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ABSTRACT

BRAIDS AND OPEN BOOK DECOMPOSITIONS

Elena Pavelescu

John Etnyre, Advisor

In this thesis we generalize Alexander’s and Bennequin’s work on braiding knots
and Markov’s theorem about when two braids represent isotopic knots. We also
reprove Eliashberg’s theorem on the transversal simplicity of the unknot in a tight
contact structure using braid theoretical techniques. Finally, we look at possible

changes in braid foliations induced on a surface.
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Chapter 1

Introduction

In [2], Alexander proved that any knot in R® can be braided about the z-axis.
In [6], a paper which marked the start of modern contact topology, leading to
the Bennequin inequality and the definition of tightness, Bennequin proved the
transverse case for (R?, £,4). Following a review of known results and background
material, in Chapter 3 we generalize Bennequin’s result to any closed, oriented, 3-
dimensional manifold M, by looking at on open book decomposition for M together
with a supported contact structure.

In [17], Markov gave an equivalent condition for two braids in R3 to be isotopic.
This is the case if and only if the two braids differ by conjugations in the braid group
and positive and negative Markov moves. In [18] Orevkov and Shevchishin proved
the transversal case for (R3,&,y). A different proof was independently obtained

by Wrinkle in [23]. In Chapter 4 we generalize Markov’s theorem to any closed,



oriented, 3-dimensional manifold. We prove the transverse case and recover the
topological case previously proved in [20] and [21].

In [10], Birman and Wrinkle proved that exchange reducibility implies transversal
simplicity. As a consequence, Birman and Menasco’s paper [8] shows that the
m-component unlink is transversely simple. While exchange reducibility does not
seam to work in more general settings, the unknot remains transversely simple in
a tight contact structure. Eliashberg proved this fact in [11]. Later, Etnyre ([14])
proved that positive torus knots are transversely simple. In Chapter 5 we reprove
Eliashberg’s original result using braid theoretical techniques.

In Chapter 6 we look closer at foliations induced on an embedded surface S C M3
by the intersection with the pages of an open book decomposition (¥, ¢) for M? and
we show how adjacent saddle points can be changed with respect to the coordinate

on S', generalizing a result of Birman and Menasco ([8]). .



Chapter 2

Background

In this chapter we review some of the definitions and results that we’ll be using

throughout this thesis.

2.1 Contact structures

Definition 2.1.1. Let M be a compact, oriented 3-manifold and £ a subbundle of
the tangent bundle of M such that §, = T,M N ¢ is a two dimensional subspace of
T,M for all p € M. Locally, { can be written as { = ker a for some non-degenerate

1-form a. The plane field £ is called a contact structure if a A dae # 0.

Such a plane field is completely non-integrable, that is £ is not tangent to any
surface along an open set. If £ is orientable then & can be written as & = ker « for
a global 1-form «. Depending on whether o A dav > 0 or a A da < 0, £ is called
a positive or a negative contact structure. The contact structures we are working
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with throughout this paper are assumed to be oriented and positive.

Definition 2.1.2. A contactomorphism between two contact manifolds (M, &;)

and (Ma, &) is a diffeomorphism ¢ : M; — My such that ¢.& = &.

Definition 2.1.3. An embedded disk D in (M, ¢) is called an overtwisted disk if
T,0D C & for all p € 0D and D is transverse to  along 0D. If there exists such a
disk in (M, €) then € is called overtwisted. If it is not overtwisted a contact structure

is called tight.

On R3, consider the two contact structures & and & given by the 1-forms
oy = dz — ydr and as = dz + 72df (given in cylindrical coordinates). These two
contact structures are contactomorphic and we are going to refer to them as the
standard contact structure, &q.

Unlike Riemannian geometry, contact geometry doesn’t exhibit any special local

behavior, as we can see from the following theorem.

Theorem 2.1.4. (Darboux) Let (M,£) be a contact manifold. Every point p €

M has a neighborhood that is contactomorphic to a neighborhood of the origin in

(Rga gstd) .

A proof of this theorem can be found in [1].

Definition 2.1.5. The Reeb vector field of « is the unique vector field v, on M

such that

i) a(v,) =1



i) da(ve,-) =0

Definition 2.1.6. Let X C (M, £) be an embedded surface. From the non-integrability
condition of & it follows that [, = T, X N &, is a line for most points x € . The
singular foliation on > whose leaves are tangent to the line field [ = Ul, is called

the characteristic foliation of 3.

The characteristic foliation of a surface 3 determines a whole neighborhood of

Y as it follows from the next theorem.

Theorem 2.1.7. If ¥; C (M;,&;), fori=1,2 are two embedded surfaces and there
exists a diffeomorphism f : ¥y — Yo which preserves the characteristic foliations

then f may be isotoped to be a contactomorphism in a neighborhood of 3.

2.2 Gray’s theorem

The following theorem is of vital importance in proving the generalization of Alexan-

der’s theorem on braiding links (Chapter 3).

Theorem 2.2.1. ( Gray ) Let {&}icpoa) be a family of contact structures on a
manifold M that differ on a compact set C' C int(M). Then there exists an isotopy

Yy M — M such that

Z) (?/ft)*fo :gt

i) 1y is the identity outside of an open neighborhood of C'.



Proof. We are going to look for 1; as the flow of a vector field X;. If & = ker oy,
then v, has to satisfy

@Z)Z(O{t = )\tOéo, (221)

for some non-vanishing function )\, : M — R3. By taking the derivative with re-

spect to ¢t on both sides the equality will still hold.

1(1/1:041&) ~ lim ¢f+h04t+2 — YF oy i U Qi — Vip e + Ui 0 — Yfay _
h—0 h
do do
= Ui () + Ui Lxae = (o + Lxon).
This gives
d\ . 1
wt( ‘CXtat) d—ttao = d_tt/\_tw Qi (222)
and by letting
d
hy = dt(lOg At) © @D (2.2.3)
we get
dat *
(0N (— + d(ix, o) + ix,dag) = ¥ (hew) (2.2.4)

If X is chosen in & then tx,a; = 0 and the last equality becomes

da

dtt + LXtdCYt htOét (225)

Applying (2.2.5) to the Reeb vector field of v, v,,, we find hy = 92¢(v,,) and have



the following equation for X,

d
LXtdOét = htat — % (226)

The form do; gives an isomorphism

L&) — Qét

vV = Lydoy

Where I'(&) = {v|v € &} and Q}, = {1-forms §|3(v;) = 0}. This implies that X,
is uniquely determined by (2.2.6) and by construction the flow of X, works.

For the subset of M where the &’s agree we just choose the «;’s to agree. This
implies 99 =0, h, = 0 and X, = 0 and all equalities hold. Il

dt

2.3 Transverse and Legendrian arcs

Definition 2.3.1. In a contact manifold (M, &), an oriented arc v C M is called
transverse if for all p € v and &, the contact plane at p, T,y h £, and 7}y points
towards the positive normal direction of the oriented plane &,. If 7y is a closed curve

then it is called a transverse knot.

Definition 2.3.2. In a contact manifold (M, ), an arc v C M is called Legendrian
if for all p € v, T,y C &, where &, is the contact plane at p. If v is a closed curve

then it is called a Legendrian knot.

Around a transversal (or Legendrian) knot contact structures always look the
same. Using Theorem 2.2.1 we can prove the following two lemmas.
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Lemma 2.3.3. A neighborhood of a transverse knot in any contact manifold is

contactomorphic with a neighborhood of the z-axis in (R3, Egq)/2mat1-

Lemma 2.3.4. A neighborhood of a Legendrian knot in any contact manifold is

contactomorphic with a neighborhood of the x-aris in (R, €4q)/smer1-

Definition 2.3.5. Let K C (M, &) be a null homologous knot and ¥ C M a surface
such that 0¥ = K. Let v € £|ss be the restriction to K of a non-zero vector field
w € £ on Y. Denote by K’ the push-off of K in the direction of v. The self-linking

number of K is sl(K) = lk(K, K') = K' - 3 (algebraic intersection).

2.4 Open book decompositions

Definition 2.4.1. An open book decomposition of M is a pair (L, m) where
i) L is an oriented link in M called the binding of the open book

ii) 7: M~ L— S'is a fibration whose fiber, 771(6), is the interior of a compact
surface ¥ C M such that 0¥ = L, VO € S*'. The surface X is called the page

of the open book.

Alternatively, an open book decomposition of a 3-manifold M consists of a
surface X, with boundary, together with a diffeomorphism ¢ : ¥ — X, with ¢=

identity near 0%, such that
M= (Sx[0,1/ ~)u; [T S x D

10



where
(z,1) ~ (¢(),0).
Note that
o x[0.1/~) =177,
each torus 77 having a product structure S* x [0,1]/ ~. Let \; = {pt} x [0,1]/ ~

A\; € T?. The gluing diffeomorphism used to construct M is defined as

fo(]]s" x p*) — o] 77)
The map ¢ is called the monodromy of the open book.

Theorem 2.4.2. (Alexzander, [3]) Every closed oriented 3-manifold has an open

book decomposition.

Definition 2.4.3. A contact structure £ on M is said to be supported by an open
book decomposition (X, ¢) of M if £ can be isotoped through contact structures so

that there exists a 1-form « for & such that
i) do is a positive area form on each page

ii) a(v) > 0 for all v € T'L that induce the orientation on L.

11



Lemma 2.4.4. A contact structure & on M is supported by an open book decom-
position (2, ¢) if and only if (X, ) is an open book decomposition of M and & can
be isotoped to be arbitrarily close, as oriented plane fields, on compact subsets of
the pages, to the tangent planes to the pages of the open book in such a way that
after some point in the isotopy the contact planes are transverse to the binding and

transverse to the pages in a neighborhood of the binding.

Contact structures and open book decompositions are closely related. Thurston

and Winkelnkemper have shown how to get contact structures from open books.

Theorem 2.4.5. (Thurston, Winkelnkemper, [22]) Every open book decomposition

(X, ¢) supports a contact structure &,.

Proof. Let

M= (2x[0,1/ ~)us [T 5" x D

given as before. We first construct a contact structure on ¥ x [0, 1]/ ~ and then we
extended it in a neighborhood of the binding. Let (1, x,#) be coordinates near each
of the binding components ((, z) are coordinates on the page, with ¢ being the
coordinate along the binding, while € is the coordinate pointing out of the page)

and consider the set of forms

S = {1 — forms A such that : d\ is a volume form on %

A= (14 z)dy near 0¥ = L}

To show that the set S is non-empty let A; be a 1-form on ¥ such that A\; = (14xz)dy

12



near 0%. Let w be a volume form on ¥ such that w = dx A dip near 9%. The form
w—d\; is closed and since H%(X) = 0, there exists a 1-form 3 such that d3 = w—d\
and # = 0 near 0%. Then A = A\; + 3 is an element in S.
Note that for A € S, then ¢*\ is also in S.
Let A be an element of S and consider the 1-form

A = thp + (1 =1)(¢"A),
on X x [0,1] where (p,t) € ¥ x [0, 1] and take

A = >\(th) + Kdt.

For sufficiently large K, ak is a contact form and it descends to a contact form on
¥ x [0,1]/ ~. We want to extend this form on the solid tori neighborhood of the
binding. Consider coordinates (¢, 7,6) in a neighborhood S* x D? of each binding
component. The gluing map f is given by

fW,r,0)=(r—1+¢€ —1,0).
Pulling back the contact form ag using this map gives the 1-form

ay = Kdf — (r+ e)di.

We are looking to extend this form on the entire S' x D? to a contact form of the
form h(r)diy + g(r)df. This is possible if there exist functions h, g : [0, 1] — R3 such

that:

i) h(r)g' (r) — K (r)g(r) > 0 (given by the contact condition)

13



ii) h(r) =1near r =0, h(r) = —(r +€) near r =1

iii) g(r) =r*near r =0, g(r) = K near r = 1.

A A
PSfrag replacements PSfrag replacements
1 .
h g
On ) 0 _
r EE 1 r
—1—c¢ K
12a2an 1
r r

(a) (b)

Figure 2.1: (a) h function (b) g function

The two functions h and ¢ described in Figure 2.1 work for our purpose. The
conditions 1) and ii) are obviously satisfied and if d;, and J, are such that h < 0 on

[0n, 1] and g = 1 on [y, 1], then iii) is satisfied as long as d;, < d,. O

In [15], Giroux proved there exists a correspondence between contact structures

and open book decompositions.

Theorem 2.4.6. (Girouz) Let M be a closed, oriented 3-manifold. Then there is a
one to one correspondence between oriented contact structures on M up to isotopy

and open book decompositions of M up to positive stabilizations.

Definition 2.4.7. A positive (negative) stabilization of an open book (X, ¢) is the
open book with

14



i) page ¥ =X U1 — handle

ii) monodromy ¢’ = ¢ o 7., where 7, is a right-(left-)handed Dehn twist along a

curve ¢ in Y that runs along the added 1-handle exactly once.
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Chapter 3

The generalized Alexander

theorem

3.1 Preliminaries

In [2] Alexander proved that any link in R? can be isotoped to a link braided about
the z-axis. In [6] Bennequin proved the transverse case, that is that any transverse
link in (R3, &) can be transversely braided about the z-axis. The goal of this
chapter is to prove a generalization of Bennequin’s result. Throughout this section

M is a closed and oriented 3-manifold.

Definition 3.1.1. Let (L, 7) be an open book decomposition for M. A link K C M
is said to be braided about L if K is disjoint from L and there exists a parametrization

of K, f: 1] S* — M such that if ¢ is the coordinate on each S* then £(mo f) > 0

16



at all time.

Our proof reduces the general case to the (R?,£yy) case proved by Bennequin.

Below we sketch the ideas he used in his proof.

Theorem 3.1.2. (Bennequin, [6]) Any transverse link T in (R3, £q) is transversely

1sotopic to a link braided about the z-axis.

Proof. Let (r,0,2) be cylindrical coordinates on R3 and let ¢ be the parameter on
I'. The standard contact structure is given by o = dz +r2df. The arcs constituting
I are either good (if % > 0) or bad (if % < 0). In order to arrange I into a braid
form, the bad arcs are moved through a transverse isotopy on the other side of the
z-axis. This requires that certain wrinkling, which we describe below, is done along
the bad arcs. Along a bad arc v C I' we have fl—f < 0 and % > 0, as the knot is
transverse. The projection of v on a large enough r—cylinder looks like the one in
Figure 3.1. The wrinkling leaves the r coordinate unchanged and modifies the z and
0 coordinates. As throughout the wrinkling % increases and r remains constant the
arc remains transverse to the contact planes. An arc v C I' is said to be shadowed
by another arc 7" at (r,6, z) € v if there exists (17,0, z) € v/ with " < r.

i) By introducing a wrinkle as in Figure 3.1 on the bad arc +, it can be arranged
that v doesn’t go all around the z-axis.

ii) By introducing a wrinkle as in Figure 3.1 on the bad arc ~, it can be arranged
that ~ is not shadowed by any other arc.

iii) A non-shadowed bad arc 7 is transversely isotoped to a good arc as in Figure

17
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Figure 3.1: Wrinkling along a bad arc ~.
0 0 (g o z/Q Pé\’) ( 0 )

Figure 3.2: Transforming a non-shadowed bad arc into a good arc.

3.2. This isotopy keeps the 6 and z coordinates of  fixed, while it decreases the r
coordinate until the arc hits the z-axis. This guarantees the trasversality as % <0
makes £ +r2(t)% > 0 at all time.
iv) As the initial number of bad arcs is finite, and a whole bad arc v can be
dz

resolved at a time (%7 > 0 on 7 so no two parts of v ever shadow one another

throughout the process), after finitely many steps I' is isotoped to a braid form. [

3.2 The generalized Alexander theorem

Theorem 3.2.1. Suppose (L, 7) is an open book decomposition for the 3-manifold
M and & is a supported contact structure on M. Let K be a transverse link in M.

Then K can be transversely isotoped to a braid.

Proof. The idea of the proof is to find a family of diffeomorphisms of M keeping

18



each page of the open book setwise fixed and taking the parts of the link where
the link is not braided in a neighborhood of the binding. A neighborhood of the
binding is contactomorphic to a neighborhood of the z-axis in (R?,&,4)/2n-r1 and
there the link can be braided, according to Theorem 3.1.2.

In the neighborhood N = S' x D? of each component of the binding consider
coordinates (1, x, #) such that df and 7*df agree, where 7*d0 is the pullback through
m: M\ L— S'of the coordinate on S.

As & is supported by the open book (L,7), £ can be isotoped to a contact
structure &, that is arbitrarily close to being tangent to the pages of the open book.

Consider a 1-form A on ¥ such as in Lemma 2.4.5. On ¥ x [0,1] take A =
(1—0)A+60(¢*)\) and consider the family of 1-forms given by oy = A+ K +df, where
t € (0,1] and K is any large constant. This family of 1-forms descends to a family
of 1-forms on ¥ x [0,1]/ ~.

Both & = ker(aq) and £ are contact structures supported by (L, 7) and so they
are isotopic. Therefore, without loosing generality, we may assume £ = ker(ay).

Note that for ¢t — 0, a; defines a plane field almost tangent to pages.

For large enough K, the family of 1-forms {«;}; is a family of contact 1-forms
as:

< 1 . 1 .
at/\dat:()\#—szQ)/\(d)\):)\/\d)\+KZd9/\d)\>0

Note that d\ is an area form on the page while df vanishes on the page and is

positive on the positive normal to the page. This implies that the second term of

19



the sum is always positive and therefore oy is a contact form for sufficiently large
K. We want to extend this family to the whole M, so we need to patch in the solid
tori neighborhood of the binding. Let (¢, r,0) be coordinates near each binding

component. As in Theorem 2.4.5 the map f used to glue the solid tori is given by
f@W,r,0)=(r—1+¢€ —1,0).
Pulling back the contact forms «; using this map gives the family of 1-forms
apy = K1d0 — (r + e)dip.

We are looking to extend this form on the entire S* x D? to a contact form of
the form h(r,t)dy + g(r,t)df. These two functions do exist, as we can take h,g :
0,1] % (0,1] — R? with h(r,t) = h(r) (as defined in the proof of Theorem 2.4.5) and
g(r,t) similar to g(r) defined in the proof of Theorem 2.4.5 except g(r,t) equals £
near r = 1. Denote the extended family of forms also by a; and by & the family of
contact structures given by & = ker(ay), t € (0,1]. By Gray’s theorem there exists
a family of diffecomorphisms f; : M — M such that (f;).{ = &. Let vy be the Reeb
vector field associated to oy, that is the unique vector field such that oy (v;) = 1 and
doy (v, -) = 0.

As announced, we would like that the family {f;}; fixes the pages setwise. Fol-
lowing the proof of Gray’s theorem, f; is given as the flow of a vector field X, € &,

for which we have the following equality of 1-forms

%(Ut)at _

dt

dOétyf
dt

Lx,doy p = (3.2.1)

20



We already know that such a X; exists but would need it to be tangent to the page.
First notice that dd% = —t%K df and choose some vector v € T> N &. Applying

both sides of 3.2.1 to v we get

dev (X, v) = dz;’f (v)ar,s(v) = =L (v) (3.2.2)

As v € & = ker(ay) and v has no f-component, the equality is equivalent to

doy(Xe,v) =0 (3.2.3)

As day is an area form on &, the above equality implies that X; and v are linearly
dependent and therefore X; € TX N & (X; = 0 will be 0 at singular points).

We are now looking at the singularities of X;. On Y4 there are no negative elliptic
singularities away from the binding as the contact planes and the planes tangent
to the page almost coincide, as oriented plane fields (a negative elliptic singularity
e would require &, and T.% to coincide but have different orientations). Thus, for
each 6, all points on Xy, except for singularities of X; and stable submanifolds of
hyperbolic points, flow in finite time into an arbitrarily small neighborhood of the
binding. Define Sy as the set of points on ¥y that are either singularities of X; or
on stable submanifolds of hyperbolic points. Let S = USy as # varies from 0 to 2.

First, note that we can arrange the monodromy map ¢ to fix the singularities
on the cutting page, by thinking of ¢ as of a composition of Dehn twists away
from these points. For isolated values of 6, X; might exhibit connections between

hyperbolic singularities. With these said, S has a CW structure with
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K

Figure 3.3: Wrinkling K in order to avoid intersections with S

1-skeleton: union of singular points and connections between hyperbolic singu-
larities

2-skeleton: union of stable submanifolds of hyperbolic singularities

If no bad arc of K intersects S then all these arcs will be eventually pushed
in a neighborhood of the binding. Before changing the contact structures through
the above described diffeomorphisms we can arrange that the arcs of the link K
where K is not braided avoid S by wrinkling as necessary (as in Figure 3.3). This
wrinkling, which we explicitly describe below, may increase the number of arcs
where the link is not braided but this is fine, as these new arcs avoid S.

By general position, we may assume K N (1 — skeleton of S) = () and K
(2 — skeleton of S) is a finite number of points. A small neighborhood in D of
a point p € Sy N K is foliated by intervals (—e¢,¢€), in the same way as a small
disk in the zy-plane centered at (0,1,0) in (R3,£,y4). It follows from Theorem 2.1.7
that p a has a neighborhood in M which is contactomorphic to a neighborhood of
q=(0,1,0) in (R3 £4q). Consider the standard (z,y, z) coordinate system in such
a neighborhood. The contact plane £, is given by x + z = 0. To make things more

clear visually we make a change of coordinates (we also call the new coordinates

22



(x,y, z)) that takes this plane to the plane z = 0. As at p the contact plane and the
plane tangent to the page almost coincide, we may assume that the tangent plane
to the page at ¢ is given by z = ex and that the link K is given by 2 = 5, y =1
in a d-neighborhood of ¢, § > 0. The wrinkling takes K to K’ with the following
properties:
i) K’ is given by z = %, y=1ina g-neighborhood of q
ii) K" is given by z = ¢, y = 1 outside of a 2g‘s—neighborhood of ¢
iii) % > 0 along K’ in a d-neighborhood of q.

While condition i) takes care of the K avoiding S along its bad zone, condition
iii) takes care of the link remaining transverse throughout the wrinkling.

After making the necessary wrinklings, f.(K) has all bad regions in a neighbor-
hood of the binding so there is a transverse isotopy K, 0 < s < 1 taking f.(K) to a

braid K! (as described in Theorem 3.1.2). Then f7*(Kj), 0 < s < 11is the transverse

isotopy we were looking for as it takes K to the braided knot f!(K’). O]
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Chapter 4

The generalized Markov theorem

4.1 Geometric Markov theorem in an open book

decomposition

Let M be a 3-dimensional, closed, oriented manifold and (L, ) an open book de-
composition for M. Consider K C M a knot braided about L, k¥ C K an arc that
lies in a neighborhood N(L) of the binding, and D C N(L) a disk normal to the

binding, with D oriented according to the right hand rule.

Definition 4.1.1. With the above notations, a positive (negative) geometric Markov
mowve is given by connecting dD and k through a half twisted band whose orienta-

tion coincides with (is opposite to) that of the page at their tangency point.

Theorem 4.1.2. (Orevkov, Shevchishin [18]) In (R3 {y4) two braids represent
transversely isotopic links if and only if one can pass from one braid to the other by
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braid 1sotopies, positive Markov moves and their inverses.

Our purpose is to prove a result similar to Theorem 4.1.2 in an open book

decomposition.

Theorem 4.1.3. (topological case) Let M be a 3-dimensional, closed, oriented man-
ifold and (L,7) an open book decomposition for M. Let Ky and Ky be braid rep-
resentatives of the same topological link. Then Ky and K, are isotopic if and only
if they differ by braid isotopies and positive and negative Markov moves and their

muerses.

This topological version has been previously proven by Skora [20] and Sundheim
[21]. Our proof for this case immediately follows from the proof of the transverse
case, as one does not need to worry about transversality throughout the isotopy
and if transversality is not required both positive and negative Markov moves are

allowed.

Theorem 4.1.4. (transverse case) Let M be a 3-dimensional, closed, oriented man-
ifold and (L, ) an open book decomposition for M together with a supported contact
structure £. Let Ky and Ky be transverse braid representatives of the same topo-
logical link. Then Ky and Ki are transversely isotopic if and only if they differ by

braid isotopies and positive Markov moves and their inverses.

Proof. First we should note that an isotopy through braids is done away from

the binding. As the contact planes almost coincide to the planes tangent to the
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pages this isotopy is also transverse with respect to the contact structure. Let K
and K7 be transverse braid representatives of the same topological knot K and
{Li}icpoa) a transverse isotopy from Ky to K;. We parametrize the isotopy by
L :US' x [0,1] — M, such that £; defined by s — L(s,t) is a parametrization of
K, where s is the positively oriented coordinate on each S!.

Let 6 be the positive coordinate normal to the page. A bad zone of L is a connected
component of the set of points in LS x [0, 1] for which % < 0. Denote by B the
union of all bad zones of L.

We would like to take all the bad zones of £ in a neighborhood of the binding. This

A
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Figure 4.1: Wrinkling in order to avoid intersections between B and S

way the proof is reduced to the standard case proved by Orevkov and Shevchishin
in [18]. For this, we need a family of diffeomorphisms of M that keep each page of
the open book setwise fixed and take the bad zones of £ in a neighborhood of the
binding. We have already constructed the needed family of diffecomorphisms {f;};
in the proof of Theorem 3.2.1. The f;’s are described by the flow of a family of
vector fields {X;};. For each 6, all points on ¥y, except for the set Sy composed
of singularities of X; and stable submanifolds of hyperbolic points, flow in finite
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time into an arbitrarily small neighborhood of the binding. The isotopy £ has to
be arranged in such a way that BN S = (), where S is the union of all Sy’s as 6
varies from 0 to 2w. We are going to arrange that by wrinkling as necessary. We
describe the process below.

On B we have % < 0. We make the arc [ C BN.S a good arc if we arrange % >0
along [. To do that, for a fixed t and = € [ look at the graph of 6 as a function of
s. Introduce a small wrinkle around z, as in Figure 4.1. For each point x € [, this
wrinkle is the same described in Theorem 3.2.1 and thus it can be arranged to be
transverse. In [18] it was shown that this wrinkle can be done continuously for all

values of t along I. m

4.2 The standard braid group and Markov moves

Let S be an orientable surface and let P = {p1,...,p,} C S be a set of n distinct
points. A braid on S based at P is a collection of paths (ay,...,ay), o; : [0,1] — S
such that:
i) a;(0) =p;,i=1.n
i) a;(1) e P,i=1.n
i11) aq(t), ..., an(t) are distinct for all ¢ € [0, 1].

The concatenation of paths defines a group structure on the set of all braids on
S based at P up to homotopy. This group, which does not depend on the choice of

P, is denoted by B,(S), and it is called the braid group on n strings in S.
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This group was first introduced by Artin in [4], for S = R?. The braid group of the

plane has the following presentation:

<O'1, ...,0'”_1|0'7;0'j = O'jO'Z‘, |Z —j| > 170i0i+10i = O-i—l-lo-io-i—l—hi S n — 2>

where, if we project the strands on a generic vertical plane, o; interchanges the ith

PSfrag replacemepfii] the i 4 1st strands aRdlasesplisiheritrands unchanged.
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Figure 4.2: (a) Braids representing o; and o; ' (b) Positive Markov move

Definition 4.2.1. With the above notations, a positive (negative) Markov move
in R3 is given by the map m : B,, — B,1, b —b-0, (b — b-0,1). Geometrically,

a Markov move is equivalent to a adding and extra strand linking the z-axis once.

4.3 Braids in an open book decomposition

A description of the braid group of an orientable surface is given by Bellingeri in
[5]. The braid group B, (F'), where F'is an orientable p-punctured surface of genus
g > 1 with p > 1 punctures, admits the following presentation:

Bn(F) = {0'1, vy Op—1,0Q1, ..., Qg, b17 ceny bg, L1y eeny ZI,_1|.R()7 ceny R7},
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where the relations Ry, ..., R; are as follows:

(Ro) : o040, =0j0 for|li—j| >1
0i0i110;0;410;0;41,fori <n — 2
(Ry) : a0;=0ia,,1<r<gi#1
b.oi =0b.,1 <r<g,i#1
(Ry) : oy'ayoita, =a00ta001<r<g
UfleUflbr = braflbrafl, 1<r<g
(R3) : oy'asoia, = a0y a01,8 <7
crl_lbsalbr = bral_lbsal, s<r
aflasalbr = braflasal, s<r
Jflbsalar = araflbsal, s<r
(Ry) : oy'a,o;'b, =bo;ta0,1 <r<g
(Rs) : zjoy=0iz5,1#1,j=1,...,p—1
(Rg) : oy'zoa, =a00'z0,1<r<gyi=1,.,p—1,n>1
crl_lzialbr = bral_lzial,l <r<gi=1,...p—1,n>1
(Ry) = oy'zjozm =200 200,5=1,..,p—1,j <l

1

S e S B RPN _
(Rs) : o0 201 2z; =2zjoy zjoy ,j=1..,p—1

To get a feel of how these generators look and interact, think of the braiding as

being done in a small enough neighborhood of one boundary component (here the
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monodromy map is the identity) and of the generators z;, a; and b; as being elements
in 7 (page) (see Figure 4.3). These generators should not be though of as lying on
a specific page but intersecting the pages transversely between different values of
6. A generator given by the topology of the page can be parametrized by c :
[0,1] — 3 x [04,0s], c(t) = (7(t),d(t)), where v : [0,1] — ¥ and § : [0, 1] — [64, 62]
is strictly increasing. While the stabilizations given by the Markov moves will
always be assumed to be performed on the nth strand of a n-strand braid, the
loops representing the generators given by the topology of the page will always be

assumed to come out of the first strand of a braid.
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Figure 4.3: Generators of the braid group of a surface.

In an open book decomposition the Markov moves are defined in the neighbor-
hood of each binding component in the same way as in the standard model. The

action corresponding to the conjugation in the standard model should take into
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account the monodromy map. We are going to fix the monodromy page, call it ¥,
and we are going to read all the braid words starting at this page and moving in
the increasing 6 direction.

First, there is an action given by b — o - b-o~!, where o is a word in the braid
generators o;’s. This is not influenced by the monodromy map, as ¢ is identity near
the 0. We are going to refer to this as to a b-conjugation.

Second, there is an action given by b — c¢-b- ¢~ (c™!), where c is any of the a;,
bi, z; or their inverses. We are going to refer to this as to a t-conjugation. Note that
by applying the monodromy map to the loop representing ¢~'(c™!) when passing

through ¥, we get a loop representing ¢~ .

4.4 Algebraic interpretation of the Markov theo-

rem in an open book decomposition

In this section we make the connection between the braid isotopies mentioned in

section 4.1 and the elements of the braid group introduced in the previous section.

Theorem 4.4.1. Let M be a 3-dimensional, closed, oriented manifold and (L, )
an open book decomposition for M. Let By and By be closures of two elements of the
braid group. Then By and By are isotopic as braids in M if and only if they differ

by b- and t-conjugations in the braid group. They represent the same topological
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knot type if and only if they differ by b- and t-conjugations and stabilizations in the

braid group.

Proof. Away from the binding the contact planes and the planes tangent to the
surface almost coincide, thus a braid isotopy is equivalent to a transverse isotopy.
We are going to have a look at the two different types of actions.

For a b-conjugation: If we see the braid generators in a small enough neighborhood
of the binding, such a conjugation will preserve the braid isotopy class. The arcs
involved in the conjugation may be assumed close enough to the circle r =€, 2 = 0,
which is in braid form for ¢ > 0. When projected on the cylinder of radius R,
where R is large enough that all points p on the strands involved in the conjugation
are such that r(p) < R, the braid conjugation represents a sequence of type II
Reidemeister moves.

For a t-conjugation: In this case, the conjugation is a sequence of conjugations
with the a, b and z generators or their inverses. Let (p,6;) € ¥y, be the starting
point of a loop [, representing the element ¢ and (p,6y) € X5 be its ending point.
Let (p,62) € Yg, be the starting point of a loop ly-1(—1) representing ¢~ '(c™!)
and (p,0s) € Xy, be its ending point. We want to isotop [ - ls-1(.-1) to the curve
{p} x [01,05]. The cutting page X interposes itself between I, and ly-1(-1). As we
move [4-1(.-1) through ¥y and apply the monodromy map ¢ to it we get a new curve

l/

!_1 representing ¢~!. We want to isotop I - I, to the curve {p} x [6;,03]. This is
!

.1 is disjoint form Y, and can be isotoped in

certainly possible, as the the arc [, - [

32



¥ X [64,05] around the topology of the page to {p} x [#1,03]. This isotopy can be
realized so that the 6 coordinate is left unchanged and thus it is an isotopy through
braids.

We now look at the converse. We assume that two braids are isotopic in the
complement of the binding and want to see that they are related by b- and t-
conjugations. Fix again the cutting page ¥y and consider a braid § which may be
assumed to intersect Y in a small neighborhood of L;. We want to arrange that
the isotopy fixes the endpoints of § on the cutting page. If this is the case, the
isotopy can be seen in X x [0, 1] and the and the problem is reduced to the product
case discussed in Section 4.3 and thus are represented by the same word in the braid
group.

If the endpoints of § on the cutting page are not fixed, we can modify the
isotopy in such a way that they remain fixed. Given an isotopy (; from Gy =
to [ we construct a new isotopy (; where 3, = [y and ] is [ after some b-
and t-conjugations and such that the intersection of 3] with ¥, is fixed. Say that
the endpoint of one of the strands of 3, describes a curve v C ¥, troughout the
isotopy. First, modify the isotopy such that right at the endpoint of ~, the strand
strand looks like {p} x [0,¢]. Then, slide {p} x {5} along ¥ x {§} back in a small
neighborhood of L; such that {p} x [0, ¢ is replaced by 7, -7;* € ¥ x [0, ¢]. Now, by
shifting the whole isotopy by € in the negative ¢ direction we find that the endpoint

of the given strand on ¥, is left unchanged by the new isotopy. The isotopy ; is

33



PSfrag rep acome

left unchanged on the other strands. We repeat the process for all other strands.
Notice that we can do this without having the corresponding ~ strands interfere
one with the other, by nesting them with respect to the 6 direction.

In the geometric version of the theorem we talked about stabilizations, without
regard for the involved binding components. In building the algebra behind it we
assumed that the braid elements o; lie in a neighborhood of some chosen component
of the binding, L;. The Markov moves are therefore obvious when performed with

ectn‘%g this binding Cﬁ%gger%%lgm)(}letm not, 50 if they are done with respect to a
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Figure 4.4: Stabilization about a second binding component
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Let [, be the nth strand of the braid, the outermost one when viewed with
respect to the L; binding component. Consider the cutting page 3¢ given by 71 (6y)
and a curve a : [0,1] — X x [0y — €,6p], a(t) = (y(¢),d(t)), where v : [0,1] —
Y and 60 : [0,1] — [0y — €, 0] is strictly increasing, such that (1) belongs in a
small neighborhood of a different binding component, L,. We may assume that
I, N3 X [0y — €,00 + €] is of the form {p} x [y — €,00 + €]. We isotop [, such that
{p} x [0 —€,00 + €] follows v-~v~1in ¥ x [0y — €, 0y + €] and perform a Markov move
with respect to Lo that can be either positive or negative (see Figure 4.4(a,b)).
Figure 4.4(b) pictures the braid just after a negative Markov move. We look at this
case, as the positive one is similar. We want that the monodromy map ¢ fixes the
points of intersection of the braid with the cutting page. For this, following the
earlier procedure, we isotop the intersection of the resulting arc with ¥, back along
7 to a neighborhood of L; (as in Figure 4.4(c)). After an additional isotopy outside
of a neighborhood of the binding and after passing v through the cutting page
(as in Figure 4.4(d,e)), we find that, in the braid group, a negative stabilization
with respect to Ly is given by b — b- 0, ! - w where w is a word representing the
loop v - ¢(y~!). Similarly, a positive stabilization with respect to Lo is given by

b— b0, w where w is a word representing the loop 7 - ¢(7y71). O]
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Chapter 5

On the transversal simplicity of

the unknot

In [10], Birman and Wrinkle proved that exchange reducibility implies transver-
sal simplicity. As a consequence, Birman and Menasco’s paper [8] shows that the
m~component unlink is transversely simple. While exchange reducibility does not
seem to work in more general settings, the unknot remains transversely simple in
a tight contact structure. Eliashberg proved this fact in [11]. Later, Etnyre proved
in [14] that positive torus knots are transversely simple. In this chapter we reprove

Eliashberg’s original theorem using braid theoretical techniques.
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5.1 Braid foliations

Definition 5.1.1. Let (M, &) be a 3-dimensional contact manifold. A topological
class of knots 7 is called transversely simple if any two transverse representatives

of 7 having the same self-linking number are transversely isotopic.

Further, we are looking at how an embedded surface in M may sit with respect
to an open book decomposition (X, ¢) for M. This ideas were first introduced and
studied by Birman and Menasco. Let U C M be an embedded unknot together with
an embedded disk D such that 9D = U. By Theorem 3.2.1, U may be assumed to
be braided about the binding of (X, ¢). The intersection of D with the pages of the
open book induce a foliation on D, the braid foliation.

We may assume that D is in general position in the following sense:

i) D intersects the binding L transversely, finitely many times in such a way that

up to orientation the binding and the normal direction to the disk coincide

ii) In a neighborhood of such an intersection point D is radially foliated (as in

Figure 5.5(a))

iii) All but finitely many pages ¥y meet D transversely and those which do not
are tangent to Xy at points which are either saddle points or local extremes

with respect to the parameter 6.

iv) The tangency points described in iii) are all on different pages
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v) U has a neighborhood N(U) in M such that N(U) N D is foliated by arcs
transverse to U. Also, the oriented foliation lines go from inside D transversely

towards U in this neighborhood.

We would like to isotop D such that there are no singularities given by local extremes

with respect to the parameter 6. This requires few more definitions and results.

Definition 5.1.2. Let F be an oriented singular foliation on ¥. Let I' C ¥ be a

properly embedded 1-manifold. We say that I' divides F if
1) I'mMF
2) C\T=X,UX_ ¥, #0
3) 3 a vector field W on ¥ and a volume form w on ¥ such that
i) w directs F

ii) W is expanding w on ¥, and contracting w on ¥_

iii) W points out of ¥, (and into ).

Definition 5.1.3. A vector field ¥ on a contact manifold (M, ¢) is called a contact

vector field v if its flow preserves &.

Definition 5.1.4. A surface ¥ C (M, §) is said to be conver if there exists a contact

vector field @ transverse to Y.

Theorem 5.1.5. For a convex surface ¥ as above there exists a dividing set I' given
by the points on ¥ where v € €.
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Lemma 5.1.6. (Legendrian Realization Principle) Let v be an embedded 1-manifold
on a convex surface X3 such that each component of X3\ 7y intersects a dividing set

I'. Then ¥ can be isotoped through convex surfaces such that v is Legendrian.

Lemma 5.1.7. Let (X, ¢) be an open book decomposition for M and & a supported
tight contact structure. Let S C M be an embedded surface. Then S can be isotoped
in such a way that its braid foliation has no tangency points given by local extremes

with respect to the parameter 6.

Proof. Assume there exists a tangency point p of S with a page, given by a local
extreme with respect to . We are going to show that S can be isotoped in such a
way that the singularity at p is eliminated. Near p the surface S intersects the pages
in concentric circles ¢y with ¢y = 0Dy, Dy C ¥y a family of disks. Moving through
the fibration away from the tangency point we must arrive at a circle vy C X
containing a singular point py. There are three cases we need to consider.

Case 1: The curve vy bounds a disk in 3y (as in Figure 5.1(a)). In this case,

using the 3-ball

B:HDG

0

composed by disks in between p and 7y, we can isotop the part of the surface on
the side of 7 containing p so that both p and pg are eliminated.

Case 2: The curve vy is not trivial in homology (as in Figure 5.1(b)). In this case
7o is non separating so it satisfies the hypothesis of Lemma 5.1.6 and if the page
would have been a closed surface vy could have been Legendrian realized. If so, the
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Figure 5.1: (a) Homotopically trivial v (b) Homologically trivial v not bounding a disk

(c) Homologically essential ~y

disk bounded by the Legendrain curve 74 on S would be an overtwisted disk, contra-
dicting the hypothesis. We can still apply Lemma 5.1.6, by taking ¥’ = ¥y U4, 2 1
and looking at 79 C ¥/. The surface ¥’ is closed, with dividing curve I" = L.

Case 3: The curve 7y is trivial in homology but does not bound a disk in ¥y (as in
Figure 5.1(c)). Consider ¥’ as defined above. The curve 79 C ¥/ may not satisfy
the hypothesis of Lemma 5.1.6, as there might be a component of ¥\ vy which
does not intersect the dividing set, I'. If so, then consider a non-separating curve §
in this component. The curve § can be Legendrian realized. This can be done by
looking at an annulus neighborhood of . This annulus has a neighborhood contac-
tomorphic to a neighborhood N of the annulus in the zy-plane in (R?, £44)/pmnt1-
The neighborhood N can be replaced with a new neighborhood which introduces
two new singularity lines and two new components to the dividing set. The new
surface has a dividing set IV = T'U {41, d2}, where 0; and d, are curves parallel to ¢,
in a small neighborhood of § (as in Figure 5.1(c)). With respect to I, v, satisfies
the hypothesis of Lemma 5.1.6 and therefore can be Legendrian realized. This trick

was used by Honda in [16] and is called super Legendrian realization. As in Case 2
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this gives rise to an overtwisted disk. Il

In Chapter 2 we have introduced the notion of a characteristic foliation for an
embedded surface S C M. This foliation and the braid foliation described above
have the same distribution of singularities along S. In a neighborhood of the binding
L the contact structure looks like the standard one, dz + r?df and by perturbing
S we can make the normal to S and the binding align at the intersection points,
having a small disk around the intersection point radially foliated, as in Figure
5.5(a). Away from the binding the contact planes almost coincide with the planes
tangent to the pages and thus, modulo a small perturbation the two foliations also
coincide here. The two foliations are topologically conjugate by a homeomorphism
closed to the identity. This means that from the perspective of the pictures they
are the same.

Consider D a spanning disk for an unknot in M. It follows from the general
position requirements and Lemma 5.1.7 that D can be isotoped in such a way that
the singularities of its braid foliation are either elliptic, given by the intersections
with the binding (as in Figure 5.2(a,b)), or hyperbolic, given by saddle points of D
(as in Figure 5.2(c,d)). Further, condition iv) satisfied by a disk in general position,
implies that there are no foliation lines connecting two hyperbolic singularities in
the braid foliation of D. A generic braid foliation for D looks like the one in Figure
5.3. In this picture, the elliptic singularities are denoted by filled dots while the

hyperbolic singularities are denoted by empty dots.
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Figure 5.3: Induced braid foliation on D.
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A sign can be assigned to each elliptic or hyperbolic singularity in the following
way. An elliptic singularity is positive (negative) if the binding intersects the disk
D in the direction consistent with (opposite to) N, the normal direction to D (as
in Figure 5.2(a,b)). Define e, (e_) to be the number of positive (negative) elliptic
singularities.

A hyperbolic singularity is positive (negative) if the normal N to D at the
intersection point, is consistent with (opposite to) the normal direction to the page
at that point, N’ (as in Figure 5.2(c,d)). Define hy (h_) to be the number of

positive (negative) hyperbolic singularities.

Definition 5.1.8. Let e be an elliptic singularity in the braid foliation of D, as
above. The wvalence of e, v(e), is defined as the number of hyperbolic singularities

adjacent to e.

In [6], Bennequin found a way of writing the self-linking number in terms of the

singularities in a foliation.

Lemma 5.1.9. Let U be an unknot spanning the embedded disk D and consider the

braid foliation of D as described above. Then sl(U) = (e— —h_) — (e; — hy).

Definition 5.1.10. Associate to a foliation F of D the number

c(F)=er+e_+hy+h_,

that is the number of its singularities, and call ¢(F) the complexity of F.
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5.2 Transverse stabilizations and braid destabi-

lizations

Lemma 5.2.1. Let e be a negative elliptic singularity in the braid foliation of the
disk D, 0D = U, and let h be an adjacent negative hyperbolic singularity that is
also adjacent to U. Then U can be transversely isotoped (as in Figure 5.4(a)) so

that both e and h are eliminated.

Proof. The foliation we see on the disk V' is the braid foliation. By slightly per-
turbing it we get the characteristic foliation on V. This foliation determines how
the contact structure looks like in a neighborhood of V' in M. Using Theorem 2.1.7,
we look for a disk V) embedded in (R?, £,4), with the same characteristic foliation.

Consider the disc Vy C (R?, £yq) traced by the isotopy
(s,t) — (t — 3s%, st — s%,18s), t € [-1,1], s € [-1.1,1.1]

The disk V; has the same characteristic foliation as V' and for each fixed value of ¢,
the curve s — (t—3s?, st —s,18s), s € [—1.1, 1.1] remains transverse to the contact
planes, as the form dz — ydz evaluates to 18 + 6s2(¢t — s?) > 0 on the tangent vector

(—6s,t — 3s%,18). O

Lemma 5.2.2. Let e be an elliptic singularity in the braid foliation of the disk D,
0D = U, such that v(e) =1 and let h be its only adjacent hyperbolic singularity. If

h and e are of the same sign then U can be transversely isotoped so that both e and
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h are eliminated. We are going to refer to this isotopy as to a braid destabilization.

Proof. As the foliation is oriented in such a way that the flowlines go towards U
from inside D, e can only be a positive singularity. Up to choice of orientation
on the disk D the situation is identical to that of the previous lemma, except the

t-parameter should be chosen with the opposite orientation.
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Figure 5.4: Part of D before and after the elimination of a negative hyperbolic singularity

adjacent to U.

Definition 5.2.3. A knot K is said to be obtained through a transverse stabilization
of a transverse knot K’ if K =JU S and K/ = §U ' and SU S bounds a disk with
one positive elliptic and one negative hyperbolic singularity (as in Figure 5.5(b)).
Here the term transverse refers to the position with respect to the characteristic

foliation.
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Note that through a transverse stabilization the self-linking number is decreased
by 2. The following is a well known lemma, but it’s only sketched in the present

literature. We give a more detailed proof.

Lemma 5.2.4. If K; and K5 are obtained through a transverse stabilization from
two transversely isotopic knots Ki and K, then Ky and Ky are themselves trans-

versely isotopic.

Proof. Since K| and K, are transversely isotopic we may assume Kj = K} = K'.
Let Dy and D, be the disks given by the two stabilizations (as the shaded disk in
Figure 5.5(c)). Let ey, hy and eg, hy be the pairs of singularities on D; and D, and
a1, ag the two Legendrian arcs formed by the stable manifolds of h; and hy. We
may transversely isotop K’ so that K; \ K’ lies arbitrarily close to o; and similarly
for Ky and ay. We can see this in Figure 5.5(c). The pictured part of the knot
can be brought towards the a-arc, as indicated by arrows, remaining transverse to
the characterstic foliation. The claim in the lemma follows from the following three

additional lemmas. O]
Lemma 5.2.5. There exists a contact isotopy preserving K' taking the endpoint of
aq in Dy to the endpoint of ag in Ds.

Lemma 5.2.6. There exists a contact isotopy preserving K' taking oy to .

Proof. Consider p; the common starting point of a; and as together with a neigh-
borhood N (p;) contactomorphic to a neighborhood of the origin in (R3, &y4), N(0).
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eplacements

L4

(a) (b) (c)

Figure 5.5: (a) Disk foliation of complexity 1 (b) Valence 1 elements in Eys (c) Stabiliza-
tion disk

Consider &4 given by the 1-form dz + r2df. We identify a; N N (p1) with the arc
NO)N (@ =61)N(z=0)and ay N N(py) with the arc N(0) N (0 = 6,) N (z = 0),
for 61 # 05. There is an isotopy given by ¥y (r, 0, z) = (r, (1 —t)0; +tbs, 2),t € [0, 1],
that takes N(0)N (0 =6,)N(z=0) to N(0)N (6 = 5) N (z =0). Pulling this back
through the contactomorphism gives an isotopy between a; NN (p1) and aa NN (py).
A compactness argument completes the proof.

O

Lemma 5.2.7. Any two stabilizations of K' along a fized Legendrian arc are

transversally isotopic.

Proof. Consider D, and D, the two stabilization disks that coincide along the Leg-
endrian arc a. By a small deformation we can assume they coincide in a small
neighborhood of the a arc. As described above, the knot of can be transversely

isotoped to such a neighborhood. O]
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5.3 In a tight contact structure the unknot is

transversely simple

Theorem 5.3.1. Let (M,§) be a 3-dimensional contact manifold supported by the
open book decomposition (L,m). If (M,&) is tight then the unknot is transversely

simple.

Proof. Considering an arbitrary representative of the unknot, U C M, and D C M
an embedded disk with 0D = U. Using Lemma 5.2.1, the braid foliation on D may
be assumed to have no couples consisting of a negative hyperbolic singularity and
a negative elliptic singularity adjacent to U.

First, we show that any transverse representative of the unknot of maximal self-
linking number can be transversally isotoped to the trivial braid, that is a braid
bounding a disk foliated as in Figure 5.5(a). This proves the theorem in the maximal
self-linking number case. Second, we prove the theorem for arbitrary self-linking
number.

Assume now that U is a transverse representative of the unknot of maximal
self-linking number. The goal is to show that the foliation can be changed into one
of minimal complexity, i.e. such that ¢(F) = 1. We are going to see that due to
the maximality of sl(U), the foliation on D has no negative hyperbolic singularity
with both unstable manifolds going towards U. Having already eliminated the

negative hyperbolic singularities adjacent to U (as in Lemma 5.2.1), all singular
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points adjacent to U have positive sign.

Denote by Ey the set of elliptic singularities adjacent to U. The elements of
Ey are connected in between them through stable manifolds of positive elliptic
singularities. For e € Fy define vy (e) to be the number of such connections. If for
all e € Ey, vy(e) > 2, then the graph with vertices the elements of Ey and edges
the above connections exhibits a cycle. This cycle is the boundary of an overtwisted
disk. As ¢ is tight, there must exist an element e’ € Ey with vy (e¢') € {0,1}.

If Ey contains €’ with vy (e’) = 0, then the disk D is foliated as in Figure 5.5(a)
(as it has only one connected component) and therefore ¢(F) = 1.

If Ey contains € with v, (e/) = 1, then a neighborhood of ¢’ is foliated like in
Figure 5.5(b). In this case the complexity of the foliation can be reduced by 2

through a braid destabilization as in Lemma 5.2.2.

a b a
R
b

Ly

Ly

-

Figure 5.6: Isotopy between trivial unknots linking different binding components.
If the foliation on D has negative hyperbolic singularities with both unstable
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manifolds going towards U, we look at an inner most such singularity. Following
Lemma 5.2.1, its unstable manifolds together with part of U will bound a disk fo-
liated in a such a way that all singularities adjacent to the boundary are positive.
The same argument as above implies that U must have been obtained from some
unknot U’ through a transverse destabilization as in Definition 5.2.3, contradicting
the maximality of the self-linking number.

If two transversal representatives of the unknot both have maximal self-linking
number, they are transversely isotopic, as by the above process can be both braid
destabilized by transverse isotopies to a trivial representative, with induced braid
foliation as the on in Figure 5.5(a). If the two trivial unknots are linking the same
binding component then one can isotop one to the other by first shrinking both
in a small enough neighborhood of the respective component, that looks like the a
neighborhood of the z-axis in (R3, £,4)/.~.41. But what if through the destabiliza-
tion process the two unknots end up linking two different binding components, L,
and Lo? In this case one of the unknots can be first dragged towards the opposite
binding component, linked through a braid stabilization (the reversed process de-
scribed by Lemma 5.2.2) with this and then freed from linking the initial binding
component through a braid destabilization. This isotopy is described in Figure 5.6.
To guarantee that the unknot remains transverse throughout the process the part
of the unknot used to link L, is dragged towards Lo so that it remains in a small

neighborhood of an arc between U N Y, and Ls in a chosen page >y. Using the

50



PSfrag replacements

Figure 5.7: Arc isotopy from one binding component to another.

(x,y, z) coordinates for this neighborhood (where (x,y) are coordinates on the page

and z is the coordinate normal to the page) the actual isotopy can be described by:
fil@,y,z) = (x,t(1 — (£)?), 2), for t € [0,1] (see Figure 5.7)

Assume now that U is a transverse unknot which does not have maximal self
linking. In the braid foliation of D there must exist negative hyperbolic singulari-
ties having both unstable manifolds going towards U. Otherwise, as above, after a
transverse isotopy, D can be assumed to be foliated as in Figure 5.5(a), thus con-
tradicting the non-maximality of the self-linking number. Using the same argument
as in the maximal self-linking case, the part of the disk bounded by the unstable

manifolds of an innermost one such singularity together with part of U (ay and ¢
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in Figure 5.5(c)) may be assumed to contain a single singularity, a positive elliptic
singularity.

Therefore, in this case, U can be obtained from Uy, a transversal representative of
the unknot with sl(Uy) = sl(U)+2, through a transverse stabilization, as described

in Definition 5.2.3. An inductive argument completes the proof. Il
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Chapter 6

Surface changes

In the beginning of Chapter 5 we described a generic braid foliation induced on a disk
D bounding the unknot U. We also described ways of changing this foliation through
certain stabilizations and destabilizations. In this chapter we are concerned with a
different type of changes in a foliation, involving adjacent hyperbolic singularities
of the same sign. Originally studied by Birman and Menasco in [8] for (R?,£.q) |
this change in foliation is a key ingredient in proving that the unknot is exchange

reducible in (R3, £q).

6.1 Few preliminaries

Consider an open book decomposition (X, ¢) for the 3-manifold M, a null-homologous
knot K C M, and a surface S such that S = K. We are going to look at the

braid foliation on .S, induced by the intersection with the pages. Following a general
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Figure 6.1: Possible tiles in the decompositions of S.

position argument as the one on Chapter 5 and Lemma 5.1.7, there is a natural
way of decomposing S into tiles, according to the singularities of this foliation. This
decomposition was studied by Birman and Menasco in the standard case. The tiles
we are considering are either neighborhoods of a hyperbolic singularity (as in Figure
6.1(a — ¢)) or foliated disks as in Figure 6.1(d, e).

To each tile of type (a), (b) or (c) we will associate a sign, the same as the one

of its singularity.

6.2 Changing order of adjacent saddle points

Theorem 6.2.1. With the above notations, assume a decomposition for S contains
tiles T1 and Ty of the same sign which are adjacent at an arc going between two
elliptic points. Let hy and hy be the two hyperbolic singularities contained in Ty and
Ty and 0y, 0, € S* such that hy € SNy, and hy € SNXg, Then there is an isotopy

F taking S to a surface S" such that:

i) F(Ty) and F(T3) are adjacent regions of the same sign in the decomposition
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of S’

ii) The decomposition of S outside of a small neighborhood of Th U Ty coincides

with that of S" outside of a small neighborhood of F(Ty) U F(T3)

’I,ZZ) F(hl) esSn 292 and F(hQ) esn Zgl

Proof. Roughly, this theorem says that given two adjacent hyperbolic singularities,
of the same sign (as in Figure 6.2(a)) their order with respect to the 6 coordinate can
be changed (as in Figure 6.2(b)). In Figure 6.2 the pages are viewed as horizontal
planes. We are going to show that the two singularities can be moved past one
another by showing the existence of a family of disks that can be used to isotop the

PSfrag replacements PSfrag replacements
surface. The proof of the existence of such disks relies on observing that in a small

neighboﬂlood of the two tiles, T} and 15, tﬁe picture can always be standardized,
indepengent of the open book decomposition.

Consider the two hyperbolic points h; and h, as in the hypothesis and without

(a) (b)

Figure 6.2: Neighborhood of adjacent saddle points of the same sign before and after the

isotopy.
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loss of generality assume they are both positive. As we proceed in the fibration
past h; and hs the traces described by S on consecutive pages in a small enough
neighborhood of the two singularities are according to the sequence in Figure 6.3.
In this pictures, the signs are labeling the surface S according to its positive or
negative side. Thus, independent of the open book decomposition for M, a small
disk D C TyUT; with hy, ho € D has an embedding as in Figure 6.2(a). The sequence
in Figure 6.3 represents local pictures in each >y around the two singularities. The
arcs depicted for some value of # are subsets of S N Xy. The set of curves S N Xy
may have a complicated behavior outside of this neighborhood, depending on the
open book, but the local pictures are the same.

Following the proof for the (R3, £y4) case in [7] we are looking for a family of curves
{aw}ocio, 0.+ as shown in Figure 6.2(a) with interior disjoint from S and K. The
union of the ay’s is a disk V' which we are going to use to isotop S.

Call 8 and [3; the arcs in the foliation obtained as a consequence of passing through
hi, with 3 being the arc between the two elliptic singularities common to 77 and 75,
as in the hypothesis. Consider ay C ¥y an arc between 3 and ;. Pick agy so that
it’s endpoints lie in the small neighborhood D. As  doesn’t surger between 6, and
0, we can choose «y for all § € [0;,05]. As both hy and hy are positive, the traces
of D on consecutive pages have to be as in Figure 6.3 (S has to ‘meet itself’ on the
negative side for a positive hyperbolic singularity). Note that for 6, > 0 > 0y + €

one endpoint of ag will no longer be in D, but only on ¥4. The important aspect is
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Figure 6.3: Traces of a neighborhood of adjacent saddle points of the same sign on

different Xg’s.

that that the ay’s can be considered beyond 6 = 03 without its interior intersecting

D. This means that the ay arc may be considered for 6 € [0y, 65 + €].

For the family of arcs {as}ocip, 0.+, consider the family of disk neighborhoods
Vyp parametrized by Ly : [0,1] x (—0,0) such that ap = L4([0, 1] x {0}). Consider

the 3-ball given by the union
V =V, where 0 €[00 +€].

Then int(V) (D = (. If V has interior disjoint from S and K, we can use V to
isotop D and change the order of h; and hy. If there are parts of K or S intersecting
V', we can first isotop these forward in the fibration, outside of V' = |V}, where

0 € [01,05 + 5] and then isotop D and change the order of h; and hs. O
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