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Single server queuing model (M/M/1)

Arrivals

Service Facility

208

Queue

Server

Departures

Figure 1: Queuing model with single server (Stewart 2009)

2/20




Markov chain representation (M/M/1)

Figure 2: Continuous-time Markov chain with one server and infinite states (Stewart 2009)
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M/M/1 Steady State

dps ()

If the steady state exists, then ==~

in state n attime t.

= 0, where p,(t) denotes the probability of being
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M/M/1 Steady State, cont.

If the steady state exists, then d"@—ft) = 0, where p,(t) denotes the probability of being
in state n at time t.

Recall that the rate of transition from state n — 1 to nis A, and the rate of transition
from state n + 1 to nis p.
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M/M/1 Steady State, cont.

If the steady state exists, then d"@—ft) = 0, where p,(t) denotes the probability of being
in state n at time t.

Recall that the rate of transition from state n — 1 to nis A, and the rate of transition
from state n + 1 to nis p.

Assume that the steady state exists. Thus we can write:

0 = —Apo + pp1 — pp1 = Apo
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M/M/1 Steady State, cont.

dps ()

If the steady state exists, then == = 0, where pa(t) denotes the probability of being

in state n attime t.

Recall that the rate of transition from state n — 1 to nis A, and the rate of transition
from state n + 1 to nis p.

Assume that the steady state exists. Thus we can write:
0 = —Apo + pup1 — pp1 = Apo

0= —(A+ p)pn + ftpns1 + Apn—1 = (A4 )p1 = Apo + p1p2
(A4 p)p1 = pp1 + pp2
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M/M/1 Steady State, cont.

dps ()

If the steady state exists, then == = 0, where pa(t) denotes the probability of being

in state n attime t.

Recall that the rate of transition from state n — 1 to nis A, and the rate of transition
from staten + 1 to nis p.

Assume that the steady state exists. Thus we can write:
[1p1 = APo

(A4 w)p1 = Apo + pp2

(A + p)p1 = pp1 + pp2
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M/M/1 Steady State, cont.

dps ()

If the steady state exists, then ==~

in state n attime t.

= 0, where p,(t) denotes the probability of being

Recall that the rate of transition from state n — 1 to nis A, and the rate of transition
from state n + 1 to nis p.

Assume that the steady state exists. Thus we can write:

AN 2
p2 = (> Po
n

By induction, the steady state solution is:
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Multi server queuing model (M/M/C)

Departures

Arrivals

e
, Ilc3
(@

¢ Servers

Figure 3: Queuing model with ¢ servers (Stewart 2009)
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Markov chain representation (M/M/C)

Figure 4: Continuous-time Markov chain with ¢ servers and infinite states (Stewart 2009)
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Markov chain representation (M/M/C)

Define the transition rates A and p:

A=A, Vn
pn=np,1 <n<c
Hn = Cl,N > C
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M/M/C Steady State

Define the transition rates A and p:

A=A, Vn
o =np,1 <n<c

pn = cp,n < ¢

Recall that for the M/M/1 queue, the steady state solution was:

L\
—1

po=po ][] ~-
=1 M
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M/M/C Steady State, cont.

Recall that for the M/M/1 queue, the steady solution was:

T
—1
Pn ZPOH .
i=1

i
For1l < n <c where A\, = Aand u, = nu:
n

PnZPOHA

i
i=1 M

() 5
=Po\— ] 5
w) n!
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M/M/C Steady State, cont.

Recall that for the M/M/1 queue, the steady solution was:

T
—1
Pn = Po IiI n.
—1 M

Forn > ¢, where A\, = Aand pu, = cu:

Pn—POH H

i=1 =c+1 CH
1

“’°< > (1)
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M/M/C Steady State, cont.

Steady state equations for multiple servers:

A\ 1
Pn=po|—] S, 1<n<c
wn) o n!

</\>n : (1)n_c
Ph=po|—) S\= n=>c
uw/) o \c

16/20




M/M/C Steady State, cont.

Steady state equations derived for multiple servers:

A1
pn:po ; f',lgnSC

</\>n : <1>n_c
Ph=po|—) S\= n=>c
uw/) o \c

Letp = %
n
m:m”?,1§n<c
(Cp)ﬂ HCC
Pn = Po s=cq PO >c
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Applications in traffic flow modeling

+ Model roadway capacity under stochastic conditions

+ Quantify the effect of bus arrivals / departures on delays and wait time (Gu et al.,
2015)

+ Evaluate delays of bus stop configurations and prioritize optimal stopping
mechanisms (Wang et al. 2018)

+ Leads to more efficient and resilient transit infrastructure

Figure 5: Single-berth bus stop (Wang et al. 2018)
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