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ABSTRACT

A THEORY OF GENERALISED POPULATION PROCESSES

Ricky Der

Advisors: Charles Epstein and Joshua Plotkin

A systematic study of population processes subsuming the Wright-Fisher model in

classical population genetics is undertaken. Discrete and continuum methods are devel-

oped for the analysis of these generalised processes, which in many respects can exhibit

strikingly different dynamics than the canonical model. Genetic features which are stable

across the entire class are also identified, and lead to new understandings of the original

model.
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Introduction

The field of population genetics, broadly construed, is concerned with the evolution of

heritable traits. Its birth may be traced to the early 20th-century, in a synthesis between

two apparently unrelated, and potentially incompatible theories.

Charles Darwin, in The Origin of Species, postulated mutation and natural selection

as the agent underlying evolution. Moreover, based on his experience as a naturalist,

Darwin proposed that variation in organismal traits was continuous, with evolutionary

change occurring in incremental, gradual steps. There was a significant objection to this

model, however, originating in the so-called “blending” view of inheritance. If phenotypal

characteristics were continuous, and offspring tended to mix the characteristics of their

parents, then the variance of any trait would rapidly decrease every generation until a

population reached complete homogeneity. No variation could then exist for selection to

act upon.

In his work on genetical inheritance, Gregor Mendel proposed a “quantal” theory in

which inheritance was propagated through discrete units. This theory, rediscovered at

the turn of the 20th-century, seemed to contradict the Darwinian gradualist paradigm.

Many biologists became adherents of the saltationist view of evolution, wherein change
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occurred in large mutational jumps. Mendelism, it was said, had destroyed Darwinism.

Significantly, it would require the first serious intrusion of mathematics into the de-

bate to show that these two notions were reconcilable. The intrusion came in the form

of the Hardy–Weinberg law, which stands as a turning point in the history of population

genetics—not only as the key unifying principle between Mendelism and Darwinism—

but also as an example of the clarifying power of mathematics in a discipline hitherto

untouched by it. In its simplest form, the theorem states that a Mendelian diploid pop-

ulation having three genotypic frequencies achieves, after a single generation of random

mating, stable frequencies which are maintained for all time. Thus, far from contradict-

ing Darwin, Mendel’s system in fact supplies the mechanism for inheritance of phenotypic

variation needed to complete Darwin’s argument.

This foundation rapidly developed, by mid-century, into a mature form of mathemat-

ical population genetics, centering around the work of S. Wright, R. Fisher, and J. B. S.

Haldane, who formulated a quantitative description of evolutionary processes taking into

account both selection and mutational forces, as well as a new, stochastic, effect due to

environmental limitations on resources. This Wright–Fisher model considers a popula-

tion of N reproducing individuals of two genetic types. In each generation, individuals

independently produce a large number of gametes (potential offspring) of their own type;

the next generation is formed by randomly sampling N gametes from this pool of possible

offspring. Total population size remains fixed from generation to generation due to finite

carrying capacity: only relative numbers of differing types change. Natural selection is

incorporated by favoring fitter individuals in the sampling procedure, and mutation by
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randomly altering the types of offspring at specified rates. In contemporary language, the

fluctuations in the numbers of a given type is a Markov chain {Xk, k = 0, 1, . . .} on state

space {0, . . . , N}, whose transition matrix takes the form

Pij =

(
N

j

)
(pi)

j (1− pi)N−j (0.0.1)

where pi = i/N in the non-selective, non-mutation case, and a suitably adapted function

of i/N when selection and mutation are present.

Among the many interesting questions that can be asked about this model, there are

three that stand out: given some initializing state, 1) What is the probability of ultimate

survival of a given type? 2) What is the average time for some type to fixate in the

population? 3) Does Xk have an equilibrium measure, and what is its form?

While relatively simple to describe, this model turns out to be surprisingly difficult

to analyse directly. In principle, of course, the solutions to all these problems are merely

the solutions to a system of N linear equations, but the complicated nature of the matrix

P makes the inversion of this system quite intractable for any but minute population

sizes N . Moreover, very little qualitative insight could be achieved by a direct numerical

inversion.

Instead, in an approach pioneered by M. Kimura [11], and already presaged in the early

work of Fisher and Wright, the Markov chain is approximated by a model with continuous

variables — its diffusion limit. This approximation, which Kimura called “the partial-

differential equation method” becomes increasingly accurate as N → ∞, and involves

replacing numbers of individuals with frequencies of types, and discrete-time generations

by a continuous time scaling. It was only given a truly rigorous mathematical basis a
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decade later by Trotter [22] and Feller [6], among others, who showed that the sequence

of scaled processes 1
NX

N
[Nt] converges weakly to a continuous-time Markov process Xt on

[0, 1], whose generator is

Gu(x) =
1

2
x(1− x)

d2u

dx2
+G1u(x) (0.0.2)

where G1 is a first-order differential operator encoding selective and mutation effects, and

the domain D(G) described by a Feller boundary condition.

The analogous questions on stopping times and the forms of the asymptotic distribu-

tion can now be posed for the limit Xt, which are much easier to answer and understand

in some principled way, since all the formidable machinery of the theory of differential

and partial differential equations can be invoked. The latter are also easier to solve than

the recurrence relations in the discrete setup, in the same way that an integral is usually

simpler to evaluate than an infinite sum.

The Wright–Fisher model is founded on a set of assumptions about how organisms

reproduce, and the way in which the constraint of finite population size enforces dependen-

cies among individuals. As an example, one important assumption lies in the hypothesis

that each individual produces an exceedingly large number of potential offspring. What

happens if this assumption is relaxed, for instance, to the statement merely that each

individual produces a random (finite) number of offspring? Do general features of the

model remain stable? To what extent do the predictions or inferences made using the

Wright-Fisher framework depend upon the assumptions?

A significant source of such generalized models was first furnished by C. Cannings in

the 1970s. Cannings introduced a very general scheme for evolutionary processes, based
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only on the probabilistic concept of exchangeability—a form of homogeneity deriving

from the invariance of the process under a relabeling of individuals. In this process, the

conditional distribution of the chain is governed by

Xk|Xk−1
d
=

Xk−1∑
i=1

νi (0.0.3)

where νi are any positive integer-valued exchangeable variables summing to N . The

Wright-Fisher model occurs as the special case when ν = (ν1, . . . , νN ) have a multinomial

distribution.

Despite the observation that these processes are, at least conceptually, often more re-

alistic models than the classical theory, and additionally, offer an opportunity of analyzing

the sensitivity of predictions over a natural set of models, relatively little work has been

done in this area.

One reason for this paucity is a central-limit theorem type dogma: it can be proven

that a large class of Cannings processes have precisely the same diffusion limit as the

Wright–Fisher process. It follows that such processes can be well-approximated by the

standard model, with differences arising only in higher-order effects. Secondly, the set of

models that cannot be well approximated is difficult to analyse; it was not even understood

how to obtain a continuum limit in these cases (necessarily different from the Wright–

Fisher diffusion), let alone derive their corresponding evolutionary dynamics. The map

between the exchangeable variables ν and the asymptotic process is highly complex and

mysterious, aggravated by the fact that the νi are often highly negatively dependent

random variables.

This dissertation proposes a framework for the study of such generalised population
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models. While the backward-time, or coalescent theory [21], [18] of these processes has

seen a recent flowering, their forward-time analysis has yet to be achieved, particularly

in the presence of selection and mutation. This is our principal topic of inquiry, and

as far as the author knows, the present thesis records the first systematic exploration of

non-Wright-Fisherian aspects of these models.

Chapter I begins with an overview of the relevant Markov chain models for evolution,

and the basic definition of the class of systems under study — the Generalized Wright-

Fisher (GWF) — two-type processes, a wide-ranging and mathematically compelling class

containing the Cannings models. Asymptotic bounds are developed on the distribution

of the absorption times and conditional fixation times, and the methods shown how to

generalise to higher-dimensional, multi-type Cannings processes. It is next described how

to incorporate selection and mutation in a canonical way into GWF processes, and the

basic discrete theory of these processes is developed. The chapter concludes with bounds

on the absorption times of GWF processes under one-way mutation.

In Chapter II, we introduce and construct some important examples of GWF processes,

and show that many of these examples achieve the bounds developed in Chapter I, thereby

proving their optimality. Two of these models: the Wright-Fisher Model, and the so-

called Λ1 Cannings model, are identified in some sense as antipodes, and an interesting,

biologically realistic, parametric family of power-law models, bridging the two processes

is constructed. We end with a discussion of the convexity of the space of GWF processes,

and a characterization theorem for the extreme points of this space, which will be needed

in succeeding chapters.
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Chapter III is devoted to the construction of a continuum theory which generalises the

diffusion theory of the Wright-Fisher model. A representation formula for the generator

of any continuum limit of a sequence of GWF Markov chains is derived, parameterized

by three variables: selection pressure β, mutation rates θ1, θ2, and a new object: Ω,

a probability measure valued function, which quantifies the type of random drift. The

Wright-Fisher model is identified exactly as that process where Ω : x ∈ (0, 1) 7→ δx, and

hence the only continuum process with a local generator and continuous sample paths.

We provide a condition for the convergence of a GWF chain to the Wright-Fisher diffusion

which generalizes previous characterizations in the literature, and also state conditions

under which a GWF chain will converge weakly to a continuum limit. Our theory is

used to give an abstract construction of the continuum limit for any convergent Cannings

chain. Finally, the continuum limit for each of our example processes is proved and precise

formulae for their generators are given.

The generators of a generic GWF continuum limit are integro-differential operators,

and the apposite calculations for stopping times and stationary measures usually do not

admit closed-form analysis. In Chapter IV, the topological tool of the maximum principle

is built up, and we use it to obtain quite precise information concerning solutions. We

also pose some interesting extremal problems, such as: which family of drift measures Ω

maximizes and minimizes the probability of fixation for a given selection pressure? These

extremal problems are solved with the maximum principle, and thus allow bounds to be

developed on genetic quantities involving non-zero selection — a case not easily amenable

by discrete methods. Finally, we discuss aspects of the stationary distributions for GWF
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processes, using continuum theory, proving the existence and uniqueness of equilibrium

measures for Cannings processes under positive mutation, and develop formulae for the

moments of such measures. Since the stationary distribution is, in biological practice, the

object of main interest for inferential questions, we devote space to the development of

the appropriate parameter estimation framework for GWF processes, and prove theorems

regarding the identifiability of mutation parameters. Finally, we extend the validity of the

Poisson Random Field approximation theorem, from that of the Wright-Fisher model, to

that of any Cannings model. This serves to show that certain classical statistics — the

so-called Watterson estimator — is in fact sufficient for the mutation parameter even in

this wider generality.

Structurally, this thesis is roughly divided into two parts, based on methodological

grounds. In the first two chapters, we restrict ourselves purely to discrete methods, making

use only of the very elementary parts of Markov chain and martingale theory. Nonetheless,

a surprising amount of information can be obtained. The last two chapters develop

continuum methods, and here we employ more advanced mathematics from semigroup

theory, functional analysis, differential equations, and the convergence theory of Markov

processes. These two methodologies complement one another: only a few of our theorems

seem to be easily proved with either method.

The contributions of the present thesis are both mathematical and biological. To the

pure mathematician, of greatest interest is perhaps the development of a non-diffusive con-

tinuum theory for the approximation of time-homogeneous, bounded, martingale Markov

chains which have a given conditional variance vanishing at the boundaries. Diffusion
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approximation is formally trivial: one finds some natural scaling so that means and co-

variances converge: these second-order statistics parameterize the diffusion, and the rest

is just “rigorizing the obvious” — notwithstanding its technical challenge. In the systems

we consider, the higher moments are a vital part of the process and cannot be ignored;

the very structure of the continuum limit becomes interesting. Consequently, the result-

ing class of generators we consider is extremely large, and are found to be parameterized

by a measure-valued function Ω; we also demonstrate a kind of converse, and show how

approximation by extreme measures allows one in effect to construct weak solutions to

backward Kolmogorov equations associated to Ω. There are other things, such as the

use of completely elementary methods to construct fairly powerful estimates on the dis-

tribution of absorption times, or the employment of maximum principles to obtain quite

concrete quantitative estimates, which may pique the interest of the purist. The applied

mathematician will find many new results on the forward-time analysis of Cannings pro-

cesses: these include absorption and fixation time bounds, probability of fixation bounds

under selection, as well as a great deal of information on their stationary measures.

This thesis was written mainly for mathematically-trained practitioners, but there

seem to be important consequences of our results for biology at large. From the broader

purview of science, our work can be considered foundational, in that we have arrived at a

deeper understanding of the classical Wright-Fisher model itself, by probing its sensitivity

to modifications in its assumptive offspring structure. We can identify the stable features

of the Wright-Fisher model (conditional fixation times, for example), and we can also

identify properties which are highly model dependent (fixation probabilities of a mutant,
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as another example). An important new biological idea which has emerged from our

general analysis is that there are many different kinds of genetic drift, as parameterized

by a measure-valued function: the random drift that biologists have hitherto recognized

has only been a single manifestation of this more general drift. That the type of genetic

drift has profound effect on some predictions — and less so on others — is one of the

main messages of this work.

What may also be of significant surprise is that the classical model — the Wright-

Fisher model — is anything but an “average” or “typical” model. Geometrically, one

might naively expect that it lies somewhere in the center of the space of Cannings models,

but this is very far from the truth. It is in actuality an extreme point, and operates very

near the lower bound for a number of genetic quantities, fixation probability being one

of them. One striking consequence is that the model of Wright and Fisher is the drift

model most disadvantageous for the perpetuation of new and selectively advantageous

mutants. This has inferential ramifications: any inference on selective pressure from data

employing the Wright-Fisher framework is an upper bound on its actual value.
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Chapter 1

Markov Chain Models of

Evolution

After a brief recapitulation of the classical theory of population genetics, this chapter

defines generalized two-type processes and explores a number of their basic properties,

derived from the discrete Markov chain. We describe the absorbing states of a generalized

process, and develop tail bounds on the absorption time, using this to prove almost sure

absorption of every path, as well as establishing limits on the mean absorption time. The

properties of the chains conditional on fixation are also explored, including the probability

of fixation and time to fixation, which are proved to be stable features of any generalized

processes. We provide extensions of some of these methods to the higher-dimensional

K-type case. The adjunction of selection and mutational forces to the model are then

described, and further fundamental aspects of the processes are investigated using purely

discrete methods.
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1.1 Classical Neutral Models

1.1.1 The Wright-Fisher Model

In the early 1930’s, Fisher [7] originally, and Wright [23] subsequently, described a new

mathematical model of evolution. Its novelty arose from the incorporation of stochastic

effects arising from finite population size, a crucial improvement upon Haldane’s preced-

ing deterministic theory of evolution. They considered a fixed population of N asexual

reproducing individuals of two types: A and B. In every generation, individuals indepen-

dently produce a large number of gametes (potential offspring) of type identical to their

parent; the collection of gametes is placed into an urn and the next generation is formed

by sampling N gametes from the urn. Let Xk denote the number of individuals of type

A at time points k = 0, 1, . . .. Then one readily sees that in the large offspring limit, Xk

has the structure of a Markov chain on states {0, . . . , N}, with the binomial transition

matrix

Pij =

(
N

j

)(
i

N

)j (
1− i

N

)N−j
(1.1.1)

Simple computations show that Xk is a martingale (in correspondence with the speci-

fication of selective neutrality), and {0, N} the only absorbing states, with absorption

occurring almost surely. Wright and Fisher then proceeded to determine the behavior of

various important genetic quantities from this description, foremost among them 1) the

probability of fixation of a type, and 2) the average time to absorption/fixation of a type,

starting at X0 = 1. We shall not repeat these calculations here, because a study of these

functionals, in a much more expanded setting, will be conducted.
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1.1.2 The Cannings Exchangeable Model

There is another construction of the Wright-Fisher model which leads to an important

generalization due to Cannings [2]. We suppose that individuals reproduce independently

from an offspring number distribution F . If ξ1, . . . , ξN are independent random variables

each with law F , let

ν = (ν1, . . . , νN )
d
= (ξ1, . . . , ξN )|

N∑
i=1

ξi = N (1.1.2)

In other words, νi is the random number of offspring contributed to the subsequent gen-

eration by individual i, the fixed population size stipulation enforced by the conditioning

event
∑
νi = N . One notes that ν is an exchangeable vector of random variables. Because

of this, the conditional variable Xk|Xk−1 now has the structure:

Xk|Xk−1
d
=

Xk−1∑
i=1

νi (1.1.3)

The Wright-Fisher model occurs exactly when F has a Poisson distribution; ν then takes

the form of a multinomial distribution with parameters (N, 1/N, . . . , 1/N). In general,

the foregoing model for arbitrary F is called Karlin’s conditional branching process.

The probabilistic mechanism for ensuring fixed population size in the above may

appear artificial: one simply retains those realizations of a standard branching process

for which there “happen” only to be N individuals in every generation. In reality, a

fixed population size occurs because of the inherent constraint of environmental carrying

capacity, or the structure of relationships within a population. Cannings’ insight was to

take the exchangeable variable ν as fundamental, rather than the independent offspring

variables ξ, thus raising the aspect of homogeneity to an axiom. In the Cannings’ model,
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the process is fully prescribed by any positive-integer valued exchangeable distribution ν

satisfying
∑
νi = N , with the Markov chain for the evolution of a given type governed

then by (1.1.3).

While equation (1.1.3) in principle gives a mapping between the exchangeable variable

ν and the associated Markov transition matrix, this mapping is extremely ungainly, de-

pending on partition-theoretic properties of N . The complexity of the map is an enormous

obstruction to a forward-time understanding of the Cannings model. The conditioning

inherent in Karlin’s model also makes a direct analysis difficult: Karlin himself published

a few questionable theorems on his model (e.g. the diffusion limit theorems 4 and 5 in

[10] are most likely false, see [19] for the correct hypotheses).

Surprisingly little is known about the forward-time behavior of the Markov chain

(1.1.3), other than the eigenvalues of its transition matrix Pij , which can be computed

exactly from the moments of νi. One might naively expect that the eigenvalues of P — for

example, the so-called “eigenvalue gap” between the top and second-largest eigenvalues —

would contain information about such quantities as the absorption time, but this is rather

misleading: it turns out that the eigenvalue gap is the same for all Cannings models, but

we will prove that the absorption time can differ greatly, by even orders of magnitude

for different choices of exchangeable variable ν. This is a general problem related to

the asymmetry, or lack of self-adjointness, of P. Even in the simple case of the Wright-

Fisher model, knowledge of the eigenvalues of P is insufficient for an understanding of

the absorption time: one needs actually to understand the entire spectral decomposition

(left and right eigenvectors) of P — which do not have closed-form expressions [5].
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Moments of the Cannings Model

The moments of a Cannings process have a beautiful structural regularity which we will

employ in due course. Using the fact that Eνi = 1, one verifies easily that every Cannings

process Xk is a martingale:

E[Xk+1|Xk] = Xk (1.1.4)

Moreover, the second-order statistics depend not on the full distribution ν, but only on

the offspring variance σ2 = V ar(νi):

E[X2
k+1|Xk] =

Nσ2

N − 1
Xk(1−Xk/N) +X2

k (1.1.5)

One can continue to show that all conditional moments E[Xm
k+1|Xk] are m-th order poly-

nomials in Xk. This implies, by taking expectations, that the unconditional moments

satisfy linear recurrence relations, with inhomogeneities entering in from the solutions of

lower-order equations (c.f. Section 1.3.1).

The formulae (1.1.4) and (1.1.5) illustrate the first “stable” properties of generic neu-

tral processes: for populations of a given offspring variance, the conditional first and

second order statistics — and by taking expectations, the unconditional lower moments

too — behaves identically across the entire class of Cannings models. This invariance of

the first two moments now leads us to consider an even more general definition.

1.2 Neutral Generalized Processes

Let us first begin with a definition for a two-type generalized population process:

15



Definition 1.2.1. Xk is a Pure-Drift1 Generalized Process with offspring variance σ2
N if

it is a Markov chain on states {0, . . . , N} for which the conditional moments satisfy

E[Xk+1|Xk] = Xk (1.2.1)

E[X2
k+1|Xk] =

Nσ2
N

N − 1
Xk(1−Xk/N) +X2

k (1.2.2)

or alternatively, and more transparently:

E[Xk+1|Xk] = Xk (1.2.3)

V ar[Xk+1|Xk] =
Nσ2

N

N − 1
Xk(1−Xk/N) (1.2.4)

Let Qij be the transition matrix underlying Xk. Consistent with Cannings’ model,

we shall call the distribution accorded to row Q1,j the offspring distribution. The above

moment conditions are equivalently restated as:

N∑
j=0

jQij = i (1.2.5)

N∑
j=0

(j − i)2Qij =
Nσ2

N

N − 1
i

(
1− i

N

)
(1.2.6)

There are many reasons why one chooses a particular definition over another, and not

all such reasons lie within the immediate power of words to convey: much depends on the

experience of the definer. Viewed in the light of the Cannings’ model, the specifications

(1.2.1,1.2.2) are the natural manifestation of symmetry assumptions; qualitatively, the

mean condition (1.2.1) expresses a basic neutrality, while (1.2.2) is a gross, second-order

characterization of the strength of drift as a function of allele frequency. Taken together,

1There are two definitions of the abused term “drift” in the literature, unfortunately at odds with one
another: probabilists employ the word for the infinitesimal mean of a diffusion, while biologists use the
term to describe the stochastic integral term in an Ito process. We will side with the biologists, and drift
will generally denote the random component of a process.
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they could be construed as a minimal set of desiderata on any neutral population process:

our definition of a GWF process is from this vantage point natural. On the other hand, if

one’s interest is confined strictly to Cannings’ processes, the definition may be considered

too general, particularly since equally natural higher-order symmetry hypotheses such

as Qi,j = QN−i,N−j are not imposed. Nevertheless, it will turn out the inclusion of

asymmetric processes becomes technically important in the derivation of bounds under

selection (Section 4.5). Moreover, for many of our results it will be possible to find

symmetric, and even Cannings processes which operate near our theoretical limits (which

are established over the entire class of asymmetric models).

Now it is a well-known result of diffusion theory (c.f. [17]), that if a Markov chain Xk

satisfies (1.2.1, 1.2.2), σ2
N → σ2 < ∞ and additionally possesses some conditional higher

moment E[|Xk+1/N − Xk/N |2+δ|Xk] of order o(1/N) uniformly in Xk, then Xk can be

well approximated by Kimura’s diffusion process for large N , and hence by the Wright-

Fisher model itself. Since we take particular interest in exploring GWF and Cannings

processes which cannot be approximated by the standard model, we refrain from imposing

any constraints on higher-order statistics of the process.

Our principal task will be to determine the conceivable range of behavior for important

genetic quantities (absorption times, probabilities of fixation etc.) under the proposed

constraints on the first two conditional statistics, but when the higher-order properties of

genetic drift are allowed to freely vary.
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1.2.1 Examples of Pure-Drift GWF Processes.

It is opportune here to introduce model cases for QN , whose behavior in many respects

are typical of non-Wright-Fisherian models, and which will be used to illustrate aspects

of our theory. Deeper examinations of specific properties of the following processes are

conducted in several passes, particularly in Chapters 2, 3 and 4.

Cannings Models.

As remarked above, by a simple computation on its moments, every Cannings model, and

in particular the Wright-Fisher model, is a pure-drift GWF process; the last thus already

contains a large and biologically germane set of processes.

The Λ1-Cannings Model.

In a sense the antipode to the Wright-Fisher process, this Cannings process is defined by

the transition matrix:

Qij =



N−i
N2 , j = 0

1− 1
N , j = i

i
N2 , j = N

(1.2.7)

Mechanistically, individuals produce exactly one offspring each generation, until a

random time of average length N generations where a single individual replaces the entire

population. The name by which we have designated this model originates in the theory of

Λ-coalescents (c.f. [18]), a class of non-standard coalescents parameterized by measures

on [0, 1]. Our forward-time Λ1 process corresponds in the retrospective theory to a Λ
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measure concentrated at the point 1. While making no claim to accurately depicting any

but a few special systems, the Λ1-Cannings model nonetheless will delimit certain extreme

aspects of GWF processes.

Power-law Models.

The divide between Wright-Fisher and Λ1 models can be partially spanned by a special

one-parameter family. We define a pure-drift Markov process whose transition matrix has

tails of decay “index” α > 0:

Qij =



ci
1+b1,i|j−i|α , j < i, 0 < i < N

ci
1+b2,i|j−i|α , j ≥ i, 0 < i < N

δ0,j , i = 0

δN,j , i = N

(1.2.8)

where b1,i, b2,i > 0 are “slope” parameters and the normalisation constant ci designed so∑N
j=0 Qij = 1. Three free parameters are introduced to satisfy the normalisation and two

GWF constraints. In Chapter 2 we shall explicitly construct these processes, by proving

that there exist unique positive b1,i, b2,i, ci which satisfy the GWF conditions (1.2.1,1.2.2),

for each population size N . Since the conditional distribution of the Wright-Fisher model

is of Gaussian decay, one may roughly associate it to the limiting case α = ∞, though

we shall prove (See Theorem 3.11.3 and Theorem 3.11.6) that the standard diffusion

approximation holds already for α ≥ 3. Conversely, the models 0 < α < 3 are poorly

approximated by Kimura’s diffusion, and possess a behavior that can be markedly different

from the Wright-Fisher model.
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Convex aggregates.

A large number of intermediate models can be formed by taking any two GWF processes

with transitions Q1 and Q2, and taking their convex combination P = aQ1 + (1− a)Q2,

for 0 < a < 1. It is immediate from the linearity of the GWF conditions (1.2.1, 1.2.2)

that P is also a GWF process.

1.2.2 Empirical Plausibility of Non-Diffusive GWF Processes.

Few works in the literature have been concerned with empirical confirmation of the stan-

dard model; of those, for example [1], typically only verification up to second-order statis-

tics of the process has been sought, since the calculation of the full likelihood of the model

was not feasible with the technology of the time. Modern computing has allowed us to

compute the full likelihood of a number of evolutionary data sets for a cross-section of the

models presented above. The results indicate that the power-law models are indeed quite

plausible, even those in the non-diffusive range α < 3. For details see our forthcoming

biological publication [3].

1.3 Basic Properties of Pure-Drift Generalized Processes

We now begin to infer some of the consequences of our definitions (1.2.1), (1.2.2). We

will be principally, though not universally, concerned with the realistic case where the

offspring variance is convergent: limN→∞ σ
2
N = σ2 <∞.
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1.3.1 Unconditional Moments

The conditional moments (1.2.1, 1.2.2) imply, by taking expectations,

EXk+1 = EXk (1.3.1)

EX2
k+1 =

Nσ2
N

N − 1
EXk +

(
1−

σ2
N

N − 1

)
EX2

k (1.3.2)

These recurrences can be easily solved to produce closed-form expressions for the time

evolution of the first two statistics of a GWF process:

Proposition 1.3.1. The unconditional first two moments of a Pure-Drift Generalized

Process satisfy:

EXk = X0 (1.3.3)

EX2
k = X2

0λ
k
N +NX0(1− λkN )

Var Xk = X0(N −X0)(1− λkN )

where λN = 1− σ2
N

N−1 .

We observe that these moments coincide exactly with those of the Wright-Fisher pro-

cess. As an elementary corollary, any function of the first two moments — heterozygosity

EXk(N −Xk), for example, is invariant over the entire set of GWF processes.

1.3.2 Absorption Times

Theorem 1.3.2. The absorbing states of a Generalized Process are exactly {0, N}.

Proof. Immediate from the variance prescription (1.2.4).
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The biological import is clear: in the absence of mutation, if at any time a given type

becomes all-pervasive in a population, no further changes in allele frequency can occur.

In what follows, for ease of notation we have often assumed that the offspring variance

σ2
N = 1 − 1/N . The general results follow by a simple scaling of the expected times by

1/σ2
N .

Define the time to absorption, given the starting value X0 of the population process,

by τ = inf{k : Xk ∈ {0, N}}, which may a priori be infinite. The following theorem, a

principal result, gives bounds on the distribution of τ .

Theorem 1.3.3. For a Pure-Drift Generalized Process Xk with σ2
N = 1− 1/N , we have

the estimates:

P (τ > k) ≥ X0(N −X0)αk(2− αk)
(N − αk(N −X0))(N −X0αk)

(1.3.4)

P (τ > k) ≤ min

{
1,
X0(N −X0)

N − 1
αk
}

(1.3.5)

where α = 1− 1
N .

Proof. We start with the lower bound, beginning with:

P (τ ≤ k) = P (Xk = N ∪Xk = 0) = P (Xk = N) + P (Xk = 0) (1.3.6)

The first term can be estimated by the Glivenko-Chebyshev inequality: if Y is a random

variable Y of mean zero, and λ > 0,

P (Y ≥ λ) ≤ EY 2

EY 2 + λ2
(1.3.7)

Putting Y = Xk −X0 and λ = N −X0, one determines

P (Xk = N) ≤ V ar(Xk)

V ar(Xk) + (N −X0)2
(1.3.8)
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From the Cauchy-Schwarz inequality applied to Xk1Xk>0 the second term of (1.3.6) sat-

isfies:

P (Xk = 0) ≤ V ar(Xk)

V ar(Xk) +X2
0

(1.3.9)

Combining into (1.3.6), and substituting the moment formulae (1.3.3),

P (τ > k) ≥ X2
0 (N −X0)2 − [V ar(Xk)]

2

(X2
0 + V ar(Xk))((N −X0)2 + V ar(Xk))

(1.3.10)

which is algebraically equivalent to (1.3.4).

For the upper bound, an easy consequence of Markov’s inequality is the following: if

|Y | ≤ K, 0 ≤ λ < K, then

P (|Y | ≤ λ) ≤ K2 − EY 2

K2 − λ2
(1.3.11)

Since Yk = Xk −N/2 is bounded by K = N/2, and so:

P (|Xk −N/2| ≤ λ) ≤ N2/4− E(Xk −N/2)2

N2/4− λ2
=
−EX2

k +N · EXk

N2/4− λ2
(1.3.12)

Inserting λ = N/2−1, and applying the solutions (1.3.3), one obtains the desired outcome:

P (τ > k) = P (|Xk −N/2| ≤ N/2− 1) ≤ X0(N −X0)

N − 1
αk (1.3.13)

The preceding theorem indicates that in the discrete process, the tail of the absorption

time ultimately ranges from slightly faster than exponential (1.3.4) to exponential decay

(1.3.5). We do not make the statement, of course, that as a whole, the absorption time

distribution is anywhere near exponential. Indeed, for certain starting values X0, the

upper bound remains trivial for at least O(N) values of k, and this probability mass tends

to dominates the mean absorption time, rather than the tail. We should also mention
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that while it is obvious that one has an exponential holding time for a single state in any

time-homogeneous Markov chain, the exit time for a general set is no longer exponential,

and may be very long. Thus, the bounds derived above are non-trivial.

Our upper bound implies almost sure absorption of every sample path, no matter the

initialization:

Corollary 1.3.4. For a Pure-Drift GWF Process, P (τ <∞) = 1

Proof. Immediate from limk→∞ P (τ > k) = 0.

Moreover, estimates of all the moments of the absorption time can be derived from

Theorem 1.3.3. Of highest interest is naturally the mean time, which is obtained by

summing over the estimates (1.3.4), (1.3.5).

Proposition 1.3.5. Let Xk be a Pure-Drift Generalized Process with σ2
N = 1−1/N , and

let τ be the associated absorption time. Then:

E(τ) ≥ X0 log(N −X0) +N logN −X0 logX0 −N log(N −X0)

−N logα
(1.3.14)

E(τ) ≤ 1 + [(− log c)/ log(α)] + c ·
∞∑

k=[(− log c)/ log(α)]+1

αk (1.3.15)

where c = X0(N −X0)/(N − 1) ≥ 1, and α = 1− 1
N .

These bounds inhabit a simpler form if we consider their asymptotic (N →∞) behav-

ior, at the biologically interesting initializations X0 = 1 (time to absorption of a single

mutant), and X0 = [xN ], with x a fixed fraction of the population size N . In these cases,

the asymptotic analysis of Theorem 1.3.5 can be worked out, and the upper and lower

bounds described in the next two theorems.

24



Theorem 1.3.6. (Absorption time bounds)

1. Started at a fixed fraction x of the population size N , the mean time to absorption

EτN (in generations) of a Pure-Drift GWF process satisfies (as N →∞):

−N
σ2

(x log x+ (1− x) log(1− x)) ≤ EτN ≤
N

σ2
log(Nx(1− x)) (1.3.16)

2. Started at X0 = 1, the mean time to absorption EτN satisfies (as N →∞)

1

σ2
logN ≤ EτN ≤

N

σ2
(1.3.17)

Remark : The calculations in Chapter 2 show that these bounds are asymptotically

achieved by particular models, and hence the orders (in N) discovered are optimal.

Theorem 1.3.6 provides us our first intimations concerning the sensitivity of the

Wright-Fisher model. The absorption time starting at any fixed fraction of the popu-

lation size — N/2, for example, is a rather stable quantity over all generalized models, of

order between N and N logN . As one moves towards the boundaries, however, sensitivity

increases, and the process started at X0 = 1 or X0 = N − 1 can exhibit a significantly

wider range of absorption times O(logN) to O(N). Some intuitive reasons for this result

are provided at the end of Chapter 2.

1.4 Auxiliary Exit Times

For a fixed λ < 1, consider the set of states Aλ = {x ∈ {0 . . . N}, |x − N/2| ≤ λN/2}.

This is a set excluding a neighborhood of size (1− λ)N about the boundaries. Assuming

that X0 ∈ Aλ, let us define the first exit time τ(λ) = inf{k : Xk /∈ Aλ}. This is the time
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taken for one type to first attain a frequency greater than λ within the population. We

have:

Theorem 1.4.1. Let Xk be a Pure-Drift GWF process started at X0 = [xN ]. Then the

mean exit Eτ(λ) has the asymptotic bound (N →∞):

Eτ(λ) ≤ 4Nx(1− x)

σ2(1− λ2)
(1.4.1)

Proof. Since {Xk /∈ Aλ} ⊂ {τ(λ) ≤ k}, P (τ > k) ≤ P (Xk ∈ Aλ). Now one can proceed

as in the proof of Theorem 1.3.3, to discover the upper bound

P (Xk ∈ Aλ) ≤
−EX2

k +NEXk

(1− λ2)N2/4
(1.4.2)

Substitution of the moment formulae (1.3.3) and summing over the estimates one has the

desired result.

It is of interest to observe that while it requires only O(N) generations for some type

to attain a dominance of frequency λ within a population (λ < 1), it is conceivable that

this time may increase to infinity as λ ↑ 1 (as evidenced by the O(N logN) bound of

Theorem (1.3.6). We shall see explicit examples in Chapter 2.

1.4.1 Fixation and Fixation Times

We have seen that almost surely, a generalized population process Xk absorbs into the

set {0, N}. A classical question concerns the probability of fixation, i.e. absorption at

state N . The martingale property is very strong here, and gives another trivial, but

fundamental, stability property of generalized models:
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Theorem 1.4.2. Let Xk be a Pure-Drift Generalized process, and τ the absorption time

(which is finite almost surely). Then

P (Xτ = N) =
X0

N
(1.4.3)

Proof. Xk is bounded and hence uniformly integrable, so the optional stopping theorem

holds: X0 = EXτ = N · P (Xτ = N).

An interesting problem now arises: what is the mean time to fixation conditioned on

the event Xτ = N , that is, considering only those sample paths which terminate at the

absorbing state N? More precisely, the Markov chain X∗k conditioned on ultimate fixation,

defined on the state space {1, . . . , N} has, by Theorem 1.4.2 and Doob’s h-transform, the

transition matrix:

P∗ij = Pij
j

i
(1.4.4)

where Pij is the unconditioned transition. X∗ has a single absorbing state at N ; let

τ∗ = inf{k : X∗k = N}. We find the following exponential tail bounds for τ∗:

Theorem 1.4.3. The absorption time τ∗ conditioned on fixation of a pure-drift GWF

process with σ2 = 1− 1/N satisfies

N −X0

N − 1
αk ≤ P (τ∗ > k) ≤ min

{
1, (N −X0)αk

}
(1.4.5)

where α = 1− 1/N .

Proof. From (1.4.4) we derive the conditional mean relation:

∑
j

jP∗ij =
1

i

∑
j

j2Pij =
1

i
(i(1− i/N) + i2) = 1 + αi (1.4.6)
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where α = 1−1/N . It follows by taking expectations that the unconditioned mean of the

process satisfies the recurrence

EX∗k+1 = 1 + αEX∗k (1.4.7)

whose solution is

EX∗k =
1− αk

1− α
+ αkX0 (1.4.8)

Applying Markov’s inequality on the positive process X∗k − 1, one derives

P (τ∗ ≤ k) = P (X∗k = N) ≤
EX∗k − 1

N − 1
(1.4.9)

Finally, after substituting the recurrence solution (1.4.8) and taking complements, find

the lower bound

P (τ > k) ≥ αkN −X0

N − 1
(1.4.10)

To discover an upper bound, apply Markov’s inequality on the positive process N−X∗k :

P (N −X∗k ≥ 1) ≤ N − EX∗k (1.4.11)

so that

P (τ∗ > k) = 1−P (X∗k > N − 1) = P (X∗k ≤ N − 1) ≤ N −EX∗k = αk(N −X0) (1.4.12)

which implies the upper bound of the theorem.

Again, by summing over these estimates, we derive mean conditional fixation time

bounds:

Theorem 1.4.4. The average absorption time conditioned on fixation Eτ∗ of a pure-drift

GWF process with σ2 = 1 obeys

N −X0

α
≤ Eτ∗ ≤ 1 + c+ (N −X0)

∞∑
k=c+1

αk (1.4.13)
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where c = [− log(N −X0)/ log(α)], α = 1− 1/N .

Once more it is germane to discuss the asymptotic order of these quantities when

started with a single individual of a given type X0 = 1, as well as the fixed fraction

X0 = [xN ].

Theorem 1.4.5. (Conditional fixation time bounds)

1. Started at a fixed fraction x of the population size N , the mean time to fixation Eτ∗N

of a pure-drift GWF process satisfies (as N →∞)

N

σ2
(1− x) ≤ Eτ∗N ≤

N

σ2
log(N(1− x)) (1.4.14)

2. Started at X0 = 1, the mean time to fixation Eτ∗N satisfies (as N →∞)

N

σ2
≤ Eτ∗N ≤

N logN

σ2
(1.4.15)

The orders in N exhibited by these formulae are tight, with the Wright-Fisher process

operating near the lower bound in both cases of initialization, while the Minimal process

will meet our upper bounds (see Section 2.3.1) . It is worth commenting that the con-

ditional fixation time is significantly more stable even when started near the boundary

than for the unconditional absorption time (compare Theorem 1.3.6). Intuitive reasons

for this are presented at the end of Chapter 2.

1.5 Generalizations to the K-Allele Case

In this section we briefly show how some of the bounds derived for K = 2 types can be

generalized to an analysis of the first absorption time for a K-type Cannings process.
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1.5.1 The K-types Cannings Model

The mechanism underlying the Cannings model described in Section 1.1.2 describes,

without change, the evolution of K types. As usual, suppose (ν1, . . . , νN ) is an ex-

changeable random vector for which
∑N

i=1 νi = N , representing the number of off-

spring passed into the next generation by individual i. Also assume for simplicity that

V ar(νi) = σ2
N = 1− 1/N . Let Xk = (X

(1)
k , . . . , X

(K−1)
k ) be the vector counting numbers

of individuals of the first K − 1 types. Then the Markov chain describing the changes in

type frequency has the transition form:

X
(1)
k+1|X

(1)
k

d
=

X
(1)
k∑
i=1

νi (1.5.1)

X
(2)
k+1|X

(2)
k

d
=

X
(2)
k∑
i=1

νi (1.5.2)

... =
... (1.5.3)

Since Eνi = 1, it is simple to verify that Xk is a martingale. Elementary calculations

also show that the second-order statistics of the process are once more parameterized

completely by the offspring variance σ2 = V ar(νi):

V ar[X
(i)
k+1|Xk] = σ2 N

N − 1
X

(i)
k (1−Xk/N) (1.5.4)

Cov[X
(i)
k+1, X

(j)
k+1|Xk] = − σ2

N − 1
X

(i)
k X

(j)
k , i 6= j (1.5.5)

Rewriting the second-order conditions, one has

E[(X
(i)
k+1)2|Xk] = X

(i)
k (1−X(i)

k /N) + (X
(i)
k )2 (1.5.6)

E[X
(i)
k+1X

(j)
k+1|Xk] = (1− 1/N)X

(i)
k X

(j)
k (1.5.7)
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Now upon taking expectations in the above, one derives a set of (K − 1)2 decoupled

difference equations:

E(X
(i)
k+1)2 = EX

(i)
k + (1− 1/N)E(X

(i)
k )2, i = 1, . . . ,K − 1 (1.5.8)

EX
(i)
k+1X

(j)
k+1 = (1− 1/N)EX

(i)
k X

(j)
k , i 6= j (1.5.9)

Solving the recurrences, we have then closed forms for the evolution of the first few

statistics of a multi-type Cannings process:

V ar(X
(i)
k ) = X

(i)
0 (N −X(i)

0 )(1− αk) (1.5.10)

Cov(X
(i)
k , X

(j)
k ) = −X(i)

0 X
(j)
0 (1− αk) (1.5.11)

where α = 1− 1/N .

Remark : We do not feel inclined at this moment to introduce a definition of GWF

processes in higher dimensions, whose obvious, but incorrect form, would take on (1.5.8),

(1.5.9). Subtle constraints inform the relationships between allele frequencies which are

not apparent in dimension one. For example, any agglomeration of type variables X
(i)
k in

the Cannings model is also a martingale.

1.5.2 Bounds on the Time to First Loss

We shall now construct bounds on the time to a loss of an allele, assuming asymptotically

finite offspring variance. Let B be the boundary of the simplex
∑K−1

i=1 xi ≤ N , xi ∈ Z+.

We seek first to estimate P (Xk ∈ B). There are K faces to this simplex, the simple

boundaries Bi = {xi = 0} and the diagonal boundary BK = {
∑K−1

i=1 xi = N}. Let
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Yk =
∑K−1

i=1 X
(i)
k . Applying the Glivenko-Chebyshev inequality, one finds:

P (Xk ∈ BK) = P (Yk = N) ≤ V ar(Yk)

V ar(Yk) + (N − EYk)2
(1.5.12)

The Cauchy-Schwarz provides estimates for the other boundaries:

P (Xk ∈ Bi) = P (X
(i)
k = 0) ≤

V ar(X
(i)
k )

V ar(X
(i)
k ) + (EX

(i)
k )2

(1.5.13)

Hence

P (Xk ∈ B) ≤ V ar(Yk)

V ar(Yk) + (N − EYk)2
+
K−1∑
i=1

V ar(X
(i)
k )

V ar(X
(i)
k ) + (EX

(i)
k )2

(1.5.14)

and where

V ar(Yk) =
K−1∑
i=1

V ar(X
(i)
k ) +

∑
i 6=j

Cov(X
(i)
k , X

(j)
k ) (1.5.15)

One may also write the estimate more simply, if we introduce the last type X
(K)
k , as:

P (Xk ∈ B) ≤
K∑
i=1

V ar(X
(i)
k )

V ar(X
(i)
k ) + (EX

(i)
k )2

(1.5.16)

Note when K = 2, we reduce to our one-dimensional procedure.

Inserting the solution (1.5.10) and (1.5.11) to the recurrences into this estimate, one

finds

P (Xk ∈ B) ≤
K∑
i=1

X
(i)
0 (N −X(i)

0 )(1− αk)
X

(i)
0 (N −X(i)

0 )(1− αk) + (X
(i)
0 )2

(1.5.17)

=
K∑
i=1

(N −X(i)
0 )(1− αk)

(N −X(i)
0 )(1− αk) +X

(i)
0

(1.5.18)

In principle, the above estimate can be used to deduce estimates on the distribution of

the first time to loss of an allele. One particularly simple case occurs at the symmetrical

initialization X
(i)
0 = 1

KN . Define the stopping time τ = inf{k : Xk ∈ B}, for this

equi-frequency initialization. We then have the following theorem.
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Theorem 1.5.1. The time τ to the loss of some allele for a K-type Cannings process

with σ2
N = 1− 1/N in the equi-frequency initialization satisfies

P (τ > t) ≥ max

{
(1−K + 1

K−1) + (K − 1)αt

(1 + 1
K−1)− αt

, 0

}
(1.5.19)

Summing over the positive part of this estimate and using an integral approximation,

one finds that asymptotically (N →∞),

Eτ ≥ N
[
log

K

K − 1
+ (K − 2) log

(
1− 1

(K − 1)2

)]
(1.5.20)

At K = 3 alleles, Eτ ≥ 0.12N asymptotically, which can be compared to the equi-

frequency Wright-Fisher absorption time Eτ = 0.8N . For large K our lower bound is

approximately N/K—an intuitively appealing and general finding, consistent with the

diffusion results of Littler [14] who established it under the restricted case of the Wright-

Fisher process.

1.6 Introducing Mutation and Selection

The forces of selection and mutation are classically [5] introduced into the Wright-Fisher

process by biasing the allele frequencies i/N in the urn model (1.1.1). Specifically, if type

A has fitness advantage s over type B, and mutation occurs between the two types at

rates µ1, µ2, then the urn process is altered as follows:

Pij =

(
N

j

)
(x∗i )

j(1− x∗i )N−j (1.6.1)
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with

x∗i = (1− µ1)xi + (1− xi)µ2 (1.6.2)

xi =
i

N

(
1 + s

2(1 + i/N)

1 + s iN

)
(1.6.3)

Since GWF processes in general do not possess an urn-like mechanistic interpretation,

the preceding procedure does not admit immediate generalization. We can, however,

introduce selection and mutation in a natural way, as follows. Let QN be the Markov

transition matrix for a pure-drift generalized process on N individuals. We multiply QN

with additional transition matrices encoding the requisite effects, say SN and MN . The

total model is then defined by the composite transition

PN = SNQNMN . (1.6.4)

Conceptually, the above sequence partitions events in a generation into three com-

ponents, in the following order: 1) alteration of the frequency of types based on fitness

differences (S), 2) A reproduction stage (Q), and 3) a mutational stage (M).

The mutation matrix M can be specified as follows: after reproduction, each individual

mutates to the opposing type independently with respective probabilities µ1, µ2. If we

define Mjk as the probability that, starting with j individuals of type A, one obtains

k individuals of type A after mutation, then Mjk is distributed according to a sum of

independent binomial random variables Xj and Yj :

P (Xj = r) =

(
j

r

)
(1− µ1)rµj−r1 , P (Yj = r) =

(
N − j
r

)
µr2(1− µ2)N−j−r (1.6.5)

Mjk = P (Xj + Yj = k) (1.6.6)
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Our next calculation shows that, in the absence of selection, our choice of mutation

matrix reduces to (1.6.1) when Q is the pure-drift Wright-Fisher process:

Theorem 1.6.1. If Q is the pure-drift Wright-Fisher model (1.1.1) and M is defined

by (1.6.6), then P = QM coincides with the classical Wright-Fisher model (1.6.1) under

s = 0.

Proof. Writing out the matrix multiplication and the convolution of distributions implicit

in (1.6.6), one finds:

Pik =

N∑
j=0

j∑
l=0

(
N

j

)
(i/N)j(1− i/N)N−j

(
j

l

)
(1− µ1)lµj−l1

(
N − j
k − l

)
µk−l2 (1− µ2)N−j−(k−l)

(1.6.7)

We demonstrate this is binomial. To do this consider the generating function φ(z) =∑
k≥0 Pikz

k. Using this with (1.6.7), decomposing zk = zk−lzl and summing over k via

the binomial theorem, one finds:

φ(z) =

N∑
j=0

j∑
l=0

(
N

j

)
(i/N)j(1− i/N)N−j

(
j

l

)
(1− µ1)lµj−l1 (µ2z + 1− µ2)N−jzl (1.6.8)

which re-writes as

φ(z) =
N∑
j=0

(
N

j

)
(i/N)j(1− i/N)N−j(µ2z + 1− µ2)N−j

j∑
l=0

(
j

l

)
µj−l1 (z(1− µ1))l (1.6.9)
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Apply the binomial theorem again, twice:

φ(z) =

N∑
j=0

(
N

j

)
(i/N)j(1− i/N)N−j(µ2z + 1− µ2)N−j(z(1− µ1) + µ1)j (1.6.10)

=
N∑
j=0

(
N

j

)
(i/N · (z(1− µ1) + µ1))j [(1− i/N)(µ2z + 1− µ2)]N−j (1.6.11)

=

(
i

N
(z(1− µ1) + µ1) + (1− i/N)(µ2z + 1− µ2)

)N
(1.6.12)

= (1 + z((i/N)(1− µ1) + µ2(1− i/N))− [(i/N)(1− µ1) + µ2(1− i/N)])N

(1.6.13)

which is the generating function for the binomial distribution of size N and parameter

(i/N)(1− µ1) + µ2(1− i/N), as desired.

The case of the selection matrix S is less clean, and there is no obvious way to introduce

it into the discrete model. It is tempting to define S as the matrix for which SPM agrees

with model (1.6.1), but it can be shown (we will omit this proof), that no such stochastic

S exists. Nonetheless, there do exist matrices for which SPM approximates the behavior

of the Wright-Fisher model in the limit of large population size. Generically, we can ask

that any particular specification of SN or MN reduces PN to Haldane’s classical theory of

deterministic evolution [8] when the offspring variance σ2 = 0, (i. e. QN = I), as N →∞.

Mathematically translated, this amounts to the prescription that the transition matrices

have generators which converge to the convection terms in Kimura’s diffusion:

lim
N→∞

(SN − I)uN = βx(1− x)
du

dx
(1.6.14)

lim
N→∞

(MN − I)uN =
1

2
(−θ1x+ θ2(1− x))

du

dx
(1.6.15)

where the allele of interest has selective advantage β = Ns, mutation between the two
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classes occurs at rates θi = 2Nµi, u is any smooth function, and uN (i) = u(i/N). When

(1.6.14, 1.6.15) are fulfilled, the order in which the matrices are multiplied in (1.6.4) is

immaterial, as N →∞ (See the continuum theory, Section 3.10).

For numerical experiments, we have chosen an S with the property that its i-th row is a

binomial distribution supported on states {i, . . . , N}, and probability parameter selected

so that its mean agrees with the selected Wright-Fisher model (1.6.1). It is simple with a

Taylor expansion to see that this choice satisfies the constraint (1.6.14). When QN is the

pure-drift Wright-Fisher model, our numerical experiments show that this choice leads to

a model PN agreeing extremely well in all respects to (1.6.1), even at very low population

sizes N (asymptotically they must agree). It should be emphasized, however, that none

of our theoretical results depend upon such specific forms for mutation and selection, but

only on the canonical asymptotic forms (1.6.14, 1.6.15).

1.6.1 Stationary Distributions under Selection and Mutation

When two-way non-zero mutation µ1, µ2 > 0 is present, as described in the previous

section, it is readily verified that any GWF process must have a transition matrix P

possessing strictly positive entries. The classical Perron-Frobenius theorem then gives

the following:

Proposition 1.6.2. Let P be the transition matrix for a GWF chain with strictly pos-

itive two-way mutation rates and arbitrary selection. Then there is a unique stationary

distribution π for P, and (P∗)ku0 → π in norm as k →∞ for any initialization u0.

We will use continuum theory (Section 4.6) to develop further properties of the equi-
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librium.

1.6.2 Evolution of Moments under Selection and Mutation.

Interestingly, the invariance of the unconditional moments over the class of pure-drift

GWF processes extends to the case when mutation is present:

Theorem 1.6.3. For any mutation rates µ1 ≥ 0, µ2 ≥ 0, the first two moments of any

GWF process Xk coincide, for all time, with a corresponding Wright-Fisher model with

the same mutation rates and initial condition.

Proof. A calculation with the mutation matrix M shows that even under mutation,

EXk, EX
2
k satisfy linear difference equations identical to those of the Wright-Fisher model.

The theorem then follows from the uniqueness of the solutions to these equations given

an initial condition.

The above stability principle arises from the observation that the functions multiply-

ing the derivative operators in the mutation term (1.6.15) are linear functions in allele

frequency x. A crucial implication of this is that the evolution of the lower moments in

any neutral GWF process is closed, in the sense that moments of order m ≤ 2 depend

only on the moments of order m and lower in previous time generations. In fact, for a very

large class of GWF processes, including each of the model examples previously presented,

the structure of the moments is closed for all orders m, not merely those less than 2. In

this case the moments up to order m will satisfy a finite system of linear recurrences.

No such system is possible once non-zero selection is present, for the quadratic co-

efficient x(1 − x) multiplying the selection operator in (1.6.14) demands that EXm
k be
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a function of the (m + 1)-th moment in the previous generation. In this case, EX∞ is

then a function of all the higher moments at finite times; the closed structure breaks, and

we lose the invariance property of the preceding theorem. In fact, continuum methods

(Chapter 4) will be required for a serious analysis in the case of non-zero selection.

1.6.3 Fundamental Properties of Pure Selection Processes

By Pure Selection Process we denote a GWF process with zero mutation rates µi = 0.

In this case, the transition matrix takes the form P = SQ. Many of the methods used

in the previous sections to obtain information about the evolution of moments are not

applicable, due to loss of the martingale and moment structure. The aim of this section

is nonetheless to obtain some basic knowledge. Two properties are used repeatedly in the

subsequent theorems: strict positivity of the variance of interior states, and the fact that

positive selection makes Xk a submartingale (E[Xk|X0] ≥ X0 for every k), a statement

simply verified with the choice of selection matrix in Section 1.6.

To begin, recall that two states i, j are communicating if Pk
ij > 0 for some k, i. e. it is

possible to move from i to j in a finite number of steps.

Proposition 1.6.4. For a GWF process under strictly positive selection, all interior

states {1, . . . , N − 1} communicate with state N .

Proof. Fix an interior state i. Assume that it cannot enter N directly. If row i has

variance zero, this can only be if S moves i to state N or state 0, because the interior

rows of Q have non-zero variance. The former was ruled out by assumption, and the

latter cannot occur because P is a sub-martingale. Therefore row i has strictly positive
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variance. Since it is a submartingale, i can enter a state strictly larger with positive

probability. The argument can be iterated at this larger state, and there can only be a

finite number of steps until one reaches a state in direct communication with N .

Corollary 1.6.5. Under neutrality (P is both sub- and super-martingale), all interior

states are in communication with both 0, N .

Lemma 1.6.6. The absorbing states of the transition P of a Pure Selection Process are

precisely {0, N}.

Proof. By the stipulations in Section 1.6, states {0, N} are still absorbing, and no interior

state can be absorbing because of the non-zero variance condition on Q.

Proposition 1.6.7. Any stationary distribution p of P must be concentrated on the

absorbing states {0, N}.

Proof. Write p = (p1, . . . , pN ), let i be an interior state, and k a power of P for which i

can enter N with positive probability: Pk
i,N > 0. Denote R = Pk as this power, so that

Ri,N > 0, and consider the invariant equation R∗p = (Pk)∗p = (Pk)∗p = p, the N -th

entry of this vector relation is
N∑
j=1

Rj,Npj = pN (1.6.16)

Since RN,N = 1, and Ri,N > 0, pi = 0. One can now repeat the proof for each interior

state i.

Remark : The use of the communication property in the above demonstration was

crucial.
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As usual let us define the stopping time τ = inf{k : Xk ∈ {0, N}}, where Xk is the

process corresponding to P. The following is a generalization of Corollary 1.3.4.

Theorem 1.6.8. For a Pure Selection Process, P (τ <∞) = 1.

Proof. Xk is a bounded submartingale, so it converges almost surely to a limit X∞. The

distribution p of X∞ must be an invariant distribution: P∗p = p. By Proposition 1.6.7

p is concentrated on {0, N}. Thus Xk(ω)→ X∞(ω) for all ω in a set T with full measure,

and for each ω ∈ T , Xk(ω) integer-valued indicates it hits X∞(ω) ∈ {0, N} after a finite

time.

Theorem 1.6.9. Let Xk be a Pure Selection Process initialized at X0. Then P (Xτ =

N) ≥ X0/N

Proof. Xk is a bounded submartingale, therefore j = X0 ≤ EXτ = N · P (Xτ = N) by

optional stopping.

An obvious corollary summarising the above is the identification

Corollary 1.6.10. Let Xk be a Pure Selection Process. Let f : {0, . . . , N} → {0, . . . , N}

be any function such that 0 and N are fixed points. Then

P (Xτ = N) =
Ef(X∞)

N
=

limk→∞Ef(Xk)

N
(1.6.17)

Proof. The second equality comes from bounded convergence, the first because Ef(X∞) =

NP (X∞ = N) and X∞(ω) = N if and only if Xτ = N .
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Monotonic Processes

In the continuum theory it will be important to know that P (Xτ = N |X0 = j) is an

increasing function in j. Biologically, this corresponds to the natural prediction that

fixation probability is monotonically increasing in initial allele frequency. Remarkably,

this is not true for arbitrary choices of GWF process; the counterexamples are complex

and will not be discussed here. Our present aim is rather to establish a reasonable class

under which such monotonicity does hold.

Definition 1.6.11. A transition matrix Qij will be called monotonic if the functions

fi : n 7→
∑N

j=n Qij are an increasing family in i.

Each of the example processes considered in detail in Chapter 2 will turn out to possess

this monotonicity property. For now, we prove this for the Cannings class:

Lemma 1.6.12. If Q is the transition matrix for a Cannings process, Q is monotonic.

Proof. Letting ν = (ν1, . . . , νN ) symbolize the exchangeable vector in the Cannings model,

we have that row i and i+1 of Q have the same distribution as the variables
∑i

j=1 νj and∑i+1
j=1 νj , and the latter is almost surely larger, and therefore stochastically larger, than

the former.

Lemma 1.6.13. Let X and Y be two random variables for which P (Y ≥ t) ≥ P (X ≥ t)

for all t. Then if f is an increasing function, Ef(Y ) ≥ Ef(X) whenever the expectations

exists.

Proof. Immediate from integration by parts on the formula for Ef(Y ) and Ef(X).
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Remark : The converse to this Lemma is also true, as is readily seen by taking f to

be hinge functions.

We can now show that monotonicity is preserved under products.

Theorem 1.6.14. The product of monotonic transition matrices is monotonic.

Proof. Let R and P be monotonic, and Q = RP. Then

Qij =
N∑
k=1

RikPkj (1.6.18)

Consider the associated functions for Q, say fi and fi′ , where i′ ≥ i. Then

fi(n) =

N∑
j=n

Qij =

N∑
k=1

Rik

 N∑
j=n

Pkj

 (1.6.19)

fi′(n) =

N∑
j=n

Qi′j =

N∑
k=1

Ri′k

 N∑
j=n

Pkj

 (1.6.20)

Fix n. By monotonicity,
∑N

j=n Pkj is an increasing function in k, and we can think of

the sums in (1.6.19) and (1.6.20) as expectations of such a function under the measure

associated to rows i and i′ of R. Since i′ ≥ i, the monotonicity assumption on R combined

with Lemma 1.6.13 tells us fi′(n) ≥ fi(n), as desired.

One consequence of this product theorem is that as long as the selection matrix S

chosen is monotonic (and it is easily verified that the binomial selection matrix of Section

1.6 has this property), it suffices to check that the drift operator Q has the desired

property to verify for the composite P.

Corollary 1.6.15. If P is monotonic, so are the k-step transition kernels Pk of a gen-

eralized population process.
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We finally have the sought-after regularity theorem for monotonic processes:

Theorem 1.6.16. If the transition matrix P of a pure selection process is monotonic,

then P (Xτ = N |X0 = i) = P (X∞ = N |X0 = i) is increasing in i.

Proof. If i′ ≥ i, then Corollary 1.6.15 along with Lemma 1.6.13 indicate that E[Xk|X0 =

i′] ≥ E[Xk|X0 = i] for all k. Taking limits, since Xk → X∞ almost surely as described in

the proof of Theorem 1.6.8, and using bounded convergence, we have E[X∞|X0 = i′] ≥

E[X∞|X0 = i], and from this follows the second equality as X∞ concentrates on {0, N}.

The first equality is Corollary 1.6.10.

1.6.4 GWF Processes under One-Way Mutation

By a Pure Mutation GWF Process we mean a GWF process with zero selection, so that

P = QM. If we presume that only one-way mutation occurs from an allele of interest to

the other type at rate µ, then absorption at the boundary 0 is assured. Using techniques

similar to those employed above, it is again possible to derive bounds on the time to this

loss. We will only display the lower bound, since the upper bound, which can also be

derived, has a somewhat ungainly form.

Theorem 1.6.17. (Time to Loss for One-Way Mutation). Suppose one-way mutation

from a type occurs at rate θ = 2Nµ in a pure mutation GWF process, then

1. Started at a fixed fraction x of the population size, the mean time to loss EτN of

the type satisfies (as N →∞)

EτN ≥
xN log

(
x(σ2+θ/2)

σ2

)
(θ/2 + σ2)

(
x− σ2

σ2+θ/2

) (1.6.21)
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2. Started at X0 = 1, the mean time to loss EτN satisfies (as N →∞)

EτN ≥
log( σ2

σ2+θ/2
N)

σ2
(1.6.22)

Proof. Let A → B with probability µ > 0. An easy computation with the mutation

matrix of (1.6.6) shows:

E(Xk+1|Xk) = Xk(1− µ) (1.6.23)

E(X2
k+1|Xk) = cXk +

(
1− σ2

N − 1

)
(1− µ)2X2

k (1.6.24)

where c = µ+Nσ2/(N − 1) · (1− 2µ).

Taking the expectation of both sides, the lower moments satisfy the following recur-

rences:

EXk+1 = vEXk (1.6.25)

EX2
k+1 = cEXk + v2

(
1−

σ2
N

N − 1

)
EX2

k (1.6.26)

where v = 1− µ. Solving the recurrences produces

EXk = vkX0 (1.6.27)

EX2
k = c

vk−1X0

1− vλN
(1− (vλN )k) + (v2λN )kX2

0 (1.6.28)

with λN = 1− σ2
N

N−1 .

Using the Cauchy-Schwarz inequality, one discovers:

P (Xk = 0) ≤
EX2

k − (EXk)
2

EX2
k

(1.6.29)

Thus if τ is the time to absorption at 0,

P (τ > k) ≥ (EXk)
2

EX2
k

=
vkX0

C(1− (vλN )k) +X0(vλN )k
(1.6.30)
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where C = cv−1

1−vλN . The previous equation has the lower bound:

∫ ∞
0

X0(vλN )x

C(1− (vλN )x) + (vλN )xX0
dx =

X0(log(X0/C))

−[log(vλN )](X0 − C)
(1.6.31)

For large N , this bound reads

Eτ ≥ NX0 log(X0/(kN))

(θ/2 + σ2)(X0 − kN)
(1.6.32)

where k = σ2

θ/2+σ2 . This in turn reduces to, in the special cases X0 = 1, X0 = [xN ]:

Eτ ≥ log(kN)

σ2
(1.6.33)

Eτ ≥ xN log(x/k)

(θ/2 + σ2)(x− k)
(1.6.34)

For comparison, and akin to the situation with absorption times, Kimura’s classical

value of EτN =
∫ 1

1/N y
−1(1 − y)θ−1 dy ∼ 2 logN for time to loss of a new mutant under

σ2 = 1 is near the lower bound (1.6.22). On the other hand, it can be shown that the

Λ1-Cannings model has an analogous time to loss of the significantly larger order O(N)

generations (see Section 2.2).
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Chapter 2

Classes and Examples of Neutral

Models

Section 1.2.1 gave a brief introduction to a number of models of interest, both mathemat-

ical and biological. In this chapter we now formally take up their construction, analyzing

their specific properties with the aid of only discrete methods. One of the goals is to

demonstrate that the bounds on neutral absorption and fixation times derived in the

previous chapter are asymptotically tight. Finally, we make a preparatory study of the

convex structure of the space of discrete GWF processes, which will be an important

ingredient in our continuum theory. In each case, we have given the specification for the

(asymptotically) unit offspring variance σ2 = 1 model.
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2.1 The Wright-Fisher Model

We have already introduced this classical process as the GWF model with transition Qij =(
N
j

) (
i
N

)j (
1− i

N

)N−j
. Our present task is merely to record known results concerning its

neutral absorption and fixation times. We have the well-known proposition, from [5]:

Proposition 2.1.1. (Kimura)

1. Started at a fixed fraction x of the population size N , the mean time to absorption

EτN (in generations) of the Pure-Drift Wright-Fisher process satisfies

EτN ∼ −2N (x log x+ (1− x) log(1− x)) (2.1.1)

2. Started at X0 = 1, the mean time to absorption EτN satisfies (as N →∞)

EτN ∼ 2 logN (2.1.2)

3. Started at a fixed fraction x, the conditional fixation time Eτ∗N satisfies

Eτ∗N ∼ −2N
(1− x) log(1− x)

x
(2.1.3)

4. Started at X0 = 1, the conditional fixation time satisfies

Eτ∗N ∼ 2N (2.1.4)

We note that these values are of the same asymptotic order in N as the lower bounds

recorded in our Theorems 1.3.6 and 1.4.5, and indeed, are only a factor of at most two

larger, depending on the initializing state.
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2.2 The Λ1-Cannings Model

Cannings processes are defined by the prescription of an exchangeable positive integer-

valued random vector (ν1, . . . , νN ) satisfying the fixed population constraint
∑N

i=1 νi = N .

An equivalent specification is to give a measure on the sample space of partitions of N . We

define the Λ1-model as that Cannings model specified by the measure µ(P1) = 1− 1/N ,

and µ(P2) = 1/N , where Pi are the partitions P1 = 1 + · · ·+ 1, P2 = N + 0 + · · ·+ 0. The

resulting transition matrix for the allele frequencies has the form:

Qij =



N−i
N2 , j = 0

1− 1
N , j = i

i
N2 , j = N

(2.2.1)

Mechanistically, individuals produce exactly one offspring each generation, until a

random time of average length N generations where a single individual replaces the entire

population. This observation is formally set out in the following obvious proposition.

Proposition 2.2.1. The expected absorption time EτN and expected conditional fixa-

tion time EτN for the pure-drift Λ1-Cannings Process are each N generations, for any

initialization X0 /∈ {0, N}.

The preceding establishes the exact optimality of the upper bound in Theorem 1.3.6(b).
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2.3 The Minimal and Maximal Processes.

There are two extreme processes, which, while not possessing much biological relevance,

nonetheless will play a crucial technical role in our continuum theory. In particular they

will be seen to delimit two extreme boundaries within the space of GWF processes.

The conditional increments in the Wright-Fisher process are binomial distributions,

indicating that jumps to states at distance d decay roughly exponentially in d. In look-

ing for processes with markedly differing behavior, it is reasonable, then, to attempt to

maximize the mass assigned to the tails (and thus indirectly the incremental higher mo-

ments), subject to the GWF constraints. Define two cost functions: J
(i)
− (Pij) = Pi,0, and

J
(i)
+ (Pij) = Pi,N , which favor skewness to the extreme ends. The maximization of J

(i)
−

and J
(i)
+ , for each row i, subject to the linear GWF constraints (1.2.5, 1.2.6) is a problem

in linear programming. Application of the simplex method yields the following transi-

tion matrices, which we turn the Minimal and Maximal transitions respectively. Their

nomenclature will become clearer in Chapter 4.

Minimal Process

Define Q− as the transition matrix:
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

1 0 0 · · · 0

x
(1)
1 x

(1)
2 x

(1)
3 0 · · · 0

x
(2)
1 0 x

(2)
2 x

(2)
3 0 · · · 0

...

0 · · · 0 1


(2.3.1)

whose entries are

x
(i)
1 =

N − i
N(i+ 1)

, x
(i)
2 =

i

N
, x

(i)
3 =

N − i
N

− N − i
N(i+ 1)

(2.3.2)

The above stochastic matrix maximizes the cost function J
(i)
− subject to the GWF

conditions for every 0 ≤ i ≤ N .

Maximal Process

Define Q+ as the transition matrix:



1 0 0 · · · 0 0

x
(1)
1 x

(1)
2 0 · · · 0 x

(1)
3

0 x
(2)
1 x

(2)
2 0 · · · x

(2)
3

0 0 x
(3)
1 · · ·

...

0 · · · 0 1



(2.3.3)

with entries

x
(i)
1 =

i

N
− i

N(N − i+ 1)
, x

(i)
2 = 1− i

N
, x

(i)
3 =

i

N(N − i+ 1)
(2.3.4)
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The above stochastic matrix maximizes the cost function J
(i)
+ subject to the GWF

conditions for every 0 ≤ i ≤ N .

2.3.1 Expected Absorption Times of Extreme Processes

We shall compute the expected absorption and fixation times of the above extreme pro-

cesses. This is tenable, due to the special structure and sparseness of the transition

matrix.

Theorem 2.3.1. (Absorption/Fixation Times for Extreme Processes)

1. Started at a fixed fraction x of the population size, the mean time to absorption EτN

for the Maximal Process satisfies (as N →∞):

(1− x)N logN ≤ Eτ ≤ N logN (2.3.5)

2. Started in state i, the conditional time to fixation Eτ∗N for the Minimal Process is

asymptotically

Eτ∗ ∼ N log(N − i) (2.3.6)

Proof. We consider the maximal process because the analagous results for the minimal

process can be obtained by reflection. The upper bound of the theorem is simply that

recorded from Theorem 1.3.6. Suppose we begin in state 0 < i < N . The process

monotonically decreases until either a jump to state N occurs, or until 0 is reached. Let

tj be the expected time spent in state j, with X0 = i, conditioned on the event the

process reaches level j. We have Eiτ =
∑i

j=1 tj · Pj , where Pj is the probability that

the process reaches state j. If in state j, the probability of maintaining the state for
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n consecutive generations is (1 − j/N)n. It follows tj = N/j, and calculating Pj via

conditional probabilities produces

Eiτ =
N

i
+N

i−1∑
j=1

1

j

i∏
k=j+1

(1− 1

N − k
) (2.3.7)

The equation can be clarified by examination of the hitting time to zero conditioned

that Xn fixates at zero. Here, the probability that the process in state j maintains such

a state for n generations is [(1− j/N)/(1− j/(N(N − j + 1)))]n. Consequently,

Ei[τ |X∞ = 0] =

i∑
j=1

∞∑
n=0

(
1− j/N

1− j/N(N − j + 1))

)n
(2.3.8)

=
i∑

j=1

N + 1

j
∼ (N + 1) log i (2.3.9)

Given that

Ei[τ ] = Ei[τ |X∞ = 0] · (1− i

N
) + Ei[τ |X∞ = N ] · i

N
(2.3.10)

this proves the first part of the theorem. The second part follows from (2.3.8) and reflec-

tion of the maximal process.

We make the observation that these results have the same asymptotic orders and even

meet the upper bounds in Theorems 1.3.6, 1.4.5.

2.4 Power-Law Models.

The preceding models are technically useful in obtaining an intuition about the very large

space of possible generalization population models, but are perhaps somewhat inadequate

from the perspective of biology in offering viable alternatives to the Wright-Fisher process.

If the conditional distributions of the Wright-Fisher model are the discrete analogues of the
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Gaussian distribution, a natural class of alternatives to consider are those with conditional

distributions with power-law decay of index α.

2.4.1 Construction of the Models

Define the transition Q matrix:

Qij =



ci
1+b1,i|j−i|α , j < i, 0 < i < N

ci
1+b2,i|j−i|α , j ≥ i, 0 < i < N

δ0,j , i = 0

δN,j , i = N

(2.4.1)

We hope for slope parameters b1,i, b2,i > 0, and a normalisation ci making Q stochastic and

satisfying the GWF conditions (1.2.5, 1.2.6). This is borne out in the next theorem, which

proves the existence and uniqueness of solutions to the associated nonlinear equations.

Theorem 2.4.1. For each 0 < α ≤ 3, there exist unique positive b1,i > 0, b2,i > 0, ci > 0

satisfying the GWF conditions (1.2.5,1.2.6), for all population sizes N ≥ 12.

Proof. Existence: Fix a row i ≥ 1, and write for ease of notation b1, b2 in place of

b1,i, b2,i. From symmetry (b1,i = b2,N−i), we need only prove the result for rows i ≤ N/2.

The normalization ci must have the value

ci =

 i−1∑
j=0

1

1 + b1|j − i|α
+

N∑
j=i

1

1 + b2|j − i|α

−1

(2.4.2)

The mean m(b1, b2), and second moment s(b1, b2) of the resulting probability distribution

take the forms:

m(b1, b2) =

∑i−1
j=1

j
1+b1|j−i|α +

∑N
j=i

j
1+b2|j−i|α∑i−1

j=0
1

1+b1|j−i|α +
∑N

j=i
1

1+b2|j−i|α
(2.4.3)
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s(b1, b2) =

∑i−1
j=1

j2

1+b1|j−i|α +
∑N

j=i
j2

1+b2|j−i|α∑i−1
j=0

1
1+b1|j−i|α +

∑N
j=i

1
1+b2|j−i|α

(2.4.4)

A direct computation, or a simple probabilistic argument shows that ∂m
∂b2
, ∂s∂b2 < 0, and

∂m
∂b1
, ∂s∂b1 > 0, for all b1, b2 ≥ 0. Fix now any b1 ≥ 0, and let f(b2) = m(b1, b2). We have

f(b1) ≥ i, and

f(∞) =

∑i−1
j=1

j
1+b1|j−i|α + i∑i−1

j=0
1

1+b1|j−i|α + 1
< i (2.4.5)

The previous inequality can be verified by multiplication of both sides by the denominator

and simplifying to the obvious inequality

0 <
i

1 + b1iα
+

i−1∑
j=1

i− j
1 + b1|j − i|α

(2.4.6)

It follows that for each value of b1, there exists a unique value of b2 ≥ b1 for which

m(b1, b2) = i. Combined with the implicit function theorem, this gives us a differentiable

curve b2 = γm(b1), defined for all b1 ≥ 0, such that m(b1, γm(b1)) = i. Some further facts

about γm(b1) come from the previous observations: it lies above the line b2 = b1, and is

strictly increasing, since −∂m
∂b1
/∂m∂b2 > 0.

A similar analysis can be performed on the second moment function s. Fix b1 ≥ 0,

and let g(b2) = s(b1, b2), a strictly decreasing function. One checks that

g(∞) =

∑i−1
j=1

j2

1+b1|j−i|α + i2∑i−1
j=0

1
1+b1|j−i|α + 1

< i(1− i/N) + i2 (2.4.7)

the inequality being verified once again by reduction to a simple inequality, this time,

0 < i(1− i/N)

 i−1∑
j=0

1

1 + b1|j − i|α
+ 1

+
i2

1 + b1iα
+

i−1∑
j=1

i2 − j2

1 + b1|j − i|α
(2.4.8)
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Also,

g(0) =

∑i−1
j=1

j2

1+b1|j−i|α +
∑N

j=i j
2∑i−1

j=0
1

1+b1|j−i|α +N − i+ 1
≥
∑N

j=i j
2

N + 1
≥ i(1− i/N) + i2 (2.4.9)

for all i ≤ N/2. The final inequality can be verified by checking only at i = N/2 or

i = (N − 1)/2, depending on whether N is odd or even, since the left-hand side is

minimized, and the right-hand side is maximized at that value.

We now have a differentiable, strictly increasing curve b2 = γs(b1), defined for b1 ≥ 0,

for which s(b1, b2) = i(1− i/N) + i2 if and only if (b1, b2) is on the graph of the curve γs.

The intersection points of γm and γs (if any exist), then produce all the pairs (b1, b2) in

the positive quadrant which realise the GWF conditions. Let us establish the existence

of at least one intersection point. First we demonstrate that γs(0) > γm(0). We again

consider a row 1 ≤ i ≤ N/2. Let b1 = 0. To ease the notation, it will to suffice to prove

that γs(0) ≥ γm(0) when the γs curve is a constant i2 + i second moment, as opposed to

constant i2 + i(1− i/N) curve. By multiplying by the denominators in (2.4.3) and (2.4.4),

it is an easy matter of algebra to show that the mean condition is satisfied iff b2 solves

N−i∑
k=1

k

1 + b2kα
=

1

2
(i2 + i) (2.4.10)

and satisfies the (modified) second moment condition iff

N−i∑
k=1

k2 − i
1 + b2kα

=
2

3
i3 +

3

2
i2 +

5

6
i− 2i

N−i∑
k=1

k

1 + b2kα
(2.4.11)

We shall now show that if b2 is chosen so that the mean condition is satisfied, then the

left-hand side of (2.4.11) is larger or equal than its right-hand side, indicating γs(0) must

be greater than or equal to that value of b2 (because the LHS at b2 = ∞ is 0, and the

RHS at b2 =∞ is positive).
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When b2 is chosen such that (2.4.10) is satisfied, the RHS of (2.4.11) becomes −1
3 i

3 +

1
2 i

2 + 5
6 i, which is negative for all i ≥ 3. The smallest value that the LHS of (2.4.11) can

attain is:

N−i∑
k=1

k2 − i
1 + b2kα

≥
[
√
i]∑

k=1

(k2 − i) =
1

3
[
√
i]3 +

1

2
[
√
i]2 +

1

6
[
√
i]− i[

√
i] (2.4.12)

which is easily verified to be larger or equal to −1
3 i

3 + 1
2 i

2 + 5
6 i as long as i ≥ 3. Finally,

consider the cases i = 1, 2, which require a slight variation on this argument. First, it is

easy to verify by factorization that

9∑
k=1

k2 − 1− k
1 + b2k3

> 0 (2.4.13)

for all b2 ≥ 0. Since only the first term of that sum is negative, we deduce

N−1∑
k=1

k2 − 1− k
1 + b2kα

> 0 (2.4.14)

for all 0 < α ≤ 3, and N ≥ 10.

Now let i = 1, and b2 solve (2.4.10). The RHS of both (2.4.10) and (2.4.11) are now

1, and we can estimate the LHS of (2.4.11) with (2.4.14)

N−1∑
k=1

k2 − 1

1 + b2kα
>

N−1∑
k=1

k

1 + b2kα
= 1 = RHS of (2.4.11) (2.4.15)

which proves the case i = 1 under the proviso N ≥ 10.

Finally, let i = 2. This time, we use

10∑
k=1

k2 − 2− k/3
1 + b2k3

> 0 (2.4.16)

and hence
N−2∑
k=1

k2 − 2− 1
3k

1 + b2kα
> 0 (2.4.17)
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for all b2 ≥ 0, N ≥ 12 and 0 < α ≤ 3. If b2 solves (2.4.10), the RHS of (2.4.11) is 3, and

the RHS of (2.4.11) is 1, thus:

LHS of (2.4.11) =
N−2∑
k=1

k2 − 2

1 + b2kα
>

1

3

n−2∑
k=1

k

1 + b2kα
= 1 = RHS of (2.4.11) (2.4.18)

We have thus proved γs(0) > γm(0) for every row, as long as N ≥ 12. To complete our

proof of existence, we shall show that limb1→∞ γs(b1) = const. First recall γs is increasing;

we need only show it is bounded. Let K = i(1 − i/N) + i2. Rearranging the equation

s = K in (2.4.4) shows that (b1, b2) satisfies

N∑
j=i

j2 −K
1 + b2|j − i|α

=

i−1∑
j=0

K − j2

1 + b1|j − i|α
(2.4.19)

We had proven that for each positive b1, there exists a unique b2 > 0 satisfying the above.

In the left-hand side of (2.4.19), the first term is negative, and the remaining terms are

positive:
N∑
j=i

j2 −K
1 + b2|j − i|α

= −i(1− i/N) +
N∑

j=i+1

j2 −K
1 + b2|j − i|α

(2.4.20)

At b2 = 0, the RHS of the above expression is positive (exercise in algebra), and as

b2 → ∞, strictly negative, already implying the curve γs is bounded, since the RHS of

(2.4.19) is always positive. Additionally, there exists a finite value of b2 for which

−i(1− i/N) +

N∑
j=i+1

j2 −K
1 + b2|j − i|α

= 0, (2.4.21)

and this constant is the asymptotic value of γs. This fact, combined with the previously-

noted property that γm(b1) lies above the line b2 = b1, gives the existence of an intersection

point.

Uniqueness:

58



Because the constant mean curve γm is strictly increasing, the variance function re-

stricted to γm is strictly decreasing in b1 (this intuitively obvious statement can be verified

simply with an elementary probabilistic argument). Hence γm intersects γs at exactly one

point.

Remark: The actual proof goes beyond the statement of the theorem, to establish the

existence of appropriate parameters for all α > 0 and all N ≥ 12, for rows 3 ≤ i ≤ N − 2.

In our continuum theory (Chapter 3), it will be useful to be in possession of power-law

processes for parameters α > 3. Since continuum limits ignore rows a fixed distance from

the boundaries, we will simply assign arbitrary probability distributions to the first two

rows when α > 3 for the required extension.

2.4.2 An Algorithm for Computation of the Parameters

Our proof suggests an iterative algorithm that can be used to compute the parameters

b1, b2, given N and a row i — an algorithm necessary for simulations. Observe that

γs ≥ γm for all b1 smaller than the intersection point, and both curves strictly increase.

Thus given a point on γm lying before the intersection, its second component can be

increased until the point lies on γs; similarly the first component of a point (lying before

intersection) residing on γs can be increased until γm is hit. Initializing at (0, 0) and then

alternately finding these hitting points via a bisection algorithm on equations (2.4.3),

(2.4.4), one obtains a sequence of points converging to the desired intersection.
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2.4.3 Absorption times of Power-law models

Having introduced the power-law models, we proceed to study their neutral absorption

times near a boundary for these models, still restricting ourselves to discrete methods.

These times will turn out to be considerably longer than the absorption time for the

Wright-Fisher model. The general problem of exit times where the initializing frequency

occurs at fixed frequencies of N — and hence away from the boundary — can be attacked

with the methods of Chapter 4.

Absorption Time near the Boundary of the Cauchy Model

We will call the case α = 2 the Cauchy model. As usual, let EjτN , j = 0 . . . N be the

expected absorption time for the Cauchy process Xk of population size N , started at

X0 = j. Let Pij be the Markov transition matrix for Xk. Of vital importance is the

consideration of the holding time in state 1, τ∗ = inf{k : Xk 6= 1, X0 = 1} − 1.

First, a very simple Lemma:

Lemma 2.4.2. E1τ = Eτ∗ +
∑N−1

j=2
P1j

1−P11
· Ejτ

In words, this lemma simply states that the mean absorption time is the mean time

spent in the initial state 1, plus the average time to absorption starting at any of the

states 2 through N − 1, weighted by the conditional probabilities of actually jumping to

that state upon exit of state 1.

Proof. Let τ∗∗ be the random time to fixation after the state 1 exit; so that (τ |X0 = 1) =
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τ∗+ τ∗∗. Let Aj be the event that Xτ∗+1 = j. Then {Aj} partitions the sample space, so

P (τ∗∗ = a) =

n∑
j=0

P (τ∗∗ = a|Aj)P (Aj) (2.4.22)

Multiplying both sides by a and summing,

∞∑
a=0

aP (τ∗∗ = a) =
n∑
j=0

∞∑
a=0

aP (τ∗∗ = a|Aj)P (Aj) (2.4.23)

Eτ∗∗ =
n∑
j=0

E[τ∗∗|Aj ]P (Aj) (2.4.24)

From the Markov property, E[τ∗∗|Aj ] = Ejτ , and noting that P (A1) = 0, P (Aj) =
P1j

1−P11

for j 6= 1, and E0τ = ENτ = 0, the result follows.

We will use Lemma 2.4.2 to estimate lower and upper bounds for E[τ |X0 = 1], by com-

puting the expected holding time Eτ∗, and finding upper bounds on the second summand.

Let us now estimate more definitely the probabilities P1j .

Lemma 2.4.3. In the Cauchy model, one has the estimates

c = P11 = 1− logN

N
+ o(N−1 logN) (2.4.25)

P10 ∼
logN

N
(2.4.26)

Proof. Recall that the first row of the transition matrix for the Cauchy model is of form:

P1j =


c

1+b
(N)
1

, j = 0

c

1+b
(N)
2 (j−1)2

, j ≥ 1

(2.4.27)

with c a normalization, and b
(N)
1 , b

(N)
2 > 0 chosen to match the first two GWF statistics.

We aim to obtain the asymptotics for b
(N)
1 and b

(N)
2 . Writing out the Wright-Fisher
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constraints on mean and variance, one finds the following two equations must be satisfied

(we shall suppress the superscript N for ease of notation):

1

1 + b1
=

N−1∑
m=0

m

1 + b2m2
(2.4.28)

N−1∑
m=1

m2 + m
N − 1 + 1

N

1 + b2m2
= 1− 1

N
(2.4.29)

Equation (2.4.29) immediately implies b
(N)
2 ∼ N . Equation (2.4.28) allows us to eliminate

b1 and write all probabilities in terms of b2 alone, from which one deduces the statements:

c = P11 =
1

1 +
∑N−1

m=1
1

1+b2m2 +
∑N−1

m=1
m

1+b2m2

= 1− logN

N
+ o(N−1 logN) (2.4.30)

P10 = c ·
N−1∑
m=0

m

1 + b2m2
∼ logN

N
(2.4.31)

Now we can prove the following asymptotic for the absorption time of the Cauchy

model:

Theorem 2.4.4. In the Cauchy process started at X0 = 1, the expected absorption time

E1τN satisfies (as N →∞):

N

logN
≤ Eτ1 ≤ C

N

logN
(2.4.32)

where C = 1 +
∑∞

j=2
1+log j
(j−1)2

≈ 4.44

Proof. Asymptotic Lower Bound

Since P (τ∗ ≥ k) = Pk
11, by Lemma 2.4.3,

Eτ∗ =
∑
k≥0

Pk
11 = 1/(1−P11) ∼ N

logN
(2.4.33)
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And hence from Lemma 2.4.2,

E1τ ≥
N

logN
(N →∞) (2.4.34)

Asymptotic Upper Bound

Next we shall make use of our previously derived upper bounds on the expected

fixation time Ejτ for any GWF process. From the upper bound in Theorem 1.3.5, one

deduces the asymptotic inequality:

Ejτ ≤ N log

(
j(N − j)

N

)
+ j(N − j)

(
1− 1

N

)N log
(
j(N−j)
N

)
(2.4.35)

Therefore, the second term of Lemma 2.4.2 has the asymptotic upper bound (N →∞):

N−1∑
j=2

P1j

1−P11
Ejτ ≤

N

logN

N−1∑
j=2

Ejτ

1 +N(j − 1)2
(2.4.36)

≤ 1

logN

N−1∑
j=2

Ejτ

(j − 1)2
(2.4.37)

≤ N

logN

∞∑
j=2

1 + log j

(j − 1)2
(2.4.38)

from which we finally conclude the statement, via Lemma 2.4.2.

Absorption Time Near the Boundary of Power-law Modelss, 2 < α < 3

We observed in the last section that, started at a single individual X0 = 1, it required on

average O((logN)/N) generation for absorption to occur in the Cauchy (α = 2) model —
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not nearly as long as the O(N) length for that of the Λ1-model, but significantly longer

than the O(logN) generations of the Wright-Fisher model.

If the Wright-Fisher model is to be identified roughly as that α process associated to

α = ∞, one expects the above absorption time to decrease with increasing α. Our next

theorem is suggestive of this fact, and can be proved by identical methods to those in the

previous section.

Theorem 2.4.5. The expected absorption time E1τ for the power-law models started at

X0 = 1 satisfies (N →∞):

Eτ1 ≥ CαN3−α (2.4.39)

for all 2 < α < 3.

We remark that these absorption times are still of considerably larger orders than that

of the Wright-Fisher process; interestingly, the lower bound becomes trivial at α = 3.

This is no coincidence: with continuum theory we shall prove that at α = 3, the Kimura

diffusion limit holds, and hence the processes for α ≥ 3 can already be well approximated

by the Wright-Fisher system.

2.5 Discussion of GWF Absorption and Fixation Times

Having, in the last two chapters, proved a number of theorems mostly regarding aspects

of fixation and absorption in pure-drift GWF processes, we will pause here to give some

qualitative comments on our theory so far.

One of the original motivations in introducing a theory of generalised population

processes was to determine which aspects of the Wright-Fisher model were robust to
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changes to its offspring mechanism (as encoded, in Cannings models for example, in the

exchangeable variable ν). In the case of pure-drift processes, a number of quantities

remain unchanged to such perturbations — those, for instance, which are functions solely

of the lower-order symmetry properties, including fixation probabilities and the first two

unconditional moments. These stabilities carry over even under non-zero mutation, where

a special linear dependence on allele frequency preserves the closed structure of moments.

For functionals not exactly preserved over all pure-drift processes our study indicates

that sensitivity is highly dependent on the initial starting frequency of the process. For

example, the stability of absorption times increases as the initial frequency increases

in distance to an absorbing state(s). On the other hand, enormous deviations will be

seen to result when selection is introduced, regardless of initial distance to absorption, as

evidenced by variations in fixation probabilities over several orders of magnitude (Chapter

4).

These phenomena have a unified explanation, which we now delineate via a thought-

experiment on the probabilistic behavior induced by rows of the drift matrix. The center

row of QN for the Wright-Fisher process is a discrete symmetric distribution about N/2,

approximately Gaussian. Consider a deformation of this distribution, with the object

of maintaining its mean, or even its symmetry. Two directions of deformation arise:

probability mass may be moved to the tails of the distribution, or further concentrated

about the mean. The additional constraint of a fixed variance, however, implies that

for any mass moved to the extremes, a compensating mass must be concentrated near

its center; similar injunctions hold in the reverse direction. Our two GWF moment
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prescriptions (1.2.5, 1.2.6) then imply a range of distributions, some with heavier tails

than the Wright-Fisher model, but correspondingly more strongly peaked about their

mean, or conversely, possessing tails of greater decay, and smaller central peaks. These

two directions of deformation are associated with increases and decreases, respectively, of

the higher (centered) moments of the distribution.

One of these directions is fruitless, if models with significantly divergent dynamics from

the Wright-Fisher process are sought, for reductions in the size of the higher moments only

improves the applicability of a diffusion approximation. Hence non-standard behavior only

occurs for deformations which broaden the tails, along with the concomitant concentration

of mass about a distribution’s mean. Figure 1 illustrates the principles described above

through plots of the center row of QN associated to our model GWF processes: in each

case, the distributions are more strongly peaked and have heavier tails than the Wright-

Fisher counterpart. Similar ideas clearly hold for any of the rows.

One consequence of a strongly-peaked transition distribution is that the holding time

of states is lengthened. Indeed, the holding time ranges from O(1) in the Wright-Fisher

model to O(N) in the Λ1 model. This enormous variation is what principally accounts for

the great sensitivity of mean absorption times when initialized near absorbing states, since

such times are dominated by the holding period in the initial state. Conversely, when

started away from absorbing states, initial holding times contribute only a small fraction

to overall absorption times, the latter then more dictated by global conditions imposed

by the lower moments: thus their improved stability. This also explains the robustness of

conditional fixation times of new mutants in Theorem 1.4.5, despite an initialization near
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Figure 2.1: Center transition distributions of QN , N = 30. Solid: Wright-Fisher, Bold:

α = 2, Dashed: α = 1, circle-stem: Λ1.
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the boundary: conditioning effectively removes the absorbing state at 0, and once more

the initial holding period contributes negligibly to the overall fixation time.

2.6 The Convex Space of GWF Processes.

Let P1 and P2 be any two GWF transition matrices for a fixed population size N and

of some offspring variance σ2
N . Because the GWF conditions are linear constraints, their

convex combination P = aP1 +(1−a)P2, 0 < a < 1, defines another GWF process of the

same offspring variance. Hence the set of all GWF processes is a convex set. Moreover,

it is obvious that this set is compact in the standard topology for finite-dimensional

matrices. The Krein-Milman theorem then states that there must be extreme points, and

that the space of all GWF processes is the convex hull of these points. Our present aim

is to characterise these extreme points. The study will also prove useful later, since these

aptly named extreme points will also turn out to be extremal with respect to a number

of important biological quantities.

Let p = (p0, . . . , pN ) be a probability mass function on the states, i.e. a non-negative

vector summing to 1. It is clear that the space of probability mass functions with a

prescribed mean i and second moment si also form a compact convex set K, and that a

GWF transition matrix is extremal if and only if each of its rows is extremal in K.

Theorem 2.6.1. Let p = (p0, . . . , pN ) be a probability mass function p with a given mean

i and second moment si. Let n = #{j : pj 6= 0}.

(a) If n ≥ 4, then p is not extreme in K.

(b) If n ≤ 3, then p is extreme in K.
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Proof. For (a), define the linear (Vandermonde) transformation on the strictly positive

pmf values pk1 , . . . , pkn with indices k1, . . . , kn.

f(pk1 , pk2 , . . . , pkn) = (
∑
j

pkj ,
∑
j

kjpkj ,
∑
i

k2
j pkj ) (2.6.1)

We have f(p) = (1, i, si). Say n ≥ 4; then as f(pk1 , pk2 , pk3 , 0, 0, . . .) is invertible, the

implicit function theorem gives the existence of a second pmf defined on supp p, p′ 6= p

(continuity allows for positivity) such that f(p′) = (1, i, si). Define p′′ = p−ap′
1−a which is

positive for small a as well as satisfying f(p′′) = (1, i, si). Then p = ap′ + (1− a)p′′ is a

non-trivial convex decomposition.

To (b), note that the convex decomposants must have support a subset of supp p. For

n ≤ 3, f is injective, and so only a trivial decomposition is possible.

Let us now turn to the existence of extreme three-point pmfs. Certainly the support

of such measures cannot be arbitrary.

Theorem 2.6.2. Let i1 < i2 < i3 be indices in {0, . . . , N}, with corresponding pmf

(possibly zero) weights (p1, p2, 1− p1 − p2). Then there exists a unique mass function on

(i1, i2, i3) which has Wright-Fisher mean i and variance vi, if and only if the conditions

(a) i1 ≤ i ≤ i3

(b) d3d1 ≥ vi ≥ d2 max(d3, d1)

are satisfied, where d1 = |i − i1|, d2 = |i − i2|, d3 = |i − i3|. Under these circumstances,

the pmf is extreme and p1, p2 are the unique solution to
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i1 − i3 i2 − i3

i21 − i23 i22 − i23


p1

p2

 =

 i− i3

i(1− i/N) + i2 − i23

 (2.6.2)

Proof. Matrix equation (2.6.2) records the mean and variance conditions; the 2×2 matrix

is always invertible when i1 6= i2 6= i3; we simply find the algebraic conditions ensuring

p1, p2 ≥ 0, and p1 + p2 ≤ 1. Criterion (a) is obviously necessary, since the sought-after

mean must lie between i1 and i3. Assuming this, it is elementary algebra to show from

(2.6.2) that the three conditions reduce to (i3 − i)(i − i1) ≥ vi, vi ≥ (i3 − i)(i − i2), and

vi ≥ (i− i1)(i2− i), which is equivalent to (b). Extremity of the pmf comes from Theorem

2.6.1b.

Theorem 2.6.2 gives a fairly explicit characterisation of all extreme GWF processes

in terms of extremal probability distributions supported on at most three points. It is

immediate from this that the Minimal, Maximal, and Λ1-processes introduced earlier are

in fact extreme points in this space. We shall study these extreme processes at greater

length with the aid of continuum theory in the next chapter, and also make use of Theorem

2.6.2 in the proof of our continuum representation Theorem 3.5.1.
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Chapter 3

Continuum Theory

In this chapter we introduce a theory of continuum limits, which generalises the diffusion

equation approach traditionally used to explore population genetic models. This theory

becomes critical since it turns out that the continuous-time limits of GWF processes

do not generally possess continuous sample paths, and hence cannot be approximated

by diffusive processes. We derive the general representation theorem for the generators

of GWF processes, discuss the approximation of Markov chains by such processes, and

calculate the continuum limits for a number of the discrete models previously introduced.

3.1 Preliminary Ideas

In previous sections, we introduced a number of models for evolution, all having the

structure of a Markov chain X
(N)
k on states {0, . . . , N} with transition matrix P

(N)
ij . When

no mutation was present, {0, N} were absorbing states, and the quantities of scientific

interest were the expected absorption time Ejτ started at initial number j, and the
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probabilities of fixation at N . Under the influence of mutation, the germane questions

were expected time to loss of an allele, or the form of the stationary distribution µ.

The classical theory of Markov chains provides answers to these questions in the form

of solutions of systems of linear equations, specifically of the following type:

(P(N) − I)uN = g (3.1.1)

(P(N) − I)∗µN = 0 (3.1.2)

When g = 0, the solution u to (3.1.1) solves the fixation probability problem (subject

to appropriate boundary conditions); when g = −1, u solves the absorption time problem;

finally, (3.1.2) is the equation satisfied by the stationary distribution π.

While there are certain classes of transition matrices (e.g. so-called continuant chains),

for which the exact computations to (3.1.1, 3.1.2) are possible, the solution to these

equations generally becomes rapidly untenable for large N . Even if one can solve the

associated problems numerically, very little qualitative insight is afforded into the nature

of the solutions.

An alternative approach is the following. We consider scaling the Markov chains by

some natural parameter — population size N , for example, and hope that the scaled

processes converge to limiting, continuous-time Markov processes. Under many circum-

stances, the respective discrete solutions uN converge to functions u which satisfy the

continuous counterparts of (3.1.1,3.1.2), i. e. Gu = g and G∗µ = 0, where G is the gener-

ator of the limiting process. The solutions to the continuum problem are typically easier

to study, since they involve, in the diffusion case, the analysis of second-order differential

and partial differential equations — a classical and well-mined field. Qualitative insight
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is achieved because the continuum limit is very much a first-order approximation to the

dynamics of a discrete system: chains differing only in second-order effects have the same

continuum limit. The act of taking a continuum limit thereby collapses the number of

models to a simpler and, in many ways, more elegant space.

The seminal work in continuum approximation for the classical Wright-Fisher model

was pioneered by Kimura [11], and later put on a rigorous basis by Trotter and Feller.

There, it was shown that when Xk is the pure-drift Wright-Fisher model, then 1
NX[Nt]

converges to a continuous-time process Xt with generator Gu = 1
2x(1 − x)u′′(x), and

domain described by a local boundary condition, à la Feller’s classification.

In our consideration of Cannings, and, more generally, GWF processes, we will find

that the limiting generator G is very rarely a second-order differential operator. There

will exist a class of GWF processes which do converge to the standard Kimura diffusion,

but the continuum space will also contain many other interesting limits, with radically

different properties. The apposite questions in our theory will be: what form does the

limit G take? Can one rigorously prove the convergence (in some sense) of the discrete

model to the continuum? What characterisations can one prove about those processes

that do converge to the standard diffusion population genetic model? Can one solve or

obtain qualitative understanding of the solutions to the resulting continuum equations

(which may be non-differential)? We propose to answer these questions in the remainder

of this chapter and the next.
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3.2 The GWF Operator

We will begin our study by analyzing the operator, which we call the pure drift GWF

operator G : D ⊂ C[0, 1]→ [0, 1]R, given by

Gu(x) = σ2x(1− x)

∫ 1

0

u(y)− u(x)− u′(x)(y − x)

(y − x)2
dΩx(y) (3.2.1)

for a family of (Borel) probability measures {Ωx, 0 < x < 1} supported on [0, 1]. Its

importance will become apparent as the chapter progresses. We will sometimes use the

notation GΩ to emphasize the dependence of the operator on the family of measures Ω.

Also, in the sequel we will useM1([0, 1]), or more simplyM1 to denote the space of Borel

probability measures on [0, 1].

3.2.1 Domain and Range

Since G can be an unbounded operator, D = D(G) can in general only be a dense subset

of the continuous functions. What should its domain include? This depends greatly on

the Markov chains for which G will be a putative limiting generator. A clue is taken

from the Wright-Fisher generator, wherein D ⊃ C2[0, 1]. In many of our examples (for

instance, in the Cannings construction to come later), the polynomials P on [0, 1] will

also play a role, since many of our physical models have important structural regularities

involving polynomials. Indeed, for the purposes of construction of generators, P will

serve as the simplest choice for a core. In any case, in what follows below, we make the

assumption that D contains at least P, and in many settings also C2[0, 1]. In each case

we will indicate if the theorem holds true if the domain of G is known only to contain the
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polynomials, or the respective modification of the theorem under that scenario.

The specification of G only on C2 or P will be insufficient to make G the generator

of a C0-semigroup. In such circumstances we will take the closure of G (which must be

proven to exist) — in other words, the smallest closed set in the graph topology containing

{(u,Gu), u ∈ D(G)}.

For notational purposes we write

hu(x, y) =
u(y)− u(x)− u′(x)(y − x)

(y − x)2
(3.2.2)

It follows from Taylor’s theorem that hu is continuous on [0, 1] × [0, 1] whenever u ∈

C2[0, 1], with the obvious definition of hu at the removable singularity x = y. The

following lemma is now useful.

Lemma 3.2.1. For any fixed 0 < x∗ < 1, and given f ∈ C2[0, 1] (or P), there exists a

u ∈ C2[0, 1] (respectively P) such that hu(x∗, y) = f(y) for y ∈ [0, 1].

Proof. It is easy to check that u(y) = f(y)(y − x∗)2 fits the bill.

Further topological restrictions on the family of measures Ωx must be made, if G is to

map into the continuous functions: specifically, the measure-valued function Ω : (0, 1)→

M1 must satisfy a continuity condition. This is addressed in the following proposition.

Proposition 3.2.2. Let G : C2[0, 1]→ (0, 1)R be defined above, for some Borel probability

measure valued function Ω : (0, 1) → M1. Then Im(G) ⊂ C(0, 1) if and only if Ω

is sequentially weak-∗ continuous: for any x ∈ (0, 1) and xn → x, one has, for any

f ∈ C[0, 1],

lim
n→∞

∫ 1

0
fdΩxn =

∫ 1

0
fdΩx (3.2.3)
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Proof. For necessity, assume the continuity condition is not satisfied: then there exists a

point x∗ and a sequence xn → x∗, and a continuous function f , which can in fact be taken

to be C2, so that |
∫ 1

0 fdΩxn −
∫ 1

0 fdΩx| > ε, for all n. Select u as in Lemma 3.2.1, so that

hu(x∗, y) = f(y). Because of uniform continuity of hu, the functions hu(xn, y) viewed as

functions of y, converge uniformly to hu(x∗, y); from this, it is easy to see Gu must be

discontinuous at the point x∗. For the sufficiency, let xn → x, then

∣∣∣∣ ∫ 1

0
hu(xn, y)dΩxn −

∫ 1

0
hu(x, y)dΩx

∣∣∣∣ ≤ (3.2.4)∣∣∣∣ ∫ 1

0
hu(xn, y)dΩxn −

∫ 1

0
hu(x, y)dΩxn

∣∣∣∣+

∣∣∣∣ ∫ 1

0
hu(x, y)dΩxn − hu(x, y)dΩx

∣∣∣∣
(3.2.5)

The first term is small from continuity of hu; the second term is small from continuity of

Ω.

Remark: The above proposition remains true if G is only defined on P instead of C2.

In the sequel we shall assume Ω satisfies the continuity condition. Observe that by ap-

plying Taylor’s theorem, G : C2[0, 1] → C(0, 1) satisfies |Gu(x)| ≤ σ2

2 x(1 − x)‖u′′‖∞.

Therefore we can assign the value 0 to Gu at the endpoints, and we learn then G must

map C2 into continuous functions vanishing at the boundaries.

Here is a very simple thing: let Φ be the map taking Ω 7→ (GΩ : C2[0, 1] → C[0, 1]).

Then

Lemma 3.2.3. Φ is injective.

Proof. Let Ω1 and Ω2 be different families, and say Ω1
x 6= Ω2

x at x. Then there is a C2
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function f distinguishing them:
∫ 1

0 f(y)dΩ1
x(y) 6=

∫ 1
0 f(y)dΩ2

x(y). Now select a u ∈ C2 so

that hu(x, y) = f(y) as in Lemma 3.2.1, and then GΩ1u(x) 6= GΩ2u(x).

Remark: Lemma 3.2.3 also remains true if D(GΩ) = P, instead of C2.

3.2.2 Topology of GWF Operators

Let M1([0, 1]) denote the set of probability Borel measures on the unit interval. The

usual weak-∗ topology put on M1 is the weakest topology which makes all the linear

functionals lf (µ) =
∫ 1

0 fdµ, f ∈ C[0, 1] continuous. While in general weak-∗ topologies

are not metrizable, when restricted to bounded sets they sometimes are, and M1 is

precisely one of those cases: its topology can be induced by the so-called Levy-Prokhorov

metric. Let us quickly review some of the salient facts.

If (S, d) is a metric space, we shall denote by M1(S) the set of Borel measures on S.

For any closed set F , define its ε-neighborhood by Fε = {x ∈ S : d(x, F ) < ε}. Then the

Prokhorov distance between the measures µ, ν is:

ρ(µ, ν) = inf{ε > 0, µ(F ) ≤ ν(Fε) + ε, for all F closed} (3.2.6)

For notation, we let C(S) denote the bounded and continuous functions on a S. The

important properties of the Prokhorov metric are summarised in the following, highly

useful, theorem:

Theorem 3.2.4. (Prokhorov). Let (S, d) be a complete, separable metric space. Then:

1.
∫
fdµN →

∫
fdµ for all uniformly continuous f ∈ C(S) if and only if ρ(µN , µ)→ 0.

2. M1(S) is complete and separable under the Prokhorov metric.
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3. (Characterization of compacta). M ⊂ M1(S) is relatively compact if and only if

M is a tight family, i.e. for every ε > 0 there exists a compact subset K such that

infµ∈M µ(K) ≥ 1− ε.

This theorem has relevance in our situation, for our state-space S = [0, 1] is compact,

and thus all families of measures on S are tight. It follows from Prokhorov’s theorem that

(M1([0, 1]), ρ) is a compact metric space, and in particular, any family of measures from

M1([0, 1]) has a weakly convergent subsequence to some other probability measure — a

fact which will be used often in the sequel. The theorem also gives an alternative way to

describe the topological weak-∗ constraint of Proposition 3.2.2 on {Ωx}: it is equivalent

to say that it is simply any continuous function Ω : (0, 1)→ (M1([0, 1]), ρ).

Finally, let C((0, 1),M1([0, 1]) be the set of all weak-∗ continuous families of Borel

probability measures. We can topologize this set with the usual compact-open topology,

metrised by d(Ω1,Ω2) = supx∈(0,1) ρ(Ω1
x,Ω

2
x); this gives a notion of closeness to the differ-

ent GWF operators. Note, however, the resulting metric space is not compact, nor even

complete.

3.3 Semigroups

We would like to associate G with a C0-semigroup of bounded operators Tt : C0 → C0.

This entails that G be so defined as to satisfy the Hille-Yosida conditions [13]. If Tt is

contractive (‖Tt‖ ≤ 1), positivity preserving (Ttf ≥ 0 whenever f ≥ 0) and conservative

(G1 = 0), then it is called a Feller semigroup. A major theorem of Markov processes is

that to every Feller semigroup, there corresponds a strong Markov process (aptly named a
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Feller process) on the space of cadlag paths [12]. We shall now quickly review the relevant

ideas from semigroup theory.

Definition 3.3.1. A linear operator A : D → C[0, 1] is said to satisfy the maximum

principle if for every f ∈ D and x0 ∈ [0, 1] satisfying f(x0) = supx∈[0,1] f(x), it follows

Af(x0) ≤ 0.

Important consequences of the maximum principle are the dissipativity of the linear

operator A, which allows one to prove the Yosida resolvent estimate, and positivity of

the resolvent. It is simple to see that our GWF operator (3.2.1) satisfies the maximum

principle on C2[0, 1] (or any subset).

Lemma 3.3.2. The operator G defined by (3.2.1) on D = C2[0, 1] satisfies the maximum

principle.

Proof. Let f ∈ C2, and x0 be a maximum, i.e. f(x0) = sup f(x). If x0 is at the boundary,

then we have previously shown that Gf(x0) = 0. If x0 is an interior point, f ′(x0) = 0,

and f(z) ≤ f(x0) for all z, immediately implying Gf(x0) ≤ 0.

The important theorem which permits an operator G to induce a Feller semigroup is

the following:

Theorem 3.3.3. (Hille-Yosida Theorem c.f. [12]) Let G : D → C[0, 1] be a linear

operator defined on a domain D dense in C0, satisfying the maximum principle, G1 = 0,

and Im(λ − G) dense in C[0, 1] for some λ > 0. Then G is closable, and its closure Ḡ

generates a Feller semigroup.
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Given any closed linear operator G : D(G)→ C[0, 1], a subset C ⊂ D(G) of functions

is called a core for G if {(f,Gf), f ∈ C} = {(f,Gf), f ∈ D(G)}, where the closure of the

set is defined with respect to the topology induced by of the graph norm ‖(f,Gf)‖ =

‖f‖+ ‖Gf‖.

Abstractly, with the GWF operator G defined in C2 (or P), all the conditions of

the Hille-Yosida Theorem are fulfilled, with the possible exception of the range condition

Im(λ−G) = C[0, 1], which depends on the particular form of the family of measures

Ω. In the constructions to come at the end of this chapter, we will perform an explicit

check of this density. Should the range condition be satisfied, C2 (respectively P) then

becomes a core for G.

Suppose we start with a pre-generator G as defined by the GWF operator on C2

or P, and we are able to verify the density condition on λ − G for a chosen family Ω.

Because λ− Ḡ must then biject onto C[0, 1], there is only one closed extension G̃ of G for

which λ− G̃ is still injective, namely G̃ = G. From this we get the following uniqueness

principle:

Proposition 3.3.4. (Uniqueness of semigroup). If Ω is a sequentially weak-∗ continuous

family of measures, GΩ the associated GWF operator with domain containing C2 (respec-

tively P), and GΩC
2 (respectively GΩP) is dense in C[0, 1], then there is exactly one

Feller semigroup with a generator G̃ extending GΩ.

In other words, the specification of an appropriate family of measures {Ωx} and that

the domain of the generator include enough functions such that (λ − G)D is dense in

C[0, 1] suffices to uniquely prescribe the semigroup.
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In the theory of diffusion processes, the infinitesimal first and second-order parameters

(and hence the formal symbol of the generator) suffice to only characterize the behavior of

a random process on the interior of its state-space. To fully prescribe the random process,

boundary knowledge must be appended, and this information is encoded in the domain of

the generator. Similar considerations would generally attend for the formal symbol GΩ;

but if we suppose that C2, or the polynomials, form a core for GΩ, then this boundary

behavior is fixed, as the next proposition shows.

Proposition 3.3.5. Let Xt be a Feller process on [0, 1] with generator G̃ which extends

GΩ : C2 → C0, and where C2 is a core for G. Then {0, 1} are absorbing states of Xt.

Proof. Since GΩu vanishes at the endpoints for all u ∈ C2, this extends to its closure,

and G̃ annihilates every function in its domain at {0, 1}. That these are absorbing points

now follows from Dynkin’s characterization on absorbing states (x is an absorbing state

if and only if for every u ∈ D(G̃) one has G̃u(x) = 0, see [4]).

Remark: The above clearly holds with P replacing C2.

3.4 Markov Chains, their Limits, and Approximation of

Semigroups

Let P
(N)
ij be a sequence of Markov chains on the states {0, . . . , N} associated to the

random processes X
(N)
k . We shall define the continuum limit for this sequence as the

limiting process when time and state are scaled by N :

X(t) = lim
N→∞

1

N
X

(N)
[Nt] (3.4.1)
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whenever the above limit X exists as a Feller process. The type of convergence we will

desire will be made precise in the course of this chapter, and amounts to convergence

in the strong operator topology with respect to the generators, and weak convergence of

measures on the function space of cadlag paths.

The situation can also be looked at analytically, in terms of the corresponding semi-

groups. If Xt is a putative limiting Feller process, then Ttf(x) = E[f(X(t))|X0 = x]

defines a C0-semigroup Tt. Let G : D(G)→ C[0, 1] be its generator. Then it is one of the

first results of semigroup theory that the semigroup u(x, t) = Ttf(x) solves the parabolic

equation

∂u

∂t
= Gu (3.4.2)

with initial data u(x, 0) = f(x). Moreover, if G satisfies appropriate maximum principles

(often the case when G is associated to a random process), the solution is unique up to a

specification on the parabolic boundary.

The sequences of Markov chains P(N) can be thought of as defining approximating

semigroups to the solution of the parabolic equation (3.4.2). Indeed, we can embed P(N)

into the space of bounded operators from C[0, 1] to itself as follows: first for x = i/N ,

i = 0, . . . , N , define

P̃Nf(x) =

N∑
j=0

P
(N)
ij f(j/N) (3.4.3)

and then linearly interpolate the values of P̃Nf(x) to define P̃Nf(x) for all x ∈ [0, 1]. It

is easy to check that P̃N is a bounded operator on C[0, 1].

If discrete approximations are defined recursively as uk+1 = P̃Nuk, with u0 = f , one

intuitively expects the sequence uk to approximate the actual solution of (3.4.2), as long
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as the following “consistency” condition is satisfied:

lim
N→∞

‖(N(P̃N − I)−G)u‖ = 0 (3.4.4)

for a sufficiently large set of u in the domain of G. These hopes are borne out in the

Markov approximation theorem of Trotter and Skorohod (c.f. [12]), a theorem already

presaged in analytic form by the so-called Lax equivalence theorem [13]. It will be our

main tool for establishing and justifying the use of continuum limits to analyse properties

of the discrete system. Before stating it in a form most congenial for our purposes, we

remind the reader that DE(A) is the space of cadlag functions on a state space A having

values in a metric space E.

Theorem 3.4.1. (Trotter-Skorohod-Lax Approximation Theorem) Let Xt be a Feller pro-

cess on state-space [0, 1] with generator G and a core C ⊂ C[0, 1]. Let Tt be the as-

sociated semigroup to G. Let ZNk be a time-homogeneous Markov chain on state-space

{0, 1/N, . . . , 1} associated to a transition matrix P
(N)
ij , and define the extended process

X(N) with sample paths in cadlag space D[0,1][0,∞) by X(N)(t) = Z
(N)
[Nt]. Also let P̃N be

the bounded operators defined above in (3.4.3) associated to the Markov chain transition

matrices P
(N)
ij . Then if for each u ∈ C, we have

lim
N→∞

‖(N(P̃N − I)−G)u‖ = 0, (3.4.5)

then the approximations uk = P̃ kNf tend to Ttf as k/N tends to t, for all f ∈ C[0, 1].

Even more, if X(N)(0) converges weakly to X(0), then X(N) converges weakly to X in

D[0,1][0,∞), i.e. for every function f : D[0,1][0,∞) → R continuous in the Skorohod

topology, Ef(X(N))→ Ef(X). In particular, the finite-dimensional distributions of X(N)

converge to those of X.
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Remark : In the above theorem, one must begin with an operator G that is already known

to be the generator for a semigroup or Markov process (for instance, by checking the

Hille-Yosida conditions), before one attempts to verify the convergence of the chains. It

is tempting to wish to deduce that G is a generator of a semigroup, on the basis of such

convergence. While this does not appear generally possible, we will give an example where

such a conclusion can be made, in the construction of Cannings generators (see Section

3.9). Additional comments on this issue appear in that section.

The following lemma will make some of our calculations less burdensome:

Lemma 3.4.2. The convergence in (3.4.5) is equivalent to uniform convergence only on

the sampling sets KN = {0, 1/N, 2/N, . . . , 1}:

lim
N→∞

sup
x∈KN

|(N(P̃N − I)−G)u(x)| = 0 (3.4.6)

Its proof is simple and will be omitted.

As a complement and converse which is slightly stronger than Theorem 3.4.1 above,

the following proposition in the theory of approximating semigroups will be useful to us,

quoted here from [12] and recast for our purposes into the language of Markov chains.

Theorem 3.4.3. Let Tt be a strongly continuous contraction semigroup on C[0, 1] with

generator A, and let C be a core for A. Let P(N) be a Markov transition matrix, AN =

N(P(N) − I), and πN : C[0, 1] → C(KN ) the canonical projection onto the samples

KN = {0, 1/N, . . . , 1}. Then the following are equivalent:

1. For each f ∈ C[0, 1], T > 0, sup0≤t≤T ‖P
[tN ]
N πNf − πNTtf‖ → 0
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2. For each f ∈ C, there exists fN ∈ C(KN ) such that ‖fN −πNf‖ → 0 and ‖ANfN −

πNAf‖ → 0.

The implication (2) implies (1) in the preceding will be the direction employed in

justifying our continuum limits.

We have been using the term continuum limit somewhat loosely up to this point. We

now make the formal definition.

Definition 3.4.4. Let X
(N)
k be a sequence of pure-drift GWF processes normalised to

the state space {0, 1/N, . . . , 1}. We will say that the Feller process Xt is a continuum

limit for {X(N)} if the generator G of Xt satisfies

‖(N(P(N) − I)πNu)− πNGu‖ → 0 (3.4.7)

for every u ∈ D(G), and πN is the projection in Theorem 3.4.3.

Remark: It is clear that (3.4.7) need only be verified on a core of G.

3.5 A Representation Theorem

In this section we shall prove a representation theorem for the continuum limits of pure-

drift GWF processes, which demonstrates that the generator for any limiting GWF model

must take on the form of the GWF operator (3.2.1).

As a reminder, we say that a Markov chain with transition matrix P
(N)
ij on states
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{0, . . . , N} is GWF if its first two moments have the form

N∑
j=0

jP
(N)
ij = i (3.5.1)

N∑
j=0

(j − i)2P
(N)
ij = σ2

N i(1− i/N) (3.5.2)

with σ2
N → σ2 < ∞. Our motivating question is this: can anything be said about the

form of G, if the convergence (3.4.5) takes place?

To fix notation, and also to introduce an important transformation, let S be the set

of all probability measures µ with positive variance on [0, 1]. For notational purposes, we

let ρ : S →M1([0, 1]) be the transformation:

(ρ(µ))(A) =

∫
A

(y −m)2

v
dµ(y) (3.5.3)

where m and v are respectively the mean and variance of µ. Also, we let ζ be the map

taking measures of positive variance on {0, . . . , N} to measures on the sampling sets

KN ⊂ [0, 1] by simple scaling of the state by N . Finally define

Γ = ρ ◦ ζ (3.5.4)

The following is our principal structure theorem.

Theorem 3.5.1. (Representation of Continuum Limits). Let P̃N be the sequence of

bounded operators on C[0, 1] associated to a sequence of Pure-Drift GWF Markov chains

P
(N)
ij as described in Section 3.4, and suppose there is a linear operator G : D → C[0, 1],

with C2[0, 1] ⊂ D (respectively P ⊂ D), for which

lim
N→∞

‖(N(P̃N − I)−G)u‖ = 0 (3.5.5)
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for each u ∈ C2 (respectively ∈P). Then there exists a continuous function Ω : (0, 1)→

M1([0, 1]) from the interval to Borel probability measures topologized with the Prokhorov

metric, such that

Gu(x) = σ2x(1− x)

∫ 1

0

u(y)− u(x)− u′(x)(y − x)

(y − x)2
dΩx(y) (3.5.6)

for all u ∈ C2[0, 1] (respectively P).

Proof. We will prove it for D ⊃ C2[0, 1]; the proof for when D only contains the polyno-

mials P goes through similarly. The convergence condition (3.5.5) implies, in particular,

that given any fixed 0 < x < 1, and u ∈ C2, limN N(P̃N − I)u([xN ]/N) exists, and has

value Gu(x). Let FN,i, with support in KN be the atomic measure associated with the

i-th row of the transition PN
ij . We can rewrite N(P̃N − I) as:

N(P̃N − I)u([xN ]/N) = N

∫ 1

0
u(y)dFN,[Nx](y)−Nu([xN ]/N) (3.5.7)

= N

∫ 1

0
(u(y)− u([xN ]/N))dFN,[xN ](y) (3.5.8)

= N

∫ 1

0
(u(y)− u([xN ]/N)− u′([xN ]/N)(y − [xN ]/N))dFN,[xN ](y) (3.5.9)

= σ2
N

[xN ]

N

(
1− [xN ]

N

)∫ 1

0

u(y)− u([xN ]/N)− u′([xN ]/N)(y − [xN ]/N)

(y − [xN ]/N)2
dF ∗N,[xN ](y)

(3.5.10)

= σ2
N

[xN ]

N

(
1− [xN ]

N

)∫ 1

0
hu([xN ]/N, y)dF ∗N,[xN ](y) (3.5.11)

where F ∗i,N = Γ(Fi,N ) is the measure defined by (when i 6= 0, N):

dF ∗N,i(y) =
N(y − i/N)2

σ2
N (i/N)(1− i/N)

dFN,i(y) (3.5.12)

and for i ∈ {0, N}, F ∗N,i can be an arbitrary measure. Equation (3.5.9) follows because of

the mean condition (3.5.1) on GWF processes. Fix 0 < x < 1. Because of the variance
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condition of GWF processes, the sequence of measures {F ∗N,[Nx]} are Borel probability

measures. We claim that this sequence has a weak limit. Indeed, if not, we can select

two subsequences {F ∗Nk,[Nkx]}, {F
∗
Nj ,[Njx]} which converge to different measures Ω1

x and

Ω2
x. Let f be a C2 function which distinguishes them:

∫ 1
0 f(y)dΩ1

x(y) 6=
∫ 1

0 f(y)dΩ2
x(y),

and select a u ∈ C2 as in Lemma 3.2.1 such that hu(x, y) = f(y). Then along the two

subsequences, we have the different limits∫ 1

0
hu([xNk]/Nk, y)dF ∗Nk,[Nkx](y)→

∫ 1

0
hu(x, y)dΩ1

x(y) =

∫ 1

0
f(y)dΩ1

x(y) (3.5.13)∫ 1

0
hu([xNj ]/Nj , y)dF ∗Nj ,[Njx](y)→

∫ 1

0
hu(x, y)dΩ2

x(y) =

∫ 1

0
f(y)dΩ2

x(y) (3.5.14)

which contradicts the existence of the limit
∫ 1

0 hu([xN ]/N, y)dF ∗N,[Nx](y).

So we have proved, for each x ∈ (0, 1), that F ∗N,[Nx] converges to a measure Ωx. This

measure must be a probability measure, because of tightness of the sequence F ∗N . Finally,

taking the limit of (3.5.10), we see that

Gu(x) = lim
N→∞

N(PN − I)u([xN ]/N) (3.5.15)

= lim
N→∞

σ2
N

[xN ]

N

(
1− [xN ]

N

)∫ 1

0
hu([xN ]/N, y)dF ∗N,[xN ](y) (3.5.16)

= σ2x(1− x)

∫ 1

0
hu(x, y)dΩx(y) (3.5.17)

The continuity of Ω has already been observed from Theorem 3.2.2 and our remarks

following Theorem 3.2.4.

3.6 Convergence of GWF Markov Chains

The actual criterion for convergence in (3.4.4) is posed in terms of generators. In our

applications it will be helpful to reformulate this convergence in simpler terms, using
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the corresponding measure-valued function Ω. This easy-to-verify condition comes in the

form of a type of “uniform convergence in distribution” — posed in terms of a weighted

uniform convergence of the moments.

Theorem 3.6.1. (Condition for convergence of GWF processes). Let P
(N)
ij be a sequence

of GWF Markov chains, P̃N the associated bounded linear operators, and let F ∗N,i be the

measures

F ∗N,i(·) = Γ(P
(N)
i,· ) (3.6.1)

with Γ as defined by (3.5.4, 3.5.3). Let Ω ∈ C([0, 1],M1([0, 1]). If for each k = 1, 2, . . .,

lim
N→∞

sup
0≤i≤N

i

N

(
1− i

N

) ∣∣∣∣∫ 1

0
ykdF ∗N,i(y)−

∫ 1

0
ykdΩi/N (y)

∣∣∣∣ = 0, (3.6.2)

Then one has convergence of the generators: for each u ∈ C2,

lim
N→∞

‖N(P̃N − I)u−GΩu‖ = 0 (3.6.3)

Proof. As in the proof of Theorem 3.5.1, we can write

N(P̃N − I)u(i/N)−GΩu(i/N) (3.6.4)

= σ2 i

N
(1− i/N)

(∫ 1

0
hu(i/N, y)dF ∗N,i(y)−

∫ 1

0
hu(i/N, y)dΩi/N (y)

)

Now note that if r(x, y) is any bivariate polynomial: r(x, y) =
∑K

j=0 qj(x)yj , the assump-

tions of our theorem easily implies

sup
i=0,...,N

∣∣∣∣σ2 i

N
(1− i/N)

(∫ 1

0
r(i/N, y)dF ∗N,i(y)−

∫ 1

0
r(i/N, y)dΩi/N (y)

)∣∣∣∣→ 0 (3.6.5)

If u ∈ C2, hu ∈ C([0, 1]2), so approximate hu by r(x, y) to within ε uniformly; then the
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usual argument adduces from (3.6.4) that

sup
i

∣∣∣N(P̃N − I)u(i/N)−GΩu(i/N)
∣∣∣ (3.6.6)

= sup
i

∣∣∣∣σ2 i

N
(1− i/N)

(∫ 1

0
hu(i/N, y)dF ∗N,i(y)−

∫ 1

0
hu(i/N, y)dΩi/N (y)

)∣∣∣∣→ 0

(3.6.7)

This implies the theorem, from Lemma 3.4.2.

3.7 Converse to the Representation Theorem

The representation Theorem 3.5.1 showed that if the semigroups corresponding to the

discrete Markov chain converged to that of a limiting semigroup, then the generator for

that semigroup had to satisfy the particular form of a GWF operator, assuming that

C2[0, 1] or P was contained in the domain of that generator. We can ask the converse

question: Given a GWF operator, is there a sequence of GWF chains converging to it? To

answer this, we will make use of our study on the convex space of GWF chains (Section

2.6).

3.7.1 Approximation of Ω by Extreme Measures

We shall construct a sequence of GWF chains which converge to a given GΩ in the sense

of Theorems 3.5.1 and 3.6.1. This result will require several stages of approximation.

First let us consider a sequence of measures QN , with the trait that QN is a Dirac

mass at the point jN/N , jN ∈ {0, . . . , N}. We will show how QN can be approximated

by Γ(µ), where Γ is as usual defined by (3.5.4, 3.5.3), and µ is an extreme GWF measure

of a pre-specified mean i and variance vi = σ2i(1− i/N).
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It will be enough to restrict ourselves to the case [σ
√
N ] ≤ i ≤ N − [σ

√
N ]. Note that

the variance is always bounded by σ2N/4. Now given a QN of the type above, always

place i2 = i, so that d2 = 0 and the lower-bound condition on existence in Theorem 2.6.2

is always satisfied. Our scheme divides into two cases. Case 1: |jn − i| ≤ [σN3/4]. In

this case put i1 = i− [σ
√
N ], and i3 = i+ [σ

√
N ], and since d1d3 = ([σ

√
N ])2 > σ2N/4,

Theorem 2.6.2 gives us the existence of an extreme GWF measure µN supported on

i1, i2, i3. For case 2, we assume that |jN − i| > [σN3/4], and jN > i. Put i2 = i again,

i3 = jN , and i1 = i − [σ
√
N ]. Then d1d3 ≥ vi once more, and we obtain here again the

existence of an extreme measure µN . In the last case 3: jN < i, and |jN − i| > [σN3/4].

Put i2 = i, i1 = jN , and i3 = i+ [σ
√
N ], and apply Theorem (2.6.2) to find the extreme

measure. For each QN then, and a pre-specified index i, we have constructed a sequence

of extreme GWF measures µN , each concentrated on 3 points, according to the scheme

above. Let us calculate the distributional error between QN and F ∗N = Γ(µN ).

Lemma 3.7.1. Let f ∈ C1. Under the scheme set forth above,∣∣∣∣∫ 1

0
f(y)dQN (y)−

∫ 1

0
f(y)dF ∗N

∣∣∣∣ ≤ max{4σ, 1}‖f ′‖
N1/4

(3.7.1)

Of prime important is that the RHS goes to zero and is independent of the indices i

and jN .

Proof. One needs to check the statement in each of the three cases of the scheme set forth.

The measure F ∗N is always concentrated on at most two points, whose values are:

F ∗i,jN (i1/N) = r1 =
i− i1
i3 − i1

(3.7.2)

F ∗i,jN (i3/N) = r2 =
i3 − i
i3 − i1

(3.7.3)
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where r1 + r2 = 1. In case 1,∣∣∣∣∫ 1

0
f(y)dQN (y)−

∫ 1

0
f(y)dF ∗N

∣∣∣∣ = |f(i1/N)r1 + f(i3/N)r2 − f(jN/N)| (3.7.4)

≤ |f(i1/N)− f(jN/N)|+ |f(i3/N)− f(jN/N)|

(3.7.5)

Since |i1 − jN | ≤ σ
√
N + σN3/4, and |i3 − jN | ≤ σ

√
N + σN3/4, the result follows. In

case 2,∣∣∣∣∫ 1

0
f(y)dQN (y)−

∫ 1

0
f(y)dF ∗N

∣∣∣∣ = |f(i1/N)r1 + f(jN/N)r2 − f(jN/N)| (3.7.6)

= |f(i1/N)− f(jN/N)| r1 (3.7.7)

Note r1 ≤ σ
√
N

σN3/4 = N−1/4. Hence the result. Case three is handled similarly.

We can take now convex combinations of the extreme points above to generalise to

the case where QN is any discrete measure.

Lemma 3.7.2. Let f ∈ C1. Fix [
√
N ] ≤ i ≤ N− [

√
N ], and let Ri be the set of probability

mass functions on {0, . . . , N} with mean i and variance σ2i(1− i/N). Given a sequence

of discrete measures QN each supported on KN , there exists a sequence of GWF measures

µN ∈ Ri such that∣∣∣∣∫ 1

0
f(y)dQN (y)−

∫ 1

0
f(y)dF ∗N (y)

∣∣∣∣ ≤ max{4σ, 1}‖f ′‖
N1/4

(3.7.8)

where F ∗ = Γ(µN ).

Proof. Write QN =
∑N

j=0 ajδj/N . For each j, find the extreme µjN as in the scheme

above, and then put µN =
∑N

j=0 ajµ
j
N . Finally, observe that Γ preserves/respects convex

combinations, and apply Lemma 3.7.1 to each term.
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Finally, we require a lemma on the approximation of any measure by an atomic one.

Let QN be any Borel measure on [0, 1], and let FN denote its distribution function. We

denote F̃N its quantization: constant on the semi-open interval [j/N, (j + 1)/N), for

j = 0, . . . , N − 1, and F̃N (j/N) = FN (j/N), j = 0, . . . , N . We let µN be the atomic

measure constructed from F̃N , it has support on KN . Then

Lemma 3.7.3. If f ∈ C1,

∣∣∣∣∫ 1

0
f(y)dQN (y)−

∫ 1

0
f(y)dµN (y)

∣∣∣∣ ≤ ‖f ′‖N (3.7.9)

Proof. Integration by parts shows
∫ 1

0 fdG = f(1) −
∫ 1

0 G(y)f ′(y)dy, where G is the dis-

tribution function of measure dG. Thus we can write:

∣∣∣∣∫ 1

0
f(y)dQN (y)−

∫ 1

0
f(y)dµN (y)

∣∣∣∣ =

∣∣∣∣∫ 1

0
f ′(y)FN (y)dy −

∫ 1

0
f ′(y)F̃N (y)dy

∣∣∣∣ (3.7.10)

≤ ‖f ′‖
∫ 1

0
|FN (y)− F̃N (y)|dy ≤ ‖f

′‖
N

(3.7.11)

We can now prove the following converse to the representation theorem.

Theorem 3.7.4. Let Ω be any continuous function from (0, 1) → M1([0, 1]), and GΩ :

C2 → C[0, 1] the associated GWF operator defined by (3.2.1). Then there exists a sequence

of GWF Markov chain P
(N)
ij , with associated operators P̃N , such that limN→∞ ‖N(P̃N −

I)u−GΩu‖ = 0 for every u ∈ C2.

Proof. We only need to verify the convergence condition of Theorem 3.6.1 for our discrete

chains. To construct the approximating sequence, let P
(N)
ij have arbitrary GWF measures

for rows near the boundary i ≤ [
√
N ] and i ≥ N − [

√
N ]; these rows go automatically to
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zero (as long as they have the right mean i and variance vi) because of the variance weights

in Theorem 3.6.1. For each N , consider the measures {Ωi/N}, [
√
N ] ≤ i ≤ N −

√
N . For

each row i, now, approximate Ωi/N first by an atomic measure QN on KN as in Lemma

3.7.3, then use Lemma 3.7.2 to find the GWF measures µiN with mean i and variance

σ2i(1 − i/N) whose transform under Γ approximates QN . The estimates in the lemmas

above are independent of the row means i, and so by triangle inequality one discovers:

sup
i∈KN

i

N
(1− i/N)

∣∣∣∣∫ 1

0
f(y)dΓ(µiN )−

∫ 1

0
f(y)dΩi/N

∣∣∣∣ ≤ ‖f ′‖( 1

N
+

max{4σ, 1}
N1/4

)
+

2‖f‖√
N

(3.7.12)

for every f ∈ C1 (the last
√
N term is the maximum possible contribution from the

boundaries), which approaches zero as desired.

Theorems 3.5.1 and 3.7.4 taken together give a representation formula for the generator

of the continuum limits of GWF chains. Any sequence of convergent chains in the sense

of 3.4.4 has a continuum limit of type (3.2.1); moreover the limiting measure Ω can be

computed from (3.5.12). Conversely, for any operator of type (3.2.1) there is a sequence

of GWF chains converging to it. Applications of our representation formula will appear

in Chapter 4.

3.7.2 The Kimura Diffusion Limit

The standard Wright-Fisher diffusion limit can be defined as that Markov process with

generator G̃, which is the closure of Gu(x) = 1
2σ

2x(1 − x)u′′(x) where D(G) = C2[0, 1].

From Lemma 3.2.3, GΩ = G on C2 if and only if Ω is the family of Dirac measures

Ωx(y) = δx(y). Thus a Corollary of Theorem 3.6.1 is
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Corollary 3.7.5. Let P
(N)
ij be the transition matrices for a sequence of GWF Markov

chains X
(N)
k . Let F ∗N,i be the measures

F ∗N,i(·) = Γ(P
(N)
i,· ) (3.7.13)

where Γ is defined by (3.5.4, 3.5.3). If for each continuous function f ∈ C[0, 1],

lim
N→∞

sup
0≤i≤N

i

N

(
1− i

N

) ∣∣∣∣∫ 1

0
f(y)dF ∗N,i − f(i/N)

∣∣∣∣ = 0 (3.7.14)

Then
X

(N)
[Nt]

N converges weakly to the Kimura diffusion X(t).

Proof. Condition (3.7.14) clearly implies the moment hypothesis of Theorem 3.6.1 with

Ωx(y) = δx(y): it is equivalent to it by a standard Weierstrass approximation argument.

The conclusion of Theorem 3.6.1 demonstrates the weak convergence.

The previous corollary gives a non-trivial condition — essentially necessary and suf-

ficient — for the convergence of a GWF chain to the Kimura diffusion, and is more

discriminating than the (2 + δ)-moment condition of Norman [17].

Continuity of Sample Paths

Let Xt be a Feller process on [0, 1] with generator G which is the continuum limit of a

sequence of pure-drift GWF chains. When does Xt have continuous sample paths — in

other words, is a diffusive process? D. Ray has given the following characterization:

Theorem 3.7.6. (D. Ray). Xt has continuous sample paths almost surely if and only if

G is of local character: given f ∈ D(G), if f vanishes identically in a neighborhood of

x∗, then Gf(x∗) = 0.
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We can apply the foregoing to show that the Kimura diffusion is the only GWF

continuum process with continuous sample paths.

Theorem 3.7.7. Let Xt be a GWF continuum process with generator GΩ, for some Ω.

Then Xt has continuous sample paths almost surely only if Xt is the Kimura diffusion.

Proof. If Xt is the Kimura diffusion, Ωx(y) = δx(y), leading to GΩu(x) = σ2

2 x(1−x)u′′(x),

which is clearly of local character. On the other hand, suppose Ω : (0, 1) → M1([0, 1])

is any other family of measures: then there exists a point 0 < x∗ < 1 and an open set

A excluding a neighborhood of x∗ such that Ωx∗(A) > 0. Construct a non-negative C2

function f on [0, 1] such that f vanishes in a neighborhood of x∗, and strictly positive

on A. Define the function u(y) = f(y)(y − x∗)2 as in Lemma 3.2.1; thus u vanishes in a

neighborhood of x∗. But from Lemma 3.2.1,

GΩu(x∗) = σ2x∗(1− x∗)
∫ 1

0
f(y)dΩx∗(y) > 0 (3.7.15)

and so GΩ is not of local character.

3.8 Continuum Limits and the Generator Problem

The machinery developed so far gives us a recipe for the computation and justified use

of a continuum limit to approximate any discrete GWF Markov chain. It consists of the

following steps:

1. Given P
(N)
ij , the transition matrices for the sequence of GWF chain X

(N)
k , form the

measures:

F ∗N,i(·) = Γ(P
(N)
i,· ) (3.8.1)
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where Γ is given by (3.5.4, 3.5.3).

2. Compute a putative limiting family of measures, Ωx, defined by the weak limit

Ωx = w. lim
N→∞

F ∗N,[xN ] (3.8.2)

3. Check that the resulting GWF operator GΩ defined on C2 or P by (3.2.1) possesses

an appropriate closed extension, i. e. is actually the generator for a continuous-time

Markov process (see the Generator Problem below)

4. Verify that the convergence condition of Theorem 3.6.1 holds to rigorously justify

the approximation.

3.8.1 The Generator Problem

Given an operator G : D(G)→ C[0, 1] with D(G) dense in C[0, 1], an important problem

is to determine whether G possesses an extension G̃ which is the generator for a C0-

semigroup. As already previously discussed, according to the semigroup theory, this

would then imply existence of a solution to the backward equation

∂u

∂t
= G̃u, u(x, 0) = f(x) (3.8.3)

as well as the existence of a time-homogeneous Markov process with cadlag paths with

generator G̃.

Since GWF operators satisfy the maximum principle, the main task of solving the

generator problem consists in verifying the third Hille-Yosida condition: that for some

λ > 0, there is a set of functions C in the domain of G for which (λ − G)C is dense in

C[0, 1]. In each of the applications and continuum limits we consider in the next chapter,
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this verification will be simple, due to the structure of the generator. But can any general

argument be made?

We have shown that, for every GWF operator defined on C2 into the continuous

functions, there exists a sequence of Markov chains whose discrete generators converge to

it. It is tempting on this basis to conclude that the limiting GWF operator then indeed

possesses a requisite extension which makes it the generator for a C0 semigroup. For this

it would be natural to employ the approximating semigroups P̃N (with GN = N(P̃N−I)),

and verify the density condition by a limiting argument. This argument can succeed if

the limiting GΩ is a bounded operator (which, unfortunately, is not the interesting case,

since the semigroup exp(tG), defined by functional calculus already gives an independent

solution to the generator problem), but fails in general when G is unbounded, because the

C0 limit of functions in the domain of G generally fails to fall back in the domain of G.

For its success, one would require additional control on the approximating semigroups:

at least some information about the regularity of the limits of classes of functions under

the operation of GN .

If we cannot expect this deduction to be possible at present, there are nevertheless

forebodings that the conclusion may yet be true. For example, one can show, using results

from functional analysis, that our converse Theorem 3.7.4 already implies the existence

of a weak solution to (3.8.3). An ongoing project of ours is to determine whether our

theorem, with sufficient additional control over the approximating bounded operators

P̃N , can be used to prove the existence of a strong classical solution. One would expect

this to be true, for example, when Ω has sufficient smoothness properties.

98



Despite the generic obstacles outlined above, there do exist classes of regular GWF

chains which, due to their special properties, allow the above plan to work with no further

restrictions. We study these in the “abstract” Cannings construction of Section 3.9. For

now, and as a preparation for the sequel, we note that if GΩ satisfies the special constraint

of mapping polynomials to polynomials of a certain degree, than it is simple to solve the

generator problem.

Theorem 3.8.1. Let a continuous Ω be prescribed, and suppose that GΩx
m is a polyno-

mial of degree at most m, for every m = 0, 1, 2, . . .. Then GΩ has a closure GΩ which

generates a C0 semi-group, and P is a core for GΩ.

Proof. As discussed above, we need only check the Hille-Yosida density condition. As

GΩx
m is a polynomial, let A = {am : m = 0, 1, 2, . . .} be the sequence of coefficients

multiplying the leading term in this series of polynomials, and let λ > 0 be any number

not in A. It then follows (λ − GΩ)xm is a polynomial of degree m; by taking linear

combinations it follows (λ−GΩ)P is dense in C[0, 1], and so the closure GΩ generates a

C0 semi-group, and P is a core for this generator.

The hypotheses of the preceding theorem seem special, but in fact it will suffice for

many of our most important examples and applications. We use it next to establish the

existence of continuum limits for Cannings processes.
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3.9 An Abstract Construction of Continuum Cannings Pro-

cesses

The discrete Cannings processes have a very special property, which is a consequence of

exchangeability. We recall that these were processes whose transitions are defined by

Xk|Xk−1
d
=

Xk−1∑
i=1

νi (3.9.1)

where (ν1, . . . , νN ) is a positive exchangeable vector summing to N . By induction, it is

trivial to prove that the conditional moments are polynomials, in the following way:

E[Xm
k+1,N |Xk,N ] = pN,m(Xk,N ) (3.9.2)

where pN,m is a polynomial whose coefficients depend on the power m and chain size N .

Even more importantly, deg pN,m = m, and hence depends on m only, not N .

This special property can be generalised to the following class, which we will call

Polynomial-moment GWF (PGWF) processes:

Definition 3.9.1. A Markov chain on states {0, . . . , N} will be called a PGWF process

if its first two conditional moments satisfy the GWF conditions, and the higher moments

satisfy (3.9.2), where deg pN,m ≤ m, and is a function of m only.

We prove the existence of a continuum limit for any sequence of “convergent” PGWF

chains, with the theory delineated previously. The success of solving the generator prob-

lem for the limiting GΩ hinges upon the fact the uniform limit of polynomials of a given

degree or lower is itself a polynomial. Therefore, regularity of the limit is assured.
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Theorem 3.9.2. Let P(N) be the transition matrix of a GWFP chain, πN : C[0, 1] →

KN the canonical projection and suppose that for every u ∈ P, N(P(N) − I)πNu is

uniformly Cauchy sequence. Then there exists a continuous measure-valued function Ω

and associated operator GΩ : P → C[0, 1], such that GΩ is the generator for a C0-

semigroup Tt; the polynomials P are a core for GΩ, and we have convergence of the

approximating semigroups to Tt: for each f ∈ C[0, 1],

‖P [tN ]
N πNf − πNTtf‖ → 0, ∀t ≥ 0. (3.9.3)

The limiting generator has the property that GΩx
m is a polynomial of degree at most m.

Proof. If u ∈ P, f = limN N(P(N) − I)πNu exists as a continuous function; define

G : P → C[0, 1] by Gu = f . In fact, because P(N) is a GWFP chain, the sequence is a

uniform limit of polynomials of bounded degree whenever u is a polynomial, and hence G

maps polynomials of degree m to polynomials of degree at most m. It is trivially verified

that G is linear. Now use Theorem 3.5.1 to see that G = GΩ for some continuous family

of measures Ωx. The density condition in the Hille-Yosida Theorem is valid by Theorem

3.8.1. Convergence of the semigroups follows from Theorem 3.4.3.

The preceding theorem establishes the existence of a continuum limit for all conver-

gence Cannings processes, and shows that the generator must be of the form of a GWF

operator for some GΩ. The particular family of measures Ω was constructed abstractly,

as a weak limit. On the surface, it appears that our construction gives very little quan-

titative information as to the nature of the process, but it turns out we will be able to

prove, with the modest aid of qualitative methods, quite interesting properties of such
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features as probability of fixation and the evolution of moments. Our representation thus

has decided advantages over the infinite-series representation of the generator established

by Moehle for Cannings processes in [16].

3.10 Incorporating Selection and Mutation

The representation of Theorem 3.5.1 holds only for pure-drift GWF processes, since its

proof heavily depends upon the martingale property. But it is easy to deduce the correct

representation for processes in the presence of selection and mutation. Recall in Section 1.6

that we had defined, given any pure-drift transition QN , the corresponding full model of

evolution by the composite PN = SNQNMN , where SN ,MN were selection and mutation

matrices satisfying conditions:

lim
N→∞

‖(SN − I)πNu− πN (βx(1− x)u′(x))‖ = 0 (3.10.1)

lim
N→∞

‖(MN − I)πNu− πN (
1

2
(−θ1x+ θ2(1− x))u′(x))‖ = 0 (3.10.2)

for every u ∈ C2[0, 1], and where πN is the projection onto the sampling points

{0, 1/N, . . . , 1}, as usual. In particular, it is easy to prove using a Taylor expansion that

the specific selection and mutation matrices introduced in Section 1.6 satisfy the above

two considerations.

Theorem 3.10.1. Let Q
(N)
ij be a sequence of pure-drift GWF processes which have a

continuum limit associated with operator GΩ : C2[0, 1] → C[0, 1]. Define the composite

sequence of processes P(N) = S(N)Q(N)M(N). Then P(N) has a continuum limit associ-
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ated with the operator Ĝ : C2[0, 1]→ C[0, 1] given by:

Ĝu(x) = βx(1− x)u′(x) +
1

2
(−θ1x+ θ2(1− x))u′(x)) +GΩu(x) (3.10.3)

and ‖(P(N) − I)πNu− πN Ĝu‖ → 0.

Proof. From the algebraic identity

N(S(N)Q(N)M(N)−I) = N(S(N)−I)+NS(N)(Q(N)−I)+NS(N)Q(N)(M(N)−I) (3.10.4)

we deduce that

‖N(P(N) − I)πNu− πN Ĝu‖ ≤ ‖N(S(N) − I)πNu− πN (βx(1− x)u′(x))‖ (3.10.5)

+ ‖NS(N)(Q(N) − I)πNu− πNGΩu‖ (3.10.6)

+ ‖NS(N)Q(N)(M(N) − I)− πN (
1

2
(−θ1x+ θ2(1− x))u′(x))‖

(3.10.7)

which goes to zero from (3.10.1, 3.10.2), the hypotheses on the pure-drift process QN and

the observation that ‖R(N)πNu− πNu‖ → 0 for each of R = S,Q,M.

Remark: The preceding proof also shows that as long as the selection and mutation

matrices satisfy (3.10.1) and (3.10.2), the order in which they are composed in P(N) =

S(N)Q(N)M(N) is immaterial in the continuum limit.

3.10.1 The Generator Problem for Ĝ

We now define the complete GWF operator ĜΩ,β,θ1,θ2 incorporating all the forces of drift,

selection, and mutation as the linear map Ĝ : C2[0, 1]→ C[0, 1]

ĜΩ,β,θ1,θ2u(x) = βx(1− x)u′(x) +
1

2
(−θ1x+ θ2(1− x))u′(x)) +GΩu(x) (3.10.8)
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Does Ĝ have an extension which makes it the generator of a continuous-time Markov

process? We again must verify the Hille-Yosida conditions. It is obvious that Ĝ is con-

servative: G1 = 0. Also,

Lemma 3.10.2. For β ∈ R and θ1, θ2 ≥ 0, ĜΩ,β,θ1,θ2 satisfies the maximum principle.

Proof. If x0 is an interior maximum, u′(x0) = 0 and it is obvious as in Lemma 3.3.2 that

Ĝu(x0) ≤ 0. If x0 = 0, then u′(0) ≤ 0, and since θ2 ≥ 0 we again have Ĝu(0) ≤ 0. If

x0 = 1, then u′(1) ≥ 0, and the result follows again because θ1 ≥ 0.

The most difficult hypothesis to check is, as usual, the range condition. For a pure

mutation process it is trivial for polynomial generators:

Theorem 3.10.3. Let a continuous Ω be prescribed, and suppose GΩx
m is a polynomial

of degree at most m, for every m = 0, 1, . . .. Then for every θ1, θ2 ≥ 0, β = 0, ĜΩ,β,θ1,θ2

has a closure Ĝ that generates a C0 semi-group, and P is a core for this extension. In

consequence Ĝ is the generator for a time-homogeneous Markov process with cadlag paths.

Proof. It remains only to verify the density condition. If β = 0, then (λ − Ĝxm) is a

polynomial of degree m whenever λ is not chosen from the set of coefficients multiplying

the leading term in the series of polynomials Ĝxm. Thus (λ − GΩ)P is dense in C[0, 1]

by taking linear combinations.

When β is not zero, Ĝxm is still a polynomial, but of degree m+1, and so the function

g(x) = x is not in ĜP: the triangulization argument above fails. Nevertheless, it is likely

that the conclusion still holds.
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The generator problem can also be tackled by perturbation methods: for instance, if

the order of GΩ is larger than one, then the selection term can be viewed as a perturbation,

and the generator problem for Ĝ is effectively reduced to the generator problem for the

pure-drift operator GΩ. A similar situation holds if GΩ can be dominated by the selection

and mutation operators — which will sometimes be the case in a few of our important

examples. In that scenario, the following perturbation theorem, due to Hille-Phillips will

be vital:

Theorem 3.10.4. (Hille-Phillips Perturbation Theorem [9]) If A is the generator of a

C0 contraction semigroup, and B is a bounded operator on C0, then A+ B with domain

D(A) generates a C0 semigroup.

3.11 Continuum Limits of Example Processes

In this section we will give concrete calculations of the continuum limits of a number of

our pure-drift example processes, in each case deriving the limiting generator. We shall

follow the recipe given in Section 3.8.

3.11.1 Wright-Fisher Model

Since this is the classical model, we only review it from the perspective of our continuum

theory. One finds that

dF ∗N,i(y) =
(y − i)2

i(1− i/N)

(
N

y

)(
i

N

)y (
1− i

N

)N−y
(3.11.1)
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If we fix 0 < x < 1, let i = [xN ] and take N → ∞, it is easy to show that, due to the

lightness of the tails,

lim
N→∞

dF ∗N,[xN ](y) = δx(y) (3.11.2)

Thus we deduce that Ωx(y) = δx(y), in which case GΩ = 1
2x(1 − x)u′′(x), which is

a polynomial operator of the type described in Theorem 3.8.1, and thus possesses a

requisite extension which makes it the generator for a continuous-time Markov process.

The question of convergence of the chain to GΩ is easy and classical, requiring only a

uniform Taylor expansion to third order [22].

3.11.2 Λ1-Cannings Model

By using the definition of the transition matrix (2.2.1) one easily computes that for

0 < x < 1,

dΩx(y) = lim
N→∞

dF ∗N,[xN ](y) = xδ0(y) + (1− x)δ1(y) (3.11.3)

and thus that

GΩu(x) = (1− x)u(0)− u(x) + xu(1) (3.11.4)

GΩ on C2 is a polynomial operator satisfying the hypotheses of Theorem 3.8.1, and hence

has closure generating a C0 contractive semigroup. The convergence condition (3.6.1) of

Theorem 3.6.1 is trivial to verify.
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3.11.3 Minimal and Maximal Processes

A straightforward calculation with the matrices (2.3.1) and (2.3.3) show that in this case,

dΩx(y)− = lim
N→∞

dF ∗N,[xN ],−(y) = δ0(y) (3.11.5)

dΩx(y)+ = lim
N→∞

dF ∗N,[xN ],+(y) = δ1(y) (3.11.6)

where Ω−,Ω+ are the families of measures associated with the minimal and maximal

continuum limits, respectively. Thus the minimal and maximal GWF operators have the

form:

G−u(x) =
1− x
x

(u(0)− u(x) + xu′(x)) (3.11.7)

G+u(x) =
x

1− x
(u(1)− u(x)− (1− x)u′(x)) (3.11.8)

These two GWF operators are of polynomial type, and so have closures which generate

C0 semigroups. The convergence condition of Theorem 3.6.1 is once again easy to verify.

3.11.4 Power-law Models

We now come to a significantly more elaborate and realistic set of processes: the α-power-

law processes. The derivation of their continuum limit is far more involved. Theorem 2.4.1

proved the existence of their transition matrices for every 0 < α ≤ 3, but as remarked

at the end of that section, the proof actually gave a construction for all α > 0, for rows

3 ≤ i ≤ N−2. Since continuum limits are unaffected by rows that are a fixed distance from

the boundaries, we define power-law processes for all α by placing arbitrary transition

measures in the states i = 1, 2, N − 2, N − 1.
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Parameter limits

We shall first need to compute limN dF
∗
N,[xN ](y), which entails detailed knowledge of the

asymptotics of the parameters b
(N)
1,i , b

(N)
2,i . The theorem below produces this, and also

intimates the presence of a phase change at the critical value α = 2.

Theorem 3.11.1. Fix 0 < x < 1. In the power-law process with 0 < α < 3, the sequence

of parameters (b
(N)
1,[xN ], b

(N)
2,[xN ]) have the asymptotic forms:

(b
(N)
1,[xN ], b

(N)
2,[xN ]) ∼ (dα(x), dα(x))N

2−α
1−1/α , 2 ≤ α < 3 (3.11.9)

(b
(N)
1,[xN ], b

(N)
2,[xN ]) ∼ (d(1)

α (x), d(2)
α (x))N2−α, 0 ≤ α < 2 (3.11.10)

where dα(x), d
(1)
α (x), d

(2)
α (x) are non-zero finite values for each x and α.

Remark: Observe that the exponent in the asymptotics of N changes continuously but

non-smoothly at α = 2.

Proof. Fix 0 < x ≤ 1, and let i = [xN ]. Let b
(N)
1,[xN ], b

(N)
2,[xN ], be the unique values simulta-

neously satisfying (2.4.3), (2.4.4), N ≥ 12 as in Theorem 2.4.1. First let us demonstrate

the parameter sequence lies in a bounded set. By re-indexing, we can rewrite (2.4.3),

(2.4.4) equivalently as the two constraints:
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[Nx]∑
m=0

m

1 + b
(Nk)
1,[xN ]m

α
=

N−[Nx]∑
m=0

m

1 + b
(Nk)
2,[xN ]m

α
(3.11.11)

1

N

[Nx]∑
m=1

m2

1 + b
(N)
1,[xN ]m

α
+

1

N

n−[Nx]∑
m=1

m2

1 + b
(N)
2,[xN ]m

α
(3.11.12)

=
[Nx](1− [Nx]/n)

N

[Nx]∑
m=1

1

1 + b
(N)
1,[xN ]m

α
+

n−[Nx]∑
m=1

1

1 + b
(N)
2,[xN ]m

α
+ 1


Let us define k(α) = 2 − α, or k(α) = 2−α

1−1/α depending on whether 0 < α < 2 or

2 ≤ α < 3. Write b1,[xN ] = d1,[xN ]N
k(α), and b2,[xN ] = d2,[xN ]N

k(α). First claim: the di

lie in a bounded set. First assume 2 < α ≤ 3. For instance, say we have subsequences

d1 →∞, and d2 → const. Using the Euler-Maclaurin formula to discover the asymptotics

of the sums on either side of (3.11.11), both sides are asymptotic to

1

d
2/α
i N

4−2α
α−1

∫ ∞
0

u

1 + uα
du (3.11.13)

But this is a contradiction, since by after multiplying by N
4−2α
α−1 , one side tends to zero and

the other will be larger than a positive constant. The other case α ≤ 2 is handled similarly,

by finding a contradiction in the rates of either side of (3.11.11). We have learned that if

one component di diverges, the other also diverges. From the variance equation (3.11.12),

now take a subequence of di both tending to infinity. In case 2 ≤ α < 3, an integral

asymptotic evaluation of both sides shows that the LHS of (3.11.12) is ∼ C1d
−1
i N

α−2
α−1 ,

while the RHS is equivalent to C2d
−1/α
i N

α−2
α−1 : this again is a contradiction, since di →∞.

If α < 2, from the variance equation, LHS is less than 1

Nkd
(N)
1,x N

2−α

∑Nkx
m=1m

2−α+similar ≤

1

d
(N)
1,x

O(1)→ 0. But the RHS is always larger than Nx(1− x) > 0 — contradiction again.

We have now proved that for all 0 < α < 3, di are bounded away from infinity.
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The d’s are also bounded away from zero. Again we split into cases. Suppose that

2 ≥ α. Say d1 goes to zero. Passing to subsequence, say however, d(N)N2 converges to a

c. Bound the LHS of variance equation (3.11.12):

LHS >
1

N

Nx∑
m=1

m2

1 + d1N2
=

1

const
O(N2) (3.11.14)

But the RHS is at most O(N). We learn that d(N)N2 is unbounded. So pass to a

subsequence so d(N)N2 diverging to infinity. Multiply the variance equation on both

sides by d(N). The LHS is now (replacing mα by Nα):

1

N

N∑
m=1

d(N)m2

1 + d(N)N2−αmα
>

d(N)

N(1 + d(N)N2)
(N3/3 +O(N2))→ 1/3 (3.11.15)

However, the RHS will converge to zero. Indeed

RHS = K

N∑
m=1

d(N)

1 + d(N)N2−αmα
+ o(1) < K

N∑
m=1

d(N)

1 + d(N)m2−αmα
= K

n∑
m=1

d(N)

1 + d(N)m2

(3.11.16)

This latter goes to zero by integral approximation:

N∑
m=1

d(N)

1 + d(N)m2
< d(N)

∫ N

0

d(N)x

1 + d(N)x2
<
√
d(N)

∫ ∞
0

d(N)u

1 + u2
→ 0 (3.11.17)

This argument was for each respective component on both sides; now we can combine

the argument on both terms (the respective LHS majorizes the RHS term + 1/2). That

covers the case 0 < α < 2. By similar calculations, it is not more difficult to demonstrate

that (d1, d2) are bounded away from zero when 2 ≤ α < 3 — we leave the details to the

reader.

The above confirms that the asymptotic rates for the parameters bi stated in the

theorem are correct, since (d1, d2) lie in a bounded set. Now take convergence subse-

quences of the sequence, to the limits (d1(x), d2(x)), necessarily positive. By using the
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Euler-Maclaurin formula on (3.11.11, 3.11.12), we can derive a pair of equations which

the limits must satisfy. Taking Nk → ∞ in (3.11.11), the limiting version of (3.11.11)

states that

d2(x) =

(
1− x
x

)2−α
d1(x), 0 < α < 2 (3.11.18)

d2(x) = d1(x), 2 ≤ α < 3 (3.11.19)

On the other hand, taking the limit of (3.11.12) adduces

x3−α

(3− α)d1(x)
+

(1− x)3−α

(3− α)d2(x)
= x(1− x), 0 < α < 2 (3.11.20)

x

d1(x)
+

1− x
d2(x)

= x(1− x)

(
1 +

∞∑
m=1

1

1 + d1(x)m2
+

∞∑
m=1

1

1 + d2(x)m2

)
, α = 2

(3.11.21)

x3−α

(3− α)d1(x)
+

(1− x)3−α

(3− α)d2(x)
=

(
1

d
1/α
1 (x)

+
1

d
1/α
2 (x)

)
x(1− x)

∫ ∞
0

1

1 + uα
, 2 < α < 3

(3.11.22)

Now we are nearly done, because for each α, the pairs of equations satisfied by

d1(x), d2(x) characterize d uniquely. If α 6= 2, this is obvious, because d1, d2 can be

solved in closed form. For α = 2, we observe that constraint (3.11.21), in conjunction

with d1 = d2, may be rewritten as the transcendental equation

πx(1− x)
√
d(x) coth

(
π√
d(x)

)
= 1 (3.11.23)

We already have proved, for each 0 < x < 1, that there exists a d(x) > 0 solving the

above equation (it was the limit of some convergent subsequence of the d’s); this d(x) is

unique because it is readily verified that u coth(π/u) is a strictly increasing function for

u > 0.
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To sum up, we have shown that every convergence subsequence of (d1,[Nx], d2,[Nx])

converges to the same limits (d1(x), d2(x)) given as the unique solution to the pairs

of equations above; it follows that the sequence (d1,[Nx], d2,[Nx]) itself is convergent to

d1(x), d2(x), and the asymptotic representations of the theorem follow.

By using the previous theorem, and the specific limiting forms involved in the proof

of that theorem in conjunction with the quantization Lemma 3.7.3, one can now calculate

the weak limits

Theorem 3.11.2. In the power-law processes 0 < α < 3, one has

dΩ(α)
x (y) = w. lim

N→∞
dF ∗N,[xN ](y) =


(3−α) dy

x2−α|y−x|α−2 , y < x

(3−α) dy
(1−x)2−α|y−x|α−2 , y ≥ x

0 < α < 2

(3.11.24)

=
(3− α) dy

(x3−α + (1− x)3−α)|y − x|α−2
, 2 ≤ α < 3

(3.11.25)

It is remarkable to observe that as α ↑ 3, dΩ
(α)
x approaches the delta measure at x,

dΩx = δx — indicating the diffusion limit occurs at α ≥ 3. Indeed, in a manner similar

to what has been presented above, the asymptotics for the power-law processes three and

larger can be easily worked out, obtaining:

Theorem 3.11.3. In the power-law processes α ≥ 3, one has

dΩ(α)
x (y) = w. lim

N→∞
dF ∗N,[xN ](y) = δx(y) (3.11.26)
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The preceding theorems reveal then two phase changes: at the location α = 2, where

the asymptotics for the parameters b1, b2 change in a non-smooth way, and at α = 3,

where the Kimura diffusion becomes applicable. Since the case α > 3 is classical, we now

propose to study the regime 0 < α ≤ 2; unfortunately the techniques which follow cannot

be easily applied to 2 < α < 3. In some sense that interval remains mysterious to us.

Let us denote by Gα the pure-drift GWF operator associated to Ω(α) as revealed in

Theorem 3.11.2. We shall first derive an alternative representation for the α operators,

valid on a slightly larger domain than C2[0, 1].

Theorem 3.11.4. Let D be the functions u ∈ C[0, 1] for which u′′ exists (but is not

necessarily bounded) on (0, 1) and |u′| ∈ L1[0, 1] is integrable. Fix 0 < α < 2, and α 6= 1.

Then the following expressions are well-defined for x ∈ (0, 1) and equivalent:

1. Gαu(x) = x(1− x)
∫ 1

0
u(z)−u(x)−(z−x)u′(x)

(z−x)2
dΩ

(α)
x (z)

2. Gαu(x) = 3−α
α−1 [u(x)− xu(1)− (1− x)u(0)]− x(1−x)

x2−α

∫ x
0

(x−z)1−α
α−1 u′(z) dz

+ x(1−x)
(1−x)2−α

∫ 1
x

(z−x)1−α

α−1 u′(z) dz

Moreover, Gα maps D to functions continuous on (0,1).

Proof. Fix 0 < x < 1; the integrand in (1) is continuous and so the integral is well-

defined. Moreover, if Nx0 is a neighborhood of x0 bounded away from 0 and 1, the

function g(x, z) = u(z)−u(x)−(z−x)u′(x)
(z−x)2

f(x, z) is (uniformly) continuous on Nx0 × [0, 1],

hence
∫ 1

0 g(x, z) dz is continuous on (0, 1). To show the equivalence of the expressions,
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split (1) into two parts and integrate each by parts. The first piece V1 has form

V1 =
x(1− x)

3− α

∫ x−ε

0

u(z)− u(x)− (z − x)u′(x)

(z − x)2
dΩ(α)

x (z) (3.11.27)

=
x(1− x)

x2−α

∫ x−ε

0
(u(z)− u(x)− (z − x)u′(x))

1

(x− z)α
dz (3.11.28)

=
x(1− x)

x2−α

[
(u(z)− u(x)− (z − x)u′(x))(

1

α− 1
(x− z)1−α|z=x−εz=0 ) (3.11.29)

−
∫ x−ε

0

(x− z)1−α

α− 1
(u′(z)− u′(x)) dz

]
=
x(1− x)

x2−α

[
(u(x− ε)− u(x) + εu′(x))

ε1−α

α− 1
− (u(0)− u(x) + xu′(x))

x1−α

α− 1
− I
]

(3.11.30)

where I is the integral term in (3.11.29). The second piece V2 is worked out as:

V2 =
x(1− x)

3− α

∫ 1

x+ε

u(z)− u(x)− (z − x)u′(x)

(z − x)2
dΩ(α)

x (z) (3.11.31)

=
x(1− x)

(1− x)2−α

∫ 1

x+ε
(u(z)− u(x)− (z − x)u′(x))

1

(z − x)α
dz (3.11.32)

=
x(1− x)

(1− x)2−α

[
(u(z)− u(x)− (z − x)u′(x))(

−1

α− 1
(z − x)1−α|z=1

z=x+ε) (3.11.33)

+

∫ 1

x+ε

(z − x)1−α

α− 1
(u′(z)− u′(x)) dz

]
=

x(1− x)

(1− x)2−α

[
(u(1)− u(x)− (1− x)u′(x))

−1

α− 1
(1− x)1−α (3.11.34)

− (u(x+ ε)− u(x) + εu′(x))
−1

α− 1
ε1−α + I2

]
with I2 is the integral in (3.11.34).

As u is locally Lipschitz, all terms with ε vanish as ε→ 0, and we find that:

V1 =
x(1− x)

x2−α

[
(−u(0) + u(x)− xu′(x))

x1−α

α− 1
− I
]

(3.11.35)

and the second part:

V2 =
x(1− x)

(1− x)2−α

[
(u(1)− u(x)− (1− x)u′(x))(

−1

α− 1
)(1− x)1−α + I2

]
(3.11.36)
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Adding these:

V1 + V2 =
1

α− 1
[u(x)− xu(1)− (1− x)u(0)]− x(1− x)

x2−α I +
x(1− x)

(1− x)2−α I2 (3.11.37)

What remains after the cancelations is the desired form (2).

With this representation we can now show Gα does generate a C0 semigroup.

Theorem 3.11.5. The GWF operator Gα : C2 → C0, for 0 < α ≤ 2, α 6= 1 is a

polynomial operator, and hence has a closure generating a C0 contraction semigroup.

Proof. Using the classical Abel integral identity and a fortuitous cancellation in the signs

of the two integrals, it is simple to calculate that Gαx
m is a polynomial of degree m, and

hence by Theorem 3.8.1 has an extension which generates a C0-semigroup.

The continuum limit calculation of Theorem 3.11.1 is a pointwise calculation: weak

convergence of the measure valued function is established for each fixed state x. We now

strengthen this convergence to a uniform convergence across x, in the sense of Theorem

3.6.1.

Theorem 3.11.6. For each 0 < α ≤ 2, α 6= 1, let Y
(α)
t be the Feller process associated

with the generator G
(α)
Ω . If X

(α)
k are the Markov chains associated to the discrete power-

law processes, then the scaled processes { 1
NX[Nt]} converge weakly to Y (α). If α ≥ 3, the

processes { 1
NX[Nt]} converge weakly to the standard Kimura diffusion.

Proof. We must verify the uniform convergence condition of Theorem 3.6.1. For brevity

the proof will be given in full only for α = 2; similar asymptotics refining those in the

proof of Theorem 3.11.1 establish for the range under consideration.
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Because of the symmetry of the transition matrix, it suffices to prove uniform conver-

gence on 1 ≤ i ≤ N/2. Our strategy is to divide the indices into two regimes i < N3/4,

and N3/4 < i < N/2, establishing uniformity on each regime separately. We do this

because, roughly speaking, a different behavior occurs depending on whether i is small

or large. The choice of N3/4 is convenient for this splitting. It is obvious that for indices

i < N3/4, that the convergence hypothesis of Theorem 3.6.1 occurs trivially because each

term separately converges to zero.

To suppress notational redundancy the shorthand I = {i : N3/4 ≤ i ≤ N/2} is

adopted.

Lemma 3.11.7. The set {(b(N)
1,i , b

(N)
2,i : i ∈ I, N ∈ Z+} is bounded away from zero.

Proof. Recall the “variance” equation derived from the Wright-Fisher conditions:

1

N

i∑
m=1

m2

1 + b
(N)
1,i m

2
+

1

N

N−i∑
m=1

m2

1 + b
(N)
2,i m

2
=

i

N
(1− i/N)

(
1 +

i∑
m=1

1

1 + b
(N)
1,i m

2
(3.11.38)

+
N−i∑
m=1

1

1 + b
(N)
2,i m

2

)
(3.11.39)

Now suppose that bNk1,iNk
is a subsequence converging to zero. First, if bNk1,iNk

·N2
k is bounded,

then the LHS of the above equation is at least C · (i3Nk/Nk), while the RHS is at most

C2Nk. But this is impossible since iNk ≥ Nk
3/4 implies the LHS is larger than C(N

5/4
k ).

It follows that b
(N)
1,i cannot decay too quickly, WLOG pass to a subsequence converging to

zero for which b
(N)
1,i N

2 →∞. Since b
(N)
2,i ≥ b

(N)
1,i on the set indicated, b

(N)
2,i N

2 →∞. Then

the Euler-Maclaurin development of the LHS shows that it is at least C i
N

1

b
(N)
1,i

, whereas

the RHS, after a similar development, is bounded by C2
i
N

1√
b
(N)
1,i

— contradiction. Thus

{b(N)
1,i } is bounded away from zero, as is {b(N)

2,i }.
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Asymptotically, the ratio b2,i/b1,i is determined by the first-order WF condition, while

the absolute sizes of b1,i, b2,i are controlled by the variance restraint.

Lemma 3.11.8. On the set I,

b
(N)
2,i

b
(N)
1,i

=
log(N − i)

log i

(
1 +O

(
1

i log i

))
(3.11.40)

Proof. Recall the first-order WF condition, which may be written as:

i∑
m=0

m

1 + b
(N)
1,i m

2
=

N−i∑
m=0

m

1 + b
(N)
2,i m

2
(3.11.41)

The LHS is
∑i

m=1
1

b
(N)
1,i m

+O(1/((b
(N)
1,i )2m3)), which is

i∑
m=1

1

b
(N)
1,i m

+O(1/((b
(N)
1,i )2m3)) =

1

b
(N)
1,i

(log i+O(1/i)) +O(1/((b
(N)
1,i )2i2)) (3.11.42)

=
1

b
(N)
1,i

[log i+O(1/i)] (3.11.43)

where we have used Lemma 3.11.7 in the last line. By an identical development, the

RHS of (3.11.41) is 1

b
(N)
2,i

[log(N − i) +O(1/(N − i))] = 1

b
(N)
2,i

[log(N − i) +O(1/i)], because

N/2 ≥ i. Equating these two expressions and solving for b2,i/b1,i we obtain the desired

estimate.

From Lemma 3.11.8 it is clear that

Corollary 3.11.9. The ratios
b
(N)
1,i

b
(N)
2,i

and
b
(N)
2,i

b
(N)
1,i

are bounded away from 0 and ∞ on I.

It will be useful to give a name to the quantity appearing in the LHS of (3.11.38). We

make the definition

γi,N ≡

[
1

N

i∑
m=1

m2

1 + b
(N)
1,i m

2
+

1

N

N−i∑
m=1

m2

1 + b
(N)
2,i m

2

]−1

(3.11.44)
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In the point-wise analysis for i a fixed proportion ofN , this γi,N converges to b1(x) = b2(x).

This is no longer true for the range of indices i ∈ I, but nonetheless the quantities
γi,N−b

(N)
1,i

b
(N)
1,i

and
γi,N−b

(N)
2,i

b
(N)
2,i

will be small, with the appropriate weights.

Lemma 3.11.10.
γi,N

b
(N)
1,i

=

[
i
N + N−i

N

b
(N)
1,i

b
(N)
2,i

]−1

+O
(

1
iN

)
.

Proof.

γi,N/b
(N)
1,i =

[
1

N

i∑
m=1

b
(N)
1,i m

2

1 + b
(N)
1,i m

2
+

1

N

N−i∑
m=1

b
(N)
1,i m

2

1 + b
(N)
2,i m

2

]−1

(3.11.45)

=

[
1

N

i∑
m=1

1 +O

(
1

b1,im2

)
+

1

N

N−i∑
m=1

b
(N)
1,i

b
(N)
2,i

+O

(
b
(N)
1,i

(b
(N)
2,i )2m2

)]−1

(3.11.46)

=

[
i

N
+

1

b
(N)
1,i

O(1/(Ni)) +
N − i
N

b
(N)
1,i

b
(N)
2,i

+
1

N

b
(N)
1,i

(b
(N)
2,i )2

O

(
1

N − i

)]
(3.11.47)

=

[
i

N
+
N − i
N

b
(N)
1,i

b
(N)
2,i

+O

(
1

iN

)]−1

(3.11.48)

=

[
i

N
+
N − i
N

b
(N)
1,i

b
(N)
2,i

]−1

+O

(
1

iN

)
(3.11.49)

The penultimate inequality makes use of i ∈ I and b2,i ≥ b1,i, the last because the second

term in the brackets is bounded away from zero, from Corollary 3.11.9.

Combining Lemma 3.11.8, 3.11.10 and Corollary 3.11.9, we find

Lemma 3.11.11.
γi,N

b
(N)
1,i

=
(
i
N + N−i

N
log i

log(N−i)

)−1
+O

(
1

i log i

)
.

We can now establish the key uniform estimate:

Proposition 3.11.12.

sup
i∈I

i

N

∣∣∣∣∣γi,Nb
(N)
1,i

− 1

∣∣∣∣∣ ≤ C

logN
(3.11.50)
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Proof. We use Lemma 3.11.4. The error term in that lemma is obviously dominated by

the estimate in the present proposition. One has, after some algebra

i

N

∣∣∣∣∣
(
i

N
+
N − i
N

log i

log(N − i)

)−1

− 1

∣∣∣∣∣ =
i

N

(
(N − i) log(N/i− 1)

i log(N − i) + (N − i) log i

)
(3.11.51)

≤ i log(N/i− 1)

i log(N − i) + (N − i) log i
(3.11.52)

=
i log(N/i− 1)

N log i+ i log(N/i− 1)
(3.11.53)

=
1

1 + log i · N/i
log(N/i−1)

(3.11.54)

Finally there exists K > 0 such that N/i
log(N/i−1) > K for i ∈ I, and now the proposition

follows since i ≥ N3/4.

In identical manner, one proves the other required inequality:

Proposition 3.11.13.

sup
i∈I

i

N

∣∣∣∣∣γi,Nb
(N)
2,i

− 1

∣∣∣∣∣ ≤ C ′

logN
(3.11.55)

We are now sufficiently prepared to prove

lim
n→∞

sup
i∈I

i

N
(1− i/N)

∫ 1

0

∣∣dF ∗N,i(y)− µN
∣∣ dy = 0. (3.11.56)

where µN is the discrete uniform distribution given equal weight to the sampling points

{0, 1/N, . . . , 1}. This may be rewritten as:

lim
n→∞

sup
i∈I

i

N
(1− i/N)

1

N

i∑
j=0

∣∣∣∣∣(j − i)2[γi,N − b(N)
1,i ]− 1

1 + b
(N)
1,i (j − i)2

∣∣∣∣∣ (3.11.57)

+
1

N

N∑
j=i+1

(j − i)2[γi,N − b(N)
2,i ]− 1

1 + b
(N)
2,i (j − i)2

= 0 (3.11.58)
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Each term can be separated into two parts; for instance the first term is

i

N

(
1− i

N

) ∣∣∣∣∣∣ 1

N

i∑
j=0

(j − i)2[γi,N − b(N)
1,i ]

1 + b
(N)
1,i (j − i)2

+
1

N

i∑
j=0

−1

1 + b
(N)
1,i (j − i)2

∣∣∣∣∣∣ (3.11.59)

The first term of the above is smaller than i
N

(
1− i

N

)
1
N

∑i
j=0

∣∣∣γi,Nb1,i − 1
∣∣∣, which by Propo-

sition 3.11.12 approaches zero uniformly. The second sum in (3.11.59) is a convergent

series because of Lemma 3.11.7, and thus is bounded by K/N → 0. A repeat of this

argument with the application of Proposition 3.11.13 proves the second term of 3.11.57

uniformly approaches zero. Thus (3.11.56) is true. This, in conjunction with the quanti-

zation Lemma 3.7.3 and Theorem 3.6.1, finishes the proof.
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Chapter 4

Applications of Continuum

Theory

In the preceding chapter we derived a representation formula for the generator of any

continuum limit of GWF chains, and calculated these explicitly for our example processes.

Since the operators are no longer differential, but rather integro-differential, and indeed

may be of fractional order, the functional calculations Gf = g associated to stopping time

problems are quite difficult to solve explicitly, except in very simple cases.

In the present chapter, we develop the maximum principle for GWF operators, and

show how this technique can be applied to obtain both qualitative insight and in some

cases precise quantitative information concerning the solutions of the associated operator

equations — those connected with fixation probabilities and the evolution of moments

of the processes, for instance. We pose an interesting extremal problem and solve it

with the aid of our continuum representation. Next we discuss aspects of the stationary
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distribution of continuum limits, proving their uniqueness and existence for the Cannings

class. The statistical theory of GWF equilibrium measures is taken up, and a generalised

Poisson Random Field approximation proven for the sampled frequency spectrum.

4.0.5 Extreme Processes in the Continuum Limit

The space of measure-valued functions C([0, 1],M1([0, 1])) is convex, and because the map

Φ : Ω 7→ GΩ respects this property, the space of GWF operators is also convex. With the

topology induced from the metric d defined in Section 3.2.2 , the space is not compact: we

cannot apply the Krein-Milman theorem. Nonetheless, there are extreme points, and it is

of interest to discover them. Quickly, the functions of type dΩx(y) = δf(x)(y) come under

examination, where f : [0, 1] → [0, 1], and indeed, it is readily seen that such families

are weak-∗ continuous if and only if f is continuous, which then induce extreme GWF

operators. It also appears likely that these are the only extreme processes, though the

proof of that statement would take us too far afield.

On this basis, we see that of our example processes, the minimal, maximal and Kimura

diffusion processes are extreme points. That this property holds for the minimal and

maximal processes comes as no surprise: they were extreme in the discrete space. But

that the Wright-Fisher model is asymptotically extreme, even in this very large space, is

an interesting insight, which is gleaned only from our continuum representation formula,

since the Wright-Fisher process is very far from extreme in the space of discrete GWF

chains.

A generic function defined on a convex set rarely achieves its maximum or minimum

at the extreme points. This is true generically; but it is also true that some of the most
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biologically interesting functionals will in fact achieve their maximum or minimum at

certain extreme points. It is to this that we now turn to.

4.1 The Generalized Wright-Fisher Operator with Selec-

tion

One of the principal advantages of the continuum representation is the ability to study

GWF processes under the influence of non-zero selection. To begin, we develop some

important maximum principles associated with the GWF operator. We shall write:

Gβ,Ωu(x) = βx(1− x)u′(x) + x(1− x)

∫ 1

0

u(y)− u(x)− u′(x)(y − x)

(y − x)2
dΩx(y) (4.1.1)

defined on at least C2[0, 1], and parameterized by selection pressure β, and a continuous

family of measures Ωx. Subscripts will be omitted whenever typographical compression

is warranted.

Some of the succeeding results pertain to the case of positive selection β ≥ 0; if G

is associated to a symmetric process (dΩx(y) = dΩ1−x(1 − y)), the necessary results for

negative selection β < 0 can be obtained simply by reflection. In the analysis in Section

4.4 of the parabolic equation we make no restriction on symmetry or the range of the

selection coefficient.
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4.2 Maximum Principles

The maximum principle for G is a limiting form for the discrete positive maximum princi-

ple associated to P−I, where P is a Markov transition matrix. It is a simple consequence

of the fact that the rows of P are probability distributions. We have already touched upon

the principle in Section 3.3, we now refine that discussion and prove a number of such

principles. In the following, some laxness in the domain of G will be inevitable, since we

will not wish to restrict ourselves to defining G only on its domain as a putative genera-

tor, but possibly on its extension as the characteristic operator of a Markov process (so

that, for example, the absorption time problem is soluble). In every case, nonetheless, we

assume that u ∈ C[0, 1] ∩ C1(0, 1).

Lemma 4.2.1. (Basic Maximum Property) If x0 is an interior global maximum of u,

Gβ,Ωu(x0) ≤ 0.

Proof. If x0 is an interior global maximum, u′(x0) = 0, and u(y)−u(x0) ≤ 0 for all y.

Lemma 4.2.2. (Proto-Maximum Principle) Suppose Gβ,Ωu(x) > 0 for all x ∈ (0, 1).

Then any global maximum of u occurs only at the boundaries x = 0, 1.

Proof. Immediate from Lemma 4.2.1.

The strict inequality in the preceding lemma will not be sufficient to prove any of our

desired results. So we refine this to a true (weak) maximum principle for the inequality

Gu ≥ 0, which explicitly uses β ≥ 0 (or at least β > −1/2).

Theorem 4.2.3. (Maximum Principle) Let β ≥ 0, and suppose u satisfies Gβ,Ωu(x) ≥ 0

on x ∈ (0, 1). Then maxx∈[0,1] u(x) = max{u(0), u(1)}.
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Proof. Say u(c) = maxx∈[0,1] u(x) = M , c is an interior point. We will prove u(1) = M .

For if u(1) < M , define the function z(x) = x2− c2. A simple computation shows (as dΩx

are probability measures),

Gz(x) = x(1− x)(1 + β2x) > 0 (4.2.1)

Now look at w(x) = u(x) + εz(x), ε > 0. We have the strict inequality Gw(x) > 0

throughout the open interval, and w(0) < M , w(c) = M , and w(1) = u(1) + εz(1) < M

for sufficiently small ε. This constructed w would then have an interior global maximum,

contradicting Lemma 4.2.2.

By applying the maximum principle to −u(x), we obtain the minimum principle.

Theorem 4.2.4. (Minimum Principle) Let β ≥ 0. If Gβ,Ωu ≤ 0 throughout (0, 1), then

minx∈[0,1] u(x) = min{u(0), u(1)}.

A basic corollary of these properties, which is used repeatedly in the sequel is

Corollary 4.2.5. If Gu = 0 on (0, 1) and u(0) = u(1), then u ≡ const.

Proof. Immediate from maximum and minimum principles.

Remark : While it is unnecessary for the succeeding results, it can be asked whether a

strong, Hopf-like maximum principle is available — i.e Gu ≥ 0 and u has a global interior

maximum implies u is a constant. This is a possibility less likely than for the case of local

operators (where it is generally true). Indeed, we see below that the non-local nature of

G does not generally gainsay the existence of local maxima/minima.
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4.3 Comparison and Uniqueness Principles

We can use the preceding maximum principles to obtain some basic results on the prop-

erties of solutions to typical genetics problems. Later, it will be important to study the

Dirichlet problem Gu = 0, which is related to asymptotic probability of fixation (see

Theorem 4.5.5). It is convenient here to establish a uniqueness principle.

Probability of Fixation Problem (PFP): Solve Gu = 0, subject to u(0) = a, u(1) =

b.

We shall see below that a solution to this problem may not exist (for instance, in some

power-law processes, for sufficiently large selective pressure and a 6= b). But if the solution

exists, it must be unique:

Proposition 4.3.1. The solution to PFP is unique in the space of continuous functions

it exists.

Proof. If u1 and u2 are two solutions, then h = u1 − u2 satisfies Gh = 0 with conditions

h(0) = 0, h(1) = 0; now the maximum principle implies h ≡ 0.

Proposition 4.3.2. For a ≤ b, if a continuous solution u to PFP exists then it satisfies

a ≤ u ≤ b. In particular, for the selection problem a = 0, b = 1, u can be interpreted as a

probability.

Proof. Immediate from max/min principles.

We can also ascertain the dimension of the null space of G:
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Proposition 4.3.3. G annihilates constant functions. The null space of G, has either

dimension 1 or 2.

Proof. That G annihilates constants is obvious. Let D be the domain of functions con-

tinuous up to the boundary. Suppose that f ∈ D is non-constant and annihilated by

G. We can assume f(0) = 0. Now f(1) cannot be zero, or else f ≡ 0 by the max-

imum principle. Let h be any other function in D annihilated by G. Consider the

function k(x) = h(x)− h(0)− [h(1)− h(0)]f(x)/f(1). Note k(x) is annihilated by G, and

k(0) = 0, k(1) = 0. Therefore k is identically zero, and h(x) is a linear combination of a

constant and f(x).

One can reformulate this as an alternative characterization of the existence of a solu-

tion to the two-point problem:

Proposition 4.3.4. There is a solution to Gu = 0 satisfying u(0) = a 6= b = u(1) if and

only if dim ker G = 2, where the domain is restricted to functions continuous up to the

boundary.

Proof. If G has null-space of dimension 1, then only constant functions satisfy Gu = 0,

and so there is no solution if a 6= b. On the other hand, suppose dim ker G = 2, and

let f be a non-constant function annihilated by G. Then the maximum principle tells

us f(0) 6= f(1), and so the equations c1 + c2f(0) = a, c1 + c2f(1) = b can be solved for

c1, c2.
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4.3.1 Selective Monotonicity

In this section we fix a measure-valued drift Ω, and compare two GWF operators with

possibly different selective pressures. We have the following intuitive property, evidence

of the submartingale nature of pure-selection processes.

Theorem 4.3.5. If u solves Gβu = 0, with u(0) = 0, u(1) = 1, then u(x) ≥ x if β > 0,

and u(x) ≤ x if β < 0.

Proof. Suppose β > 0. Define h(x) = u(x) − x. Note that the function f(x) = x is

annihilated by the pure drift part of the operator, so

Gβh = Gβu− βx(1− x) = −βx(1− x) (4.3.1)

and h(0) = 0, h(1) = 0. If h is strictly negative somewhere, it has a global interior

minimum somewhere, and so there is a x0 for which Gh(x0) ≥ 0, which would contradict

the above equation. Same proof for β < 0.

One would also like to prove the more general monotonicity property that probabil-

ities of fixation are always increasing functions of β. This can be established under the

assumption that at least one of the fixation curves is an increasing function of initial allele

frequency (recall that this was not always true: but see Section 1.6.3 for the derivation of

a large class of processes for which this holds).

Theorem 4.3.6. Let β1 ≥ β2 ≥ 0, and Gβ1u1 = 0, Gβ2u2 = 0, and the boundary

conditions u(0) = 0, u(1) = 1. Further suppose that u2 is increasing. Then u1 ≥ u2.

Proof. This time if h = u1−u2, one discovers Gβ1h = Gβ1u1−β1x(1−x)u′2(x) +β2x(1−
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x)u′2(x) = (−β1 + β2)x(1− x)u′2(x), which is ≤ 0. Since h(0) = 0, h(1) = 0, h cannot be

strictly negative, by the minimum principle.

4.4 The Parabolic Equation

We shall now study the Kolmogorov backward operator connected to G:

Lβ,Ωu(x, t) = Gβ,Ωu(x, t)− ∂tu(x, t) (4.4.1)

When associated to a generator G for a time-homogeneous Markov process Xt, a function

u(x, t) in the null space of L satisfying u(x, 0) = f(x) gives the value of the probabilistic

quantity E[f(Xt)|X0 = x].

We can also establish weak maximum principles for L, this time valid for all selection

parameters β. As a setup, we look at functions u(x, t) in the rectangle R = {(x, t) ∈

[0, 1] × [0, T ]}, and label three of the respective sides S1 = [0, 1] × 0, S2 = 0 × [0, T ],

S3 = 1× [0, T ].

Theorem 4.4.1. (Parabolic maximum principle). Let u be continuous on R, and suppose

Lu ≥ 0 throughout the interior of R. Then

max
R

u = max
S1∪S2∪S3

u (4.4.2)

Proof. First we prove the statement for a function satisfying the more stringent Lu > 0

throughout R. In this case, if u has an interior global maximum at (x0, t0), ∂tu(x0, t0) = 0,

and because Gu(x0, t0) ≤ 0 from the 1-D maximum principle, we obtain a contradiction.

If the global maximum occurs at (x0, T ), one still has Gu(x0, t0) ≤ 0 which implies
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∂tu(x0, t0) < 0, contradicting the maximality of (x0, t0). The conclusion then follows

whenever Lu > 0.

Now suppose only Lu ≥ 0 throughout R. Setting uε = u− εt, we have Luε > 0 for all

ε > 0. Thus

max
R

uε = max
S1∪S2∪S3

uε (4.4.3)

and the statement follows by taking ε ↓ 0.

The corresponding minimum principle is arrived at by using the preceding on −u:

Theorem 4.4.2. (Parabolic minimum principle). Let u be continuous on R, and Lu ≤ 0

throughout the interior of R. Then

min
R
u = min

S1∪S2∪S3

u (4.4.4)

4.5 Aspects of Fixation Probabilities and Asymptotic Mo-

ments under Selection

We discussed in Section 1.6.2 the difficulty of using discrete methods to analyze GWF

processes once non-zero selection is introduced. By virtue of the martingale property,

pure-drift GWF processes all have identical probabilities of fixation. Once non-zero selec-

tion is introduced, this no longer holds, and a large and interesting spectrum of possibilities

arises. The lower moments no longer satisfy systems of linear recurrence relations, and so

even basic questions such as the evolution of the mean of a process were unapproachable.

In this, our continuum theory has provided one important advantage over the discrete
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methods: it has allowed us to elegantly obtain optimal bounds for these quantities over

the class of GWF processes, as a function of initial allele frequency.

4.5.1 Absorption Time

If X
(N)
k is a pure-selection discrete GWF process, we defined a stopping time τ = inf{k :

Xk ∈ {0, N}}, and proved that P (τ < ∞) = 1 (Theorem 1.6.8). If X
(N)
k converges to a

continuum limit Xt, one can define an analagous stopping time τ = inf{t,Xt ∈ {0, 1}}.

Unfortunately, in the continuum limit, it is not true that P (τ <∞) = 1; this is foretold

already in the strictly super-linear growth in expected absorption time (O(N logN)) for

certain processes such as the minimal and maximal processes. Nevertheless, Xt has one

important regularity property, which gets around this difficulty: it is a bounded sub-

martingale if the selection pressure β ≥ 0, and it is a supermartingale if β ≤ 0. To see

this, assume β ≥ 0, and note that from the Markov property, we only need check that

E[Xt|X0] ≥ X0 for all X0 and all t, and this holds because the analagous equation holds

in the discrete models. The verification is complete by taking N → ∞ and using weak

convergence of the marginal distributions.

Bounded submartingales have limits: Xt → X∞ almost surely. With this we can

now define the stopping time τ = inf{t : Xt ∈ {0, 1}} for a continuum process, with the

understanding it may be infinite; Xτ is well-defined. And in keeping with the terminology

of the discrete processes, we shall call P (Xτ = 1|X0 = x) the fixation probability of a

pure-selection continuum process, again with the recognition that such fixation may, with

non-zero probability, take an infinite amount of time. What follows is the continuum

version of Theorem 1.6.10.
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Theorem 4.5.1. Let Xt be the continuum limit of a sequence of GWF chains. If τ is

the absorption time of X defined above, then for any f ∈ C[0, 1] and f(0) = 0, f(1) = 1,

we have

P (Xτ = 1|X0 = x) = E(f(X∞)|X0 = x) = lim
t→∞

E[f(Xt)|X0 = x] (4.5.1)

Proof. We assume β ≥ 0, a similar proof holds for β the opposite sign. The second equality

is merely dominated convergence. For the first, note that X∞ must be concentrated on

{0, 1}. To see this, let µ be the distribution of X∞; it must be a stationary distribution so

if G is the generator of Xt,
∫ 1

0 Gudµ = 0 for every u ∈ D(G) (see the characterization of

stationary distribution in Theorem 4.6.1). For a pure selection GWF process, if u(x) = x2,

then Gu = x(1 − x) + 2βx2(1 − x) which is strictly positive on the interior of [0, 1] and

vanishing at its boundaries. We deduce that µ can only be concentrated on {0, 1}, and

hence also for X∞. The first equality now holds because if τ =∞, it is a tautology, and

if τ <∞, X∞ = 1 if and only if Xτ = 1.

How is Px(Xτ = 1) connected to limN→∞ P[xN ](X
(N)
τN = N)? It is quite likely they are

always the same, though in fact it cannot be deduced from the uniform convergence of

the semigroup over only bounded time intervals as implied by Theorem 3.4.3 (a uniform

convergence over all time would be the most forceful hypothesis for the result to be true).

We shall let this matter rest for the present. What remains is that indeed, just as was

the case in discrete time, limt→∞ExXt is a surrogate computation that may be used in

place of Px(Xτ = 1).

We now intend to derive, with the tool of the maximum principle, effective bounds for

the continuum fixation probability. Even more, the problem of finding the processes at-
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taining these bounds can be solved. Specifically, we pose the following infinite-dimensional

extremal problem.

Extremal Problem: Let π(x) = Px(Xτ = 1) be the probability of fixation of a

continuum pure-selection GWF process started at initial frequency x. For a fixed selec-

tion pressure β = Ns, what GWF drift measures Ω maximize and minimize π(x) for all x?

This is interesting from a biological point of view, because it relates to processes which

are maximal and minimal selection amplifiers. A priori, it appears doubtful that a solu-

tion could exist, demanding as it would that a single process, at once, for all initializing

frequencies, proves to be the extremizer. And indeed, no solution can exist over certain

classes of processes — for example, the set of Cannings processes, since for any two such

models with respective fixation probabilities π1 and π2, if π1(x0) ≥ π2(x0) at a point x0,

symmetry demands π1(1 − x0) ≤ π2(1 − x0). Yet remarkably, a solution does exist over

the space of GWF processes. We devote the remainder of this section to solving the above

extremal problem.

4.5.2 Maximal and Minimal GWF Processes and the Evolution of Means

We have previously distinguished two special processes: a minimal process X−t associated

to the family of measures dΩx(y) = δ0(y), and a maximal process X+
t corresponding to

dΩx(y) = δ1(y). Referring to Section 3.11.3 for the form of their pure-drift generators, we

can form the operators G±u : C2 → C0 with the addition of selection:
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G−u(x) = βx(1− x)u′(x) + (1− x)u′(x) +
1− x
x

(u(0)− u(x)) (4.5.2)

G+u(x) = βx(1− x)u′(x)− xu′(x) +
x

1− x
(u(1)− u(x)) (4.5.3)

Since these operators are first-order, it is simple to show that λu − G±u = f can be

solved for enough smooth functions f , and thereby G± satisfy the Hille-Yosida conditions

and have unique extensions G̃± which are the generators for the minimal and maximal

pure selection Feller process Xβ,±.

Let us consider the evolution of the means m−(x, t) and m+(x, t) of these two pro-

cesses. They are solutions to the backward equation L±β u = 0, subject to the initializing

prescription u(x, 0) = x. Using the method of characteristics, one can derive the following

solutions, which are readily checked to satisfy L±βm± = 0 and the condition m±(x, 0) = x.

m−(x, t) =
(1 + β)x

1 + βx+ β(1− x)e−(1+β)t
(4.5.4)

m+(x, t) =
x(1− βe−(1−β)t)

1− β + βx(1− e−(1−β)t)
(4.5.5)

These solutions are valid for all real β, with β = −1 for m− and β = 1 for m+ taken

as the appropriate limits. It is immediate via the parabolic maximum and minimum

principles of the previous section that they are the unique continuous solutions on the

strip [0, 1]×[0,∞) satisfying the initial condition m(x, 0) = x and the boundary conditions

m(0, t) = 0,m(1, t) = 1. As in the argument of Proposition 3.3.5, G̃u vanishes at {0, 1}

for every u in its domain, and thus the boundaries are absorbing states of X±, hence

E[X±t |X
±
0 = x] is constant for all time whenever x ∈ {0, 1}; this proves that indeed
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E[X±t |X
±
0 = x] = m±(x, t).

Some hint of the properties of these extreme processes become apparent in the time

evolution of the mean: they are extreme selection amplifiers/supressors, in different direc-

tions: the minimal process reaches a singularity at β = −1, wherein the asymptotic mean

m±(∞) is zero for all interior starting frequencies x, while the maximal processes has a

singularity at β = 1, for which the asymptotic mean is 1, independently of the initializing

frequency. Nonetheless, the means are strictly positive and sub-unital at any finite time

t, no matter the size of selection — a superb balance.

We now proceed to the principal result: that the functions m± optimally bound the

solutions to the evolution of means over all generalized Wright-Fisher processes.

Theorem 4.5.2. Let u(x, t) be a continuous solution on [0, 1] × [0,∞) to Lβ,Ωu = 0,

satisfying the boundary conditions u(x, 0) = x, and u(0, t) = 0, u(1, t) = 1 for all time.

Then

m−(x, t) ≤ u(x, t) ≤ m+(x, t), ∀(x, t) ∈ [0, 1]× [0,∞) (4.5.6)

Proof. Fix a rectangle R = [0, 1] × [0, T ]. For the lower bound, one need only to prove

LΩm− ≥ 0 throughout the interior of R; for then L(u − m−) ≤ 0 and the parabolic

minimum principle tells us u−m− ≥ 0 due to the zero boundary conditions of u−m−.

So let us try: inserting the expression for m− into the formula for L, one needs to verify,

after some algebra:

1− (1 + βe−(1+β)t)

∫ 1

0

dΩx(y)

1 + βy + βe−(1+β)t − βye−(1+β)t
≥ 0, β ≥ 0 (4.5.7)

1− (1 + βe−(1+β)t)

∫ 1

0

dΩx(y)

1 + βy + βe−(1+β)t − βye−(1+β)t
≤ 0, β ≤ 0 (4.5.8)
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By dividing into the cases β ≥ 0,−1 ≤ β ≤ 0, β ≤ −1, the two inequalities

1 + βe−(1+β)t

1 + βe−(1+β)t + βy(1− e−(1+β)t)
≤ 1, β ≥ 0 (4.5.9)

1 + βe−(1+β)t

1 + βe−(1+β)t + βy(1− e−(1+β)t)
≥ 1, β ≤ 0 (4.5.10)

can be readily checked on R. From this follow the equations (4.5.7), (4.5.8) since dΩx is a

probability measure for each 0 < x < 1. One proves the upper bound in similar fashion,

via the maximum principle and verifying LΩm+ ≤ 0.

The preceding theorem is significantly stronger than that sought by the extremal

problem, since it shows that the minimal and maximal processes have respectively the

smallest and largest means amongst all GWF processes, for all time. By letting time tend

to infinity, we can calculate the fixation probabilities of the extreme processes as:

p−(x) = lim
t→∞

m−(x, t) =


(1+β)x
1+βx , β > −1

1− 1[0,1)(x), β ≤ −1

(4.5.11)

p+(x) = lim
t→∞

m+(x, t) =


x

1−β(1−x) , β < 1

1(0,1](x), β ≥ 1

(4.5.12)

The probabilistic version of the foregoing analytic result is

Corollary 4.5.3. Let Xt be the continuum limit of a sequence of pure-selection GWF

chains. Let τ be the absorption time of Xt as defined above. Then

m−(x, t) ≤ E[Xt|X0 = x] ≤ m+(x, t), (x, t) ∈ [0, 1]× [0,∞) (4.5.13)

p−(x) ≤ P (Xτ = 1|X0 = x) ≤ p+(x), 0 ≤ x ≤ 1 (4.5.14)
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Proof. Because Xt must have absorbing boundaries, u(x, t) = E[Xt|X0 = x] satisfies all

the hypotheses of Theorem 4.5.2, and so the first part follows. For the second, take t→∞

and apply Theorem 4.5.1.

The second part of the above theorem effectively solves the extremal problem posed

above: it demonstrates that the minimal and maximal processes have respectively the

minimum ad maximum probabilities of fixation for a given selection pressure, uniformly

across all initializing frequencies x.

The first part of Theorem 4.5.3 can now be related back to the discrete GWF processes

in the following theorem, which provide optimal asymptotic bounds for the mean of a

pure-selection GWF process, from the weak convergence of the discrete models:

Theorem 4.5.4. Let X
(N)
k be a sequence of discrete pure-selection GWF chains with

continuum limit Xt. Then For any fixed t > 0, and initial frequency 0 ≤ x ≤ 1,

m−(t, x) ≤ lim
N→∞

E(X[tN ]|X0 = [xN ]) ≤ m+(t, x) (4.5.15)

4.5.3 Probability of Fixation for Example Processes

We will now use our continuum theory to obtain more precise results for fixation proba-

bilities of our non-standard example processes, results which cannot be approached with

discrete methods.

In the preceding section, the evolution of the mean of the minimal and maximal process

was employed to obtain universal bounds on the asymptotic probability of fixation of a

sequence of converging discrete GWF processes. Instead of the mean function f(x) = x,

we could have employed any other reasonably continuous function fixing the boundaries,
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because of the identification in Theorem 4.5.1. This fact allows us to prove the following

highly pertinent theorem:

Theorem 4.5.5. Suppose Xt is the continuum limit of a sequence of pure selection GWF

chains, whose generator is G. Suppose that f1, f2 ∈ D(G), f1, f2 have {0, 1} as fixed

points and Gf1 ≥ 0, Gf2 ≤ 0. Let τ be the absorption time of Xt. Then for all 0 ≤ x ≤ 1,

f1(x) ≤ P (Xτ |X0 = x) ≤ f2(x) (4.5.16)

In particular, if Gf = 0, f(x) is the probability of fixation started at frequency x.

Proof. We prove the lower bound; the upper bound is established in the same way. We

know that u(x, t) = Exf1(Xt) solves the backward equation Lu = Gu − ∂ut = 0, with

initial condition u(x, 0) = f1(x). Define v(x, t) = f1(x) for all time, then L(v − u) ≥ 0;

since v − u vanishes on the parabolic boundary, the parabolic maximum principle gives

v ≤ u on (x, t) ∈ [0, 1]× [0,∞). Take t→∞, and we obtain v(x) ≤ Exf1(X∞). The proof

is finished by applying Theorem 4.5.1, which identifies Exf1(X∞) with the probability of

fixation.

We now apply this to several of our example models.

Wright-Fisher Model

This model is classical, and so the probability of fixation is known. We list it here for

comparison with our other models:

Theorem 4.5.6. (Ethier-Kimura) If Xt is the Kimura diffusion model with selection
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pressure β, and τ its absorption time, then

Px(Xτ = 1) =
1− e−2βx

1− e−2β
, (4.5.17)

Probability of Fixation for Extreme Processes

We have already proved the theorem which follows, but we state it here formally and

use the method of proof outlined above, which does not require us to compute the entire

trajectory of the mean.

Theorem 4.5.7. Let X±t be the continuum maximal and minimal processes undergoing

selection pressure β, and τ± the respective absorption times. Then:

P (X−
τ− = 1) = p−(x) =

(1 + β)x

1 + βx
, β > −1 (4.5.18)

P (X+
τ+

= 1) = p+(x) =
x

1− β(1− x)
, β < 1 (4.5.19)

Proof. The functions p−, p+ are in C2, and so clearly are in the domain of the generators

G± given by the formulae (4.5.2), (4.5.3). It is then easily checked that G±p± = 0 and

all the hypotheses of Theorem 4.5.5 are satisfied.

Attention should be drawn to a very striking effect revealed in the above theorem. In

the Maximal process, p+(x)→ 1 as β ↑ 1, and thus probability one fixation occurs in this

model for a finite limiting value of β . To compare, (4.5.17) indicates that the probability

of fixation for the Wright-Fisher model is always strictly less than one, for all β < ∞.

The Maximal process may thus be viewed as a very strong selection amplifier for β > 0

and as a suppressor of negative selection for β < 0.
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Λ1-Cannings Model with Selection

Let X
(N)
k be a sequence of Λ1-Cannings models with selection. We consider the GWF

operator G : C2 → C[0, 1] defined by

Gu(x) = βx(1− x)u′(x) + (1− x)u(0)− u(x) + xu(1) (4.5.20)

Let GS be the semigroup associated with only the selection portion of the operator

GSu(x) = βx(1 − x)u′(x). By Feller’s boundary classification, GS generates a C0 con-

traction semigroup whose domain consists of functions continuously differentiable on

the open interval (0, 1) (but not necessarily bounded), and for which limx↓0GSu(x) =

limx↑1GSu(x) = 0. Since the neutral part of G is a bounded operator, by the Hille-

Phillips perturbation Theorem 3.10.4, G generates a C0 semigroup with domain equal to

that of GS .

Now we investigate solutions of Gu(x) = 0, subject to u(0) = 0, u(1) = 1. Since it is

merely a first-order differential equation, this is easy, and its unique solution is

u(x) =
1

β

(
x

1− x

)1/β ∫ 1

x
y−1/β(1− y)1/β−1 dy (4.5.21)

The function u is clearly in the domain of G, and thus we have, by Theorem 4.5.5,

Theorem 4.5.8. Let Xt be the continuum Λ1 Cannings model with selection pressure β,

and τ the absorption time. Then

P (Xτ = 1) =
1

β

(
x

1− x

)1/β ∫ 1

x
y−1/β(1− y)1/β−1 dy (4.5.22)

It is interesting to note that u′(0) can be significantly larger than the corresponding

quantity in the Wright-Fisher model (in fact it diverges for β large), which names this
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model a relative selection amplifier, for small initializing frequencies. But unlike the

Maximal process, no finite value of β can obtain almost sure fixation.

Fixation Probabilities for Power-law Models with Selection, 0 < α < 1

We saw that the Maximal process possessed the astonishing property of almost sure

fixation of paths whenever β > β∗, where β∗ was a finite selective pressure (there β∗ = 1).

It turns out that the much less pathological power-law processes also possess this property

for a certain range of α, but to see this will require an analysis of much greater difficulty.

To begin, recall that the pure-drift generator for α < 2 took on the form of Theorem

3.11.4:

Gαu(x) =
1

α− 1
[u(x)− xu(1)− (1− x)u(0)]− x(1− x)

x2−α

∫ x

0

(x− z)1−α

α− 1
u′(z) dz

(4.5.23)

+
x(1− x)

(1− x)2−α

∫ 1

x

(z − x)1−α

α− 1
u′(z) dz (4.5.24)

When 0 < α < 1, an even more useful alternative form is available:

Proposition 4.5.9. For parameters 0 < α < 1, one has the equivalent formula for

u ∈ C1[0, 1]:

Gαu(x) =
3− α
1− α

(
− u(x) + (1− α)xα−1(1− x)

∫ x

0
(x− z)−αu(z) dz (4.5.25)

+ (1− α)x(1− x)α−1

∫ 1

x
(z − x)−αu(z) dz

)
(4.5.26)

Proof. Simply integrate by parts, as in the proof of Theorem 3.11.4.

We can use the above form to see that Gα can be defined as a bounded operator on

all of C0. As in the discussion of the Λ1 model, the Hille-Phillips perturbation theorem
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shows that that Gβ,αu = βx(1 − x)u′(x) + Gαu defined on D(GS) is the generator for a

C0 semigroup, and D(GS) contains functions u continuously differentiable on the interior

of the interval with GSu vanishing at the endpoints.

Now we study solutions to

Gβ,αu = 0, u(0) = 0, u(1) = 1 (4.5.27)

or equivalently, after a simple scaling:

Lu = kx(1− x)u′ − u(x) + (1− α)xα−1(1− x)

∫ x

0
(x− z)−αu(z) dz (4.5.28)

+ (1− α)x(1− x)α−1

∫ 1

x
(z − x)−αu(z) dz = 0 (4.5.29)

with k = β 1−α
3−α .

The complicated nature of the integro-differential equation which is involved with L

makes it unlikely that any closed-form solution exists; nevertheless we can obtain signifi-

cant understanding of the properties of its solutions as a function of the selective pressure

by applying the maximum principle, which L satisfies.

It is important to first analyze the auxiliary operator defined by

L0u = kxu′ − u+ (1− α)xα−1

∫ x

0

u(z)

(x− z)α
dz (4.5.30)

As x ↓ 0, all the terms have homogeneous order. This suggests inserting expressions of the

form xp: and indeed L0 has a large number of eigenfunctions of that form. By considering

u(x) = xp, and applying the change of variables t = z/x, one finds

L0x
p = kpxp − xp + (1− α)xp

∫ 1

0

tp

(1− t)α
dt (4.5.31)
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One therefore sees that u(x) = xp for p > −1 is an eigenvector of L0 associated to the

eigenvalue λp = kp− 1 + (1− α)B(p+ 1, 1− α), with B(·, ·) the Beta-function.

Since we expect the operator L0 to mimic that of L near x = 0, we examine the critical

points in the spectrum. Define

S(p) = β
1− α
3− α

p− 1 + (1− α)

∫ 1

0
tp(1− t)−α dt (4.5.32)

for values p > −1, 0 < α < 1, β > 0. As p ↓ −1, the integral term diverges, and

S(−1) =∞. When p→∞, the first term becomes large, so S(∞) = −∞. We also have

S(0) = 0. The derivative is

S′(p) = β
1− α
3− α

+ (1− α)

∫ 1

0
tp log t(1− t)−αdt (4.5.33)

The integral term is strictly monotonic in p, so S′(p) is strictly monotonic increasing,

with S′(−1) = −∞ and S′(∞) = β 1−α
3−α > 0, so there is a unique value where S′(p∗) = 0.

We conclude that S has at most one other root pr besides p = 0, and the shape of the

graph of S is convex. Examining the equation S′(p∗) = 0, one sees that the two terms

are of opposite sign. If β is small, p∗ must be very large, and if β is large, p∗ decreases.

Indeed, it is clear that as β →∞, p∗ ↓ −1, which implies that the other root pr tends to

-1 as β →∞. We also have the other statement, if β ↓ 0, p∗ →∞, and so the other root

pr →∞ as well.

It then follows from monotonicity that there is a single value of β for which one has

pr = 0 exactly; and from all of the foregoing this occurs exactly when p∗ = pr = 0. Thus

the double-root manifests when S′(0) = 0, or

β
1− α
3− α

+ (1− α)

∫ 1

0
log t(1− t)−αdt = 0 (4.5.34)
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or equivalently

β∗ = −(3− α)

∫ 1

0
(1− t)−α log t dt (4.5.35)

It will also be useful to identify the selective value when first pr = 1. Solving the

equation S(1) = 0 gives

β∗∗ =
3− α
2− α

(4.5.36)

The preceding analysis is summarised in

Theorem 4.5.10. Let Sβ(p) be defined by (4.5.32). Then there is a unique non-trivial

root p(β) to Sβ(p) = 0; p(β) is monotonically decreasing, and descends from infinity to 1

as β increases from 0 to β∗∗, and descends to zero as β further increases to β∗, where β∗

and β∗∗ are given by (4.5.35 )and (4.5.36).

Next, note that the operator L can be written as

Lu = L0u− x(L0u+ u) + (1− α)x(1− x)α−1

∫ 1

x
(z − x)−αu(z)dz (4.5.37)

Theorem 4.5.11. Let p be the non-trivial root of kp − 1 + (1 − α)B(p + 1, 1 − α) = 0,

where k = β 1−α
3−α . Setting u(x) = xp, one has Lu ≥ 0.

Proof. For any ρ > 0, setting u(x) = xρ gives

Lxρ = λρx
ρ(1− x)− xρ+1 + (1− α)x(1− x)α−1

∫ 1

x
(z − x)−αzρdz (4.5.38)

In particular, choose ρ = p such that λp = 0, then

Lxρ = −xp+1 + (1− α)x(1− x)α−1

∫ 1

x
(z − x)−αzpdz (4.5.39)

The above is clearly larger than zero everywhere, by using the simple bound z ≥ x in the

integral.
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Our next theorem gives an upper bound.

Theorem 4.5.12. Let p be the non-trivial root of kp− 1 + (1−α)Beta(p+ 1, 1−α) = 0,

with k = β 1−α
3−α . Then there exists a ρ < p and a C > 1 such that u(x) = Cxρ + (1− C)x

satisfies Lu(x) ≤ 0.

Proof. We consider the function u(x) = Cxρ + (1 − C)x, which satisfies the desired

boundary conditions. Since the neutral part of L annihilates linear functions,

L(Cxρ + (1− C)x) = C[λρx
ρ(1− x)− xρ+1 + (1− α)x(1− x)α−1

∫ 1

x
(z − x)−αzρdz]

+ (1− C)kx(1− x) (4.5.40)

We wish to make the above expression negative. Now consider ρ in the range 0 < ρ < p∗,

where p∗ makes λp∗ = 0. For these values, λρ < 0. The first term is negative then: let us

not worry about it. By bounding the integral term by x, we are led to consider

C[−xρ+1 + x] + (1− C)kx(1− x) (4.5.41)

This formula vanishes at the endpoints. Its derivative is

C[−(ρ+ 1)xρ + 1] + (1− C)k(1− 2x) (4.5.42)

Fixing an x1 near zero, we see that for all sufficiently large C > C0 and ρ < ρ0 near

to zero, the derivative is strictly negative, uniformly for all x < x1. Thus the above

expression is negative on [0, x1]. If we fix an x2 near to 1, then for large C > C1 and

all ρ < ρ1 the derivative is positive on [x2, 1], and hence again the function is negative

there. It remains to be seen it is negative on [x1, x2]. But this is clear from the original

expression (4.5.41), as −xρ+1 + x converges uniformly to zero on [x1, x2] as ρ ↓ 0, and by

making C very large the value becomes negative. This establishes the result.
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Since the functions involved in Theorems 4.5.11 and 4.5.12 are in the domain of

D(GS) = D(Gα), and satisfy the {0, 1} fixed point condition, we can apply Theorem

4.5.5 to obtain

Theorem 4.5.13. Let X
(α)
t be the continuum α-process undergoing selection pressure

β, and τα its absorption time, 0 < α < 1. Let ρ be the positive root of the equation

β 1−α
3−αρ− 1 + (1− α)B(ρ+ 1, 1− α) = 0, with selective pressure 0 < β < β∗, where β∗ is

given by (4.5.35). Then there exist constants C > 0, 0 < r < ρ, such that

xρ ≤ P (X
(α)
τα = 1|X(α)

0 = x) ≤ Cxr + (1− C)x (4.5.43)

Theorem 4.5.13 reveals the precise selective pressure which ensures almost sure fixa-

tion, for every positive initializing frequency. The lower bound indicates this singularity

must occur, at the very least for the finite value β = β∗. On the other hand, the upper

bound indicates that the probability of fixation curve is strictly sub-unital in a neighbor-

hood of zero whenever β < β∗. Therefore β∗ = −(3− α)
∫ 1

0 (1− t)−α log t dt is indeed the

critical value of selection upon which almost sure fixation turns.

Equation (4.5.35) was derived under the assumption that 0 < α < 1, but the formula

on the right-hand side has an analytic extension to α in the range 0 < α < 2. It

appears likely this formula correctly predicts the critical value of β under which almost-

sure fixation occurs in the power-law models, even in the range 1 < α < 2.

Further Comments on Fixation Probabilities

The preceding results are rich in insights into what is and is not possible in the space

of generalized processes, and the location of the Wright-Fisher process itself within the
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generalized class.

The extreme values indicated in (4.5.18,4.5.19) are those that are achieved by the

maximal and minimal processes, but we have seen that the power-law processes, 0 < α < 1

exhibit much the same characteristics. Namely, in each case, there exists a finite value

of selection pressure β∗ leading to almost sure fixation of all paths, regardless of initial

frequency. In the Maximal process, this occurred at β∗ = 1, in the power-law processes,

this value starts at β∗ = 3 for α = 0, and increases as α increases. Our solution to the

extremal problem also proved a sort of converse: namely that if β < 1, then almost sure

fixation is impossible in any model.

We can also observe that as β → ∞, p−(x) → 1, and hence every process fixates

almost surely in the limit of β → ∞: this has the interpretation that no ultimate GWF

selection-suppressors exist.

More heuristically, we can use Theorem 4.5.3 to obtain a rough estimate of probabil-

ities of fixation of single mutants by inserting the initializing “frequency” x = 1/N . This

gives:

s ≤ P (fixation|X0 = 1/N) ≤ 1 (4.5.44)

It is instructive to compare these bounds to the actual achievements of the Wright-

Fisher process. There:

PWF(fixation|X0 = 1/N) = 2s, s > 0 (4.5.45)

In population biology, s is quite small, and hence the Wright-Fisher model is seen to lie

very near the absolute lower bound across all GWF processes. This is commensurate

with the intuitive belief that the Wright-Fisher process has the “strongest drift” out of all
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processes, and is in fact a very strong selection depressor. To contrast, the Λ1-Cannings

model has a much larger fixation probability for new mutants.

4.6 Aspects of the Stationary Distribution

In this section we consider the continuum limits of pure-mutation processes where both

mutation rates are strictly positive, and analyze aspects of the resulting stationary dis-

tributions.

Let X
(N)
k be a sequence of GWF chains with mutation parameters θ1, θ2 > 0, and

arbitrary selection, as defined in Section 1.6. According to Theorem 1.6.2, there exists a

unique stationary distribution µN for X(N). If X(N) has continuum limit Xt, one might

suppose that µN would converge in distribution to a stationary measure µ of Xt. This need

not be true in the most general case, but we will work towards a proof of the statement

for a certain class of GWF processes.

To begin, the following standard characterization of stationary distributions is very

useful:

Theorem 4.6.1. (c.f. [12]). The probability measure µ is a stationary distribution for

the process associated to a C0 semigroup Tt with generator G if and only if either of the

following equivalent conditions is satisfied:

1.
∫
Ttfdµ =

∫
fdµ, f ∈ C0, t ≥ 0

2.
∫
Gfdµ = 0, f ∈ D(G)

Let us first tackle the question of the existence of stationary distributions for the
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continuum limit.

Theorem 4.6.2. Suppose X
(N)
k is a sequence of GWF chains with strictly positive mu-

tation parameters θ1, θ2 > 0, and arbitrary selection. Further suppose that X(N) has a

continuum limit X. Then there exists a stationary measure µ for X.

Proof. Let µN be the sequence of stationary measures for X(N)/N , associated to the

transition matrices P(N), by Theorem 1.6.2. The sequence of µN are tight, and let µ be

any weak limit point, so that µNk → µ. Then for each continuous f :

∫ 1

0
Ttfdµ = lim

Nk→∞

∫ 1

0
TtfdµNk (4.6.1)

= lim
Nk→∞

∫ 1

0
P[Nkt](πNkf)dµNk (4.6.2)

= lim
Nk→∞

∫ 1

0
πNk(f)dµNk (4.6.3)

=

∫ 1

0
fdµ (4.6.4)

where the second line follows from the definition of convergence to the continuum limit.

Hence µ is a stationary distribution for X from Theorem 4.6.1.

We have learnt that the continuum limit always has a stationary distribution. When

is it unique? Our study of this question is restricted to the special case of Cannings

processes.

Theorem 4.6.3. Let X(N) be a sequence of convergent Cannings chains normalised to

the unit interval, with a continuum limit X, generated by G. Then Gxn =
∑n

j=0−ajnxj,

where an,n > 0, for all n ≥ 2.
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Proof. The reader is referred to the proof of Theorem 3.9.2 for the basic setup. We have

the strong limit Gu = limN→∞N(P(N) − I)πNu. If u(x) = xj , it is easily verified that

(P(N)πNu)(i) = (i[j]/N j)E(y1 · · · yj) + terms in (i/N)j−1, (i/N)j−2 (4.6.5)

where i[j] = i(i−1) · · · (i−j+1), and yj = νj/N are the normalised exchangeable variables.

Note that E(y1 · · · yj) < 1: specifically E(y1 · · · yj) = 1−c/N+O(N2), where c > 0, so we

can deduce that limN→∞N(P(N) − I)πNu = p(x), where p(x) is a polynomial of degree

j and the coefficient in front of the highest power is strictly negative.

The Cannings processes are not the only process to satisfy this constraint — in fact

every single one of our example polynomial generators has this property. For them,

we can obtain the following theorem on the stationary distribution, which is stated for

Cannings processes, but obviously generalises to any process satisfying the conclusion of

the foregoing Theorem.

Theorem 4.6.4. Let X be a Cannings continuum limit with mutation rates θ1, θ2 > 0,

and zero selection. Then X has a unique stationary distribution µ, and denoting the j-th

moments of µ by m1,m2, . . . ,mj, they have the form

m1(θ1, θ2) =
θ2

θ1 + θ2
(4.6.6)

m2(θ1, θ2) =
(1 + θ2)θ2

(1 + θ1 + θ2)(θ1 + θ2)
(4.6.7)

... (4.6.8)

mk(θ1, θ2) =

∑k−1
j=0 bjkmj(θ1, θ2)

ck + k(θ1 + θ2)
(4.6.9)

where ck > 0 for all k ≥ 3, and bjk are some constants, and m0 = 1.
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Proof. Write Gu(x) = 1
2(−θ1x + θ2(1 − x))u′(x) + GΩu(x), where GΩ is the pure-drift

part of the generator. We have that Gx = 0, Gx2 = x(1 − x), and more generally that

Gxk is a polynomial with negative leading coefficient for k ≥ 2. Then the relation

∫ 1

0

[
1

2
(−θ1x+ θ2(1− x))kxk−1 +Gxk

]
dµ = 0 (4.6.10)

holds for every m ≥ 1. If Gxk =
∑k

j=0−aj,kxj , collecting terms, one derives:

−(ak,k +
1

2
(θ1 + θ2))mk +

k

2
θ2mk−1 −

k−1∑
j=0

aj,k−1mj = 0 (4.6.11)

which is a recursive equation that can be solved for mk whenever k ≥ 2, since θ1, θ2 > 0

and ak,k ≥ 0 for all k and equal to zero only when for k = 1. Since all the moments of µ

are uniquely specified by this recurrence relation, and since a bounded random variable

is uniquely determined from knowledge of its moments, µ is unique.

Finally, we terminate this section by proving a convergence theorem for the stationary

distributions.

Theorem 4.6.5. Let X(N) be Cannings chains with continuum limit X, with fixed muta-

tion rates θ1, θ2, and zero selection. Let µN be the unique stationary distribution for each

X(N), and let µ be the unique stationary distribution for X. Then µN converges weakly

to µ.

Proof. The µN are relatively compact; the proof of Theorem 4.6.2 shows that any weak

limit point of µN is a stationary distribution of X, but this limit point is uniquely char-

acterized by Theorem 4.6.4, and so every weakly convergent subsequence of µN converges

to µ.
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4.7 Statistical Properties of the Stationary Distribution

4.7.1 Inference and Identifiability from Equilibrium

In our theory of GWF processes, each continuum population model was parameterized

by three objects: 1) a measure-valued function Ω on [0, 1] (random drift), 2) a selection

pressure β, and 3) mutation rates θ1, θ2. Biologists have long used Kimura’s model, in

the special case Ωx = δx, to infer from physical data the values of selection and mutation

rates. Typically the field biologist does not have access to a collection of sample paths

from the process; rather, only samples from population frequencies ostensibly assumed to

be at equilibrium are accessible. These samples come in the form of population frequencies

collected from sites in the genome, all assumed to be evolving under independent Wright-

Fisher processes undergoing the same selection, mutation rates and drift patterns. From

this coarse-grained histogram of the stationary distribution, inference of β, θ1, θ2 can be

performed in the standard (e.g. maximum-likelihood) manner.

In the GWF framework, the introduction of a general drift variable Ω raises a number

of interesting and complex questions, since the stationary distribution µ now depends

on an infinite-dimensional parameter. Perhaps the most basic question is identifiability:

what aspects of the process can be inferred from the stationary distribution of a GWF

process alone?

The first illusion to be shattered is this: Ω cannot be identified from the equilibrium

in general. For a counterexample, consider the continuum Λ1-process with mutation

parameters θ1 = θ2 = θ.

Proposition 4.7.1. The stationary distribution µ for the Λ1-process undergoing symmet-
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ric mutation has density

dµ

dx
=

1

θ
|1− 2x|

1−θ
θ (4.7.1)

Proof. The generator for the process is Gu = 1
2θ(1 − 2x)u′(x) + (1 − x)u(0) − u(x) +

xu(1), and C2[0, 1] is a core for G. Noting that the density dµ/dx satisfies the equation

−d/dx( θ2(1− 2x)dµ/dx)− dµ/dx = 0 and integrating by parts, it can be readily verified

that
∫ 1

0 Gudµ = 0 for every u ∈ C2. Thus µ is the stationary distribution for the process,

by the uniqueness of Theorem 4.6.4.

For comparison, the Kimura diffusion possesses a Dirichlet-type equilibrium measure:

dµWF

dx
=

Γ(2θ)

(Γ(θ))2
xθ−1(1− x)θ−1 (4.7.2)

We observe that at θ = 1, both measures (4.7.1) and (4.7.2) coincide at the uniform

distribution — this despite the enormous difference between their drift measures Ω! Hence

the map from Ω to the stationary distribution is not injective, and therefore Ω is not

identifiable.

This has disappointing consequences for the biologist: Ω captures information con-

cerning stochastic aspects of offspring production, and it is perhaps surprising that there

are situations in which even markedly contrasting offspring distributions cannot be dis-

tinguished in equilibrium (they can, of course, be distinguished from sample path data).

If we cannot hope to identify Ω from the stationary measure, is it nonetheless possible

to estimate θ1, θ2 from equilibrium? This is a semiparametric problem: one regards the

infinite-dimensional parameter Ω as a nuisance object. Remarkably, and with a quite

simple proof, this turns out to be well-posed.
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Theorem 4.7.2. (Identifiability of mutation parameters) Let (θ1
1, θ

1
2,Ω

1) and (θ2
1, θ

2
2,Ω

2)

be given parameters for two continuum Cannings processes, and let µ1, µ2 be the unique

stationary measures for G1 and G2. If (θ1
1, θ

1
2) 6= (θ2

1, θ
2
2), then µ1 6= µ2, irrespective of

Ω1 and Ω2.

Proof. According to Theorem 4.6.4, independently of Ωi, the first two moments of the

stationary distributions µ1, µ2 are given by

m1(θ1, θ2) =
θ2

θ1 + θ2
(4.7.3)

m2(θ1, θ2) =
(1 + θ2)θ2

(1 + θ1 + θ2)(θ1 + θ2)
(4.7.4)

and it is straightforward to verify that the map (θ1, θ2) 7→ (m1,m2) is injective whenever

θ1, θ2 > 0.

Remark: The above remains true for all GWF processes admitting unique stationary

measures, not merely those of Cannings type. Theorem 4.7.2 actually suggests a consistent

estimator for (θ1, θ2), namely the inverse map (m1,m2) 7→ (θ1, θ2) of the first two sample

moments.

4.7.2 The Sampled Frequency Spectrum

In practice, biologists do not actually have access to samples from the continuum station-

ary distribution, but rather only a coarsened version of it. This histogram is called the

“sampled frequency spectrum” and we now describe one version of it.

We have a population of very large size N , modeled as a continuum pure mutation

Cannings process Xt which records the fraction of individuals of a particular type A at
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time t. We assume symmetric mutation rates θ = θ1 = θ2. Let µθ be the stationary

distribution for this process. Suppose we sample n individuals from the population at

equilibrium, assuming n � N , and let Y be the number of individuals in the sample of

type A. Then

pj = P (Y = j) =

∫ 1

0

(
n

j

)
xj(1− x)n−j dµθ(x), 0 ≤ j ≤ n (4.7.5)

Observe that this probability function incorporates explicitly higher moments of het-

erozygosity related to the stationary distribution. Now presume that there exist L “sites”

along the genome for which the above population process occurs, identically and inde-

pendently, and with associated random variables Y1, . . . , YL representing the number of

individuals at site i with a particular binary choice of allele. The distribution for Y has

the form

P (Y1 = y1, . . . , YL = yL) =
L∏
i=1

∫ 1

0

(
n

yi

)
xyi(1− x)n−yi dµθ(x) (4.7.6)

An associated vector of random variables, derived from Yi, may be defined as

Zk =

L∑
i=1

1Yi=k, k = 0, . . . , n (4.7.7)

The variables Zk record the number of sites with precisely k (out of n) individuals of a

given type, and hence represents a sampled version of the stationary distribution µ. Since∑n
k=0 Zk = L, the probability function for (Z0, . . . , Zn) is defined on a discrete simplex. It

is easy to see that the Zk have the form of the multinomial distribution with parameters

(L, p0, . . . , pn). The vector (Z0, . . . , Zn) is called the sampled frequency spectrum, the sites
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Z1, . . . , Zn−1 are called the segregating sites, since they represent sites where there is an

observed diversity in type; Z0, Zn are called monomorphic sites for equally clear reasons.

4.7.3 The Finite Sites Poisson Random Field Model

There is a limiting approximation for the segregating site variables Z1, . . . , Zn−1 known,

as the Poisson Random Field, or PRF model. It is the model derived in the limit of

infinite sites L→∞, and under the assumption that the “global mutation rate” Θ = Lθ

converges, as given by the following classic result (c.f. [20]):

Theorem 4.7.3. (PRF Approximation). Assume that a Wright-Fisher process occurs at

each of the sites, and hence µ is the equilibrium measure given by (4.7.2). If Lθ → Θ <∞,

as L → ∞, then the segregating site variables (Z1, . . . , Zn−1) converge to a sequence of

independent Poisson random variables with means Θ
2

n
j(n−j) for j = 1, . . . , n− 1.

We now will present a large generalization of the preceding theorem, which shows that

the PRF model holds with significantly wider scope. It makes use of the structure of the

moments of the stationary distribution as found in Theorem 4.6.4. First we require a

preliminary lemma.

Lemma 4.7.4. Let µθ be the stationary distribution of a Cannings process undergoing

symmetric mutation θ. Then there exist constants cj ≥ 0, for 1 ≤ j ≤ n− 1,

pj(θ) =

∫ 1

0

(
n

j

)
xj(1− x)n−j dµθ(x) = cjθ + o(θ), θ ↓ 0 (4.7.8)

Proof. The lemma is equivalent to saying pj(0) = 0 and pj has a derivative at θ = 0.

First observe from Theorem 4.6.4 that under θ1 = θ2, all the moments mk(θ) of the
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stationary distribution are differentiable in θ for all θ ≥ 0, and hence pj(θ) is differentiable

everywhere. Applying the moment formulae of Theorem 4.6.4, we learn that

|pj(θ)| ≤
(
n

j

)∫ 1

0
x(1− x) dµθ(x) =

(
n

j

)
2θ

1 + 2θ
(4.7.9)

hence pj(θ)→ 0 as θ ↓ 0.

Now we can prove a general PRF representation theorem.

Theorem 4.7.5. (General PRF Approximation). Assume that a continuum Cannings

process occurs at each of the sites, and µθ is its respective equilibrium measure. If L · θ →

Θ < ∞ as L → ∞, then the segregating site variables (Z1, . . . , Zn−1) converge to a

sequence of independent Poisson random variables with means cjΘ, where the cj are given

by

cj = lim
θ↓0

1

θ

∫ 1

0

(
n

j

)
xj(1− x)n−j dµθ(x) (4.7.10)

Proof. All we need to do is apply the well-known Poisson approximation to the multi-

nomial distribution: many such theorems exist in the literature. One which more than

suffices for our purposes is a result due to McDonald (c.f. [15]), stated here simply for

our application:

Theorem 4.7.6. (Poisson-Multinomial Approximation). If (Z0, . . . , Zn) is multinomial

with parameters (L, p0, . . . , pn), and (V1, . . . , Vn−1) are independent Poissons with means

Lpj, then

‖(Z1, . . . , Zn−1)− (V1, . . . , Vn−1)‖ ≤ 2L

n−1∑
j=1

pj

2

(4.7.11)

where ‖ · ‖ is the total variation norm of measures.
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The PRF approximation is now obvious, since pj(θ) = O(θ) = O(1/L) by Lemma 4.7.4

and therefore the right-hand side of 4.7.11 goes to zero as L → ∞. Since (V1, . . . , Vn−1)

are converging to a sequence of independent Poisson distributions with finite means cjΘ,

where cj are as in Lemma 4.7.4, so must (Z1, . . . , Zn−1).

Theorem 4.7.5 shows that in the limit of a large number of sites, the sampled frequency

spectrum still converges to that of a Poisson Random Field. Note, however, that the

means of the Poisson variables are in general cj = limL→∞ Lpj , which depend upon the

heterozygotic moments of the stationary distribution, and in general do not coincide with

those of the Wright-Fisher distribution.

The PRF model releases some interesting insights which are enshrouded in the finite

site system. As an example, in the Wright-Fisher PRF, one learns that the number of

segregating sites, i.e. the statistic T (Θ) =
∑n−1

i=1 Zi—is sufficient for Θ, a statistic which

vastly compresses the data. This follows simply from Neyman’s factorization criterion

applied to the sequence of independent Poisson distributions Zi. Our extended PRF

Theorem 4.7.5 demonstrates this fact remains true even in the generality of Cannings

models.
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Concluding Remarks

Our research originated in the aim of trying to understand the classical and biologically

ubiquitous Wright-Fisher model at a deeper level, and with the goal of generalising its

analysis to a larger class of processes which, in many cases, are biologically more sensible.

To this end, the set of Generalised Wright Fisher (GWF) processes was introduced, con-

taining as special cases many of the previously known Wright-Fisher generalisations: these

include S. Karlin’s conditional branching process, the Schweinsberg sampling model, and

the Cannings processes. A canonical way of incorporating selective and mutational forces

into the processes was discovered, and their basic discrete theory studied, using techniques

from Markov and martingale theory. Bounds on the distribution of the absorption times

of the models were obtained, in particular optimal estimates of the mean absorption and

conditional fixation times. These results showed that in the neutral models, the exit time

of a set S lies within a narrow range when the processes are initialised in the interior of

S, but can range over practically large orders when initialised near the boundary of S.

In order to study the finer aspects of generalised processes, a continuum approxima-

tion theory of the Markov chains was developed to replace the traditional diffusion theory

approach — the latter found inadequate due to the importance of higher-order moments
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in the limiting processes, and the observation that all GWF processes coincide in their

first two conditional moments. A representation theorem for the generators GΩ,β,θ of the

continuum limits was derived, parameterized by a Levy-like kernel Ωx(y), which has the

interpretation of describing a generalised conception of biological random drift, and selec-

tion and mutation parameters β, θ1, θ2. We also provided a converse to the representation

formula, which showed that for any parameters β, θi ≥ 0 and continuous Ω, there exists a

sequence of GWF chains converging in a strong-operator sense to the GΩ,β,θ; this result in

effect gives a weak solution to the generator problem associated to GΩ,β,θ. More discrimi-

nating convergence conditions than those announced in the literature were derived, under

the assumption that the continuum process is the standard Wright-Fisher diffusion; this

diffusion was also characterized as the only continuum process with continuous sample

paths.

For the purposes of illustrating our theory and offering interesting, biologically perti-

nent models, a number of GWF processes with non-Wright-Fisherian features were con-

structed, most notably the power-law α-processes, α > 0. By a study of the asymptotics

of these processes, their limiting continuum generators were calculated, and it was shown

that the continuum limit was Kimura diffusive if and only if α ≥ 3. That the correspond-

ing α-operators admitted closures inducing Feller semigroups and processes was deduced

using the Hille-Yosida theory; we were also able to establish the existence of continuum

limits for converging Cannings processes in the same way, by applying the polynomial

structure of the moments of these models.

Further, we studied the maximum principles appropriate for GWF operators and the
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parabolic backward operator; these were rallied to solve a number of important genetic

problems, including the extremal problem of finding the GWF processes with the maximal

and minimal fixation probabilities under a given fixed selection pressure β. In doing so

we succeeded in deriving universal bounds on the evolution of means of pure-selection

processes. Maximum principles were also invoked to study properties of the harmonic

functions connected to the α-generators; there we proved the startling result that for each

index α between 0 and 1, there existed a finite selection pressure β∗ which ensured the

absorption of almost every sample path at only one of the boundaries. This contrasts

strongly with the classical model, where β∗ = ±∞.

Finally, the stationary distributions of pure-mutation GWF processes were considered:

we were able to prove existence and uniqueness of a stationary measure for all Cannings

processes, and gave formulae for the structure of the moments of this measure. This

information was applied to prove a generalised Poisson Random Field approximation

theorem for the sampled frequency spectrum of any Cannings model. We also explored

the question of which features of GWF processes could be identified from knowledge of

its stationary distribution alone: the mutation parameters θi proved to be identifiable,

but unfortunately for the field scientist, not the drift Ω.

The technique and analysis in this thesis has been mostly mathematical, but the

questions it presumes to shed light on include scientific ones; and so it does not appear

supererogatory at this point to allude to some interesting biological implications.

Perhaps most surprising is that, far from being an average model, the classical Wright-

Fisher model is an extreme process, even when viewed in the enormous space of GWF
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processes. This extremity can be summarised in the doctrine that it is the model with

the “strongest drift”; the tenet has exact manifestations in a number of forms. First, it is

mathematically an extreme point of the convex space of continuum models. Second, its

generator, as a second-order differential operator, dominates all other GWF operators,

which have orders less than two at every interior point of the state space. Related to this

fact, the Wright-Fisher diffusion is the only process with continuous sample paths: all

other processes possess discontinuities. Finally, the classical model proves to be the min-

imizer or near minimizer for a number of genetic functionals: expected absorption times

started at low frequencies, and fixation probability among them. The strength of Wright-

Fisherian drift indeed makes it the model most disadvantageous for the propagation and

fixation of new mutants of superior fitness. This makes the well-known observation in evo-

lutionary biology — that the rates of substitution of new mutants in populations appears

constant, even over many diverse lineages and over many eras — even more remarkable,

owing to the fact that non-Wright-Fisherian processes possess significantly greater ability,

relative to the classical model, to discriminate small selective pressures from the neutral

case. Our work then only lends even greater support to the sobering substance of Kimura’s

Neutral Theory: that the majority of mutations which have fixed in evolutionary history

have done so not by any real inherent superiority of trait, but rather by pure chance.
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