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Least action principle

Particles move in the path that results in the least " effort”




How to measure action

We need some sort of "energy function” to help measure the
amount of "action” of a certain path.

This is accomplished by the Lagrangian function, denoted by L,
such that S defined by

S[i(8)] = / CL(xi (1), 5 (1)) e

is a functional that calculates the action.
One example of a Lagrangian would be the kinetic energy function
in three dimensions:

L (8), £1(1)) = S m(2 + 57 + 2)



Calculus of Variations

We are interested in finding local minimums of the functional S.
Given some function/path x'(t) that starts at t; and ends at t»,
we can shift it infinitesimally. Consider some 7(t) such that

n(t1) = n(t2) =0

Scale 1 by some small € to get en(t), and then use this to variate
x'(t) slightly: .
x'(t) + en(t)



Local minimum

Suppose x/(t) is some local minimum of S, then
F(e) = SIx'(t) + en(t)]

has local minimum at e = 0.
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Denote y = x/(t) + en(t). Use chain rule to get
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Some more derivation

Since we evaluate the derivative at e =0, y = x’
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Split the integral (use integration by parts to go from (1) to (2))
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The Euler-Lagrange Equation

By the "the Fundamental Lemma of Calculus of Variations”

conclude that
oL d oL
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This is called the Euler-Lagrange equation.
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Newton's first law

If we consider the Lagrangian given by the kinetic energy,
. . 1
L(), X7 (6)) = 5m(i2 + 52 + 22)
and plug it into the Euler-Lagrange equation, we get (through

some chain rule) that
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This is saying that particles would move in constant velocity in a
straight line.



Geodesics

surface.

Intuitively, the geodesic is the notion of a straight line in a curved

"The locally shortest path from point A to B".

geodesic
=

https://geometry-central.net /surface/algorithms/flipg eodesics /




Curved Space

Spaces can be curved, and in this case, the geodesics might not be
straight lines.

Describe curved space by defining local distance via metric tensor
(basically a bilinear form).

The metric tensor can be expressed as a symmetric matrix (gj).
Given some point x’ and some infinitesimal dx’,

ds® = gji(x)dx’dx/

Calculates the distance between x’ and x' + dx’



The Geodesic Equation

Generalizing the kinetic energy Lagrangian to curved space:
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Can then plug this into the Euler-Lagrange Equation to get the

geodesic equation: _ o
X Tk =0

Where
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is called the Christoffel symbols.



Example

For a 2-Sphere of radius one, we have the metric

10 0
(gj)=(0 1 0
0 0 sin%f

Using Euler-Lagrange Equation, we can get that the geodesics on
the 2-Sphere are the great circles.
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