjacent regions of the same sign in the decomposition
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of S ′

ii) The decomposition of S outside of a small neighborhood of T1 ∪ T2 coincides

with that of S ′ outside of a small neighborhood of F (T1) ∪ F (T2)

iii) F (h1) ∈ S ∩ Σθ2 and F (h2) ∈ S ∩ Σθ1

Proof. Roughly, this theorem says that given two adjacent hyperbolic singularities,

of the same sign (as in Figure 6.2(a)) their order with respect to the θ coordinate can

be changed (as in Figure 6.2(b)). In Figure 6.2 the pages are viewed as horizontal

planes. We are going to show that the two singularities can be moved past one

another by showing the existence of a family of disks that can be used to isotop the

surface. The proof of the existence of such disks relies on observing that in a small

neighborhood of the two tiles, T1 and T2, the picture can always be standardized,

independent of the open book decomposition.

Consider the two hyperbolic points h1 and h2 as in the hypothesis and without
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Figure 6.2: Neighborhood of adjacent saddle points of the same sign before and after the

isotopy.
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loss of generality assume they are both positive. As we proceed in the fibration

past h1 and h2 the traces described by S on consecutive pages in a small enough

neighborhood of the two singularities are according to the sequence in Figure 6.3.

In this pictures, the signs are labeling the surface S according to its positive or

negative side. Thus, independent of the open book decomposition for M , a small

disk D ⊂ T1∪T2 with h1, h2 ∈ D has an embedding as in Figure 6.2(a). The sequence

in Figure 6.3 represents local pictures in each Σθ around the two singularities. The

arcs depicted for some value of θ are subsets of S ∩ Σθ. The set of curves S ∩ Σθ

may have a complicated behavior outside of this neighborhood, depending on the

open book, but the local pictures are the same.

Following the proof for the (R3, ξstd) case in [7] we are looking for a family of curves

{αθ}θ∈[θ1,θ2+ε] as shown in Figure 6.2(a) with interior disjoint from S and K. The

union of the αθ’s is a disk V which we are going to use to isotop S.

Call β and β1 the arcs in the foliation obtained as a consequence of passing through

h1, with β being the arc between the two elliptic singularities common to T1 and T2,

as in the hypothesis. Consider αθ ⊂ Σθ an arc between β and β1. Pick αθ so that

it’s endpoints lie in the small neighborhood D. As β doesn’t surger between θ1 and

θ2 we can choose αθ for all θ ∈ [θ1, θ2]. As both h1 and h2 are positive, the traces

of D on consecutive pages have to be as in Figure 6.3 (S has to ′meet itself′ on the

negative side for a positive hyperbolic singularity). Note that for θ2 > θ > θ2 + ε

one endpoint of αθ will no longer be in D, but only on Σθ. The important aspect is
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different Σθ’s.

that that the αθ’s can be considered beyond θ = θ3 without its interior intersecting

D. This means that the αθ arc may be considered for θ ∈ [θ2, θ2 + ε].

For the family of arcs {αθ}θ∈[θ1,θ2+ε], consider the family of disk neighborhoods

Vθ parametrized by Lθ : [0, 1] × (−δ, δ) such that αθ = Lθ([0, 1] × {0}). Consider

the 3-ball given by the union

V =
⋃

Vθ, where θ ∈ [θ1, θ2 + ε].

Then int(V )
⋂

D = ∅. If V has interior disjoint from S and K, we can use V to

isotop D and change the order of h1 and h2. If there are parts of K or S intersecting

V , we can first isotop these forward in the fibration, outside of V ′ =
⋃

Vθ, where

θ ∈ [θ1, θ2 + ε
2
] and then isotop D and change the order of h1 and h2.
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