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Single server queuing model (M/M/1)

Figure 1: Queuing model with single server (Stewart 2009)
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Markov chain representation (M/M/1)

Figure 2: Continuous-time Markov chain with one server and infinite states (Stewart 2009)
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M/M/1 Steady State

If the steady state exists, then dpn(t)
dt = 0, where pn(t) denotes the probability of being

in state n at time t.
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M/M/1 Steady State, cont.

If the steady state exists, then dpn(t)
dt = 0, where pn(t) denotes the probability of being

in state n at time t.

Recall that the rate of transition from state n− 1 to n is λ, and the rate of transition
from state n+ 1 to n is µ.
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M/M/1 Steady State, cont.

If the steady state exists, then dpn(t)
dt = 0, where pn(t) denotes the probability of being

in state n at time t.

Recall that the rate of transition from state n− 1 to n is λ, and the rate of transition
from state n+ 1 to n is µ.

Assume that the steady state exists. Thus we can write:

0 = −λp0 + µp1 → µp1 = λp0
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M/M/1 Steady State, cont.

If the steady state exists, then dpn(t)
dt = 0, where pn(t) denotes the probability of being

in state n at time t.

Recall that the rate of transition from state n− 1 to n is λ, and the rate of transition
from state n+ 1 to n is µ.

Assume that the steady state exists. Thus we can write:

0 = −λp0 + µp1 → µp1 = λp0
0 = −(λ+ µ)pn + µpn+1 + λpn−1 → (λ+ µ)p1 = λp0 + µp2

(λ+ µ)p1 = µp1 + µp2
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M/M/1 Steady State, cont.

If the steady state exists, then dpn(t)
dt = 0, where pn(t) denotes the probability of being

in state n at time t.

Recall that the rate of transition from state n− 1 to n is λ, and the rate of transition
from state n+ 1 to n is µ.

Assume that the steady state exists. Thus we can write:

µp1 = λp0
(λ+ µ)p1 = λp0 + µp2
(λ+ µ)p1 = µp1 + µp2

p2 =
λ

µ
p1

p2 =

(
λ

µ

)2

p0
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M/M/1 Steady State, cont.

If the steady state exists, then dpn(t)
dt = 0, where pn(t) denotes the probability of being

in state n at time t.

Recall that the rate of transition from state n− 1 to n is λ, and the rate of transition
from state n+ 1 to n is µ.

Assume that the steady state exists. Thus we can write:

p2 =

(
λ

µ

)2

p0

By induction, the steady state solution is:

pi =

(
λ

µ

)i

p0
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Multi server queuing model (M/M/C)

Figure 3: Queuing model with c servers (Stewart 2009)
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Markov chain representation (M/M/C)

Figure 4: Continuous-time Markov chain with c servers and infinite states (Stewart 2009)
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Markov chain representation (M/M/C)

Define the transition rates λ and µ:

λn = λ, ∀n
µn = nµ, 1 ≤ n ≤ c

µn = cµ, n ≥ c
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M/M/C Steady State

Define the transition rates λ and µ:

λn = λ, ∀n
µn = nµ, 1 ≤ n ≤ c

µn = cµ, n ≤ c

Recall that for the M/M/1 queue, the steady state solution was:

pn = p0

n∏
i=1

λn−1

µi
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M/M/C Steady State, cont.

Recall that for the M/M/1 queue, the steady solution was:

pn = p0

n∏
i=1

λn−1

µi

For 1 ≤ n ≤ c, where λn = λ and µn = nµ:

pn = p0

n∏
i=1

λ

iµ

= p0

(
λ

µ

)n
1

n!
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M/M/C Steady State, cont.

Recall that for the M/M/1 queue, the steady solution was:

pn = p0

n∏
i=1

λn−1

µi

For n ≥ c, where λn = λ and µn = cµ:

pn = p0

c∏
i=1

λ

iµ

n∏
i=c+1

λ

cµ

= p0

(
λ

µ

)n
1

c!

(
1

c

)n−c
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M/M/C Steady State, cont.

Steady state equations for multiple servers:

pn = p0

(
λ

µ

)n
1

n!
, 1 ≤ n ≤ c

pn = p0

(
λ

µ

)n
1

c!

(
1

c

)n−c

, n ≥ c
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M/M/C Steady State, cont.

Steady state equations derived for multiple servers:

pn = p0

(
λ

µ

)n
1

n!
, 1 ≤ n ≤ c

pn = p0

(
λ

µ

)n
1

c!

(
1

c

)n−c

, n ≥ c

Let ρ = λ
cµ :

pn = p0
(cρ)n

n!
, 1 ≤ n ≤ c

pn = p0
(cρ)n

cn−cc!
= p0

ρncc

c!
, n ≥ c
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Applications in traffic flow modeling

• Model roadway capacity under stochastic conditions
• Quantify the effect of bus arrivals / departures on delays and wait time (Gu et al.,
2015)

• Evaluate delays of bus stop configurations and prioritize optimal stopping
mechanisms (Wang et al. 2018)

• Leads to more efficient and resilient transit infrastructure

Figure 5: Single-berth bus stop (Wang et al. 2018)
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