The Universe

Kevin You

Spring 2022

Outline

(1) Some basic axioms of Z^{-}as a subsystem of ZFC
(3) The universe of mathematical objects 11
4 References 18

Section 1

Some basic axioms of Z^{-}as a subsystem of ZFC

Our Axioms (so far)

Axiom (Existence)

$$
\exists x(x=x)
$$

Axiom (Extensionality)

$$
\forall x \forall y(\forall z(z \in x \Longleftrightarrow z \in y) \Longrightarrow x=y)
$$

Axiom (Comprehension Scheme)

For each formula ϕ without y free,

$$
\forall z \exists y \forall x(x \in y \Longleftrightarrow x \in z \wedge \phi)
$$

Axioms (cont.)

Axiom (Pairing)

$$
\forall x \forall y \exists z(x \in z \wedge y \in z)
$$

Axiom (Union)

$$
\forall F \exists A \forall Y \forall x(x \in Y \wedge Y \in F \Longrightarrow x \in A)
$$

Axiom (Power Set)

$$
\forall x \exists y \forall z(z \subseteq x \Longrightarrow z \in y)
$$

Results

Using just the axioms we have so far, we can create lots of sets and operations! The following are some examples.

- \emptyset (Comprehension and Existence)
- Arbitrary unions over families indexed by a set \cup (Union and Comprehension)
- Pairs $\{x, y\}$ (Pairing and Comprehension).
- Ordered pairs $\{x,\{x, y\}\}$ abbreviated as (x, y) (Pairing and Comprehension).
- Cartesian product $X \times Y$, the set of all ordered pairs between two sets (Power Set three times and Comprehension).
- Functions and relations which are subsets of cartesian products (Power Set three times and Comprehension).
- Quotients (Power set and Comprehension).

Section 2

Numbers

Natural Numbers

Definition 1

If x is a set, then the successor of x, denoted $S(x)$, is $x \cup\{x\}$

Definition 2

(1) \emptyset is 0 .
(1) $1=S(0)=\{\emptyset\}, 2=S(1)=\{\emptyset,\{\emptyset\}\}, \ldots, n+1=S(n)$.

Idea

Each natural number n has n "layers" of brackets. These somehow store information about order, together with the relation ϵ.

Infinity

Axiom (Infinity)

$$
\exists x(\emptyset \in x \wedge \forall y \in x(S(y) \in x))
$$

Definition 3

Using Infinity and Comprehension, we may define $\omega=\{0,1,2, \ldots\}$

The "real" Natural Numbers?

$$
(\omega, \epsilon) \cong(\mathbb{N},<)
$$

We can keep going!

$$
\begin{aligned}
\omega+1 & =S(\omega) \\
\omega+2 & =S(\omega+1) \\
& \ldots \omega+\omega ?
\end{aligned}
$$

$\mathbb{Z}, \mathbb{Q}, \mathbb{R}$, and \mathbb{C}

Definition 4

$$
\mathbb{Z}=(\mathbb{N} \times \mathbb{N}) / \sim
$$

Definition 5

$$
\mathbb{Q}=(\mathbb{Z} \times(\mathbb{Z} \backslash\{0\})) / \sim
$$

Definition 6

$$
\begin{aligned}
& \mathbb{R}=\{X \in \mathcal{P}(\mathbb{Q}) \mid X \neq \emptyset \wedge X \neq \mathbb{Q} \wedge \\
& \forall x \in X \forall y \in \mathbb{Q}(y<x \Longrightarrow y \in X)\}
\end{aligned}
$$

Definition 7

$$
\mathbb{C}=\mathbb{R} \times \mathbb{R}
$$

Section 3

The universe of mathematical objects

Foundations

We can begin to form sets differentiated by their complexity, i.e., how many "layers" of brackets there are in each.

Definition 8

$$
\begin{gathered}
V_{0}=\emptyset \\
V_{1}=\mathcal{P}\left(V_{0}\right) \\
\ldots \\
V_{n+1}=\mathcal{P}\left(V_{n}\right) \\
\ldots \\
V_{\omega}=\bigcup_{n \in \omega} V_{n}
\end{gathered}
$$

Fact: Everything in V_{ω} is hereditarily finite.

It doesn't stop here

We have to keep going! $V_{\omega+1}=\mathcal{P}\left(V_{\omega}\right)$. In fact, $\omega \notin V_{\omega}$, but $\omega \in V_{\omega+1}$.

- $\mathbb{Z} \in V_{\omega+4}$
- $\mathbb{Q} \in V_{\omega+7}$
- $\mathbb{R} \in V_{\omega+9}$
- $\mathbb{C} \in V_{\omega+12}$
- $(\mathbb{Q},+, 0) \in V_{\omega+22}$
- This is the limit of $\omega+n$ for $n=1,2, \ldots$.
- $V_{\omega+\omega}$ is the closure of the power set operation on $\omega+n$ for $n=1,2, \ldots$
- Fact: $V_{\omega+\omega}$ is a universe for all regular mathematics, and is the smallest such.

It (still) doesn't stop here

- $\omega+\omega+1=S(\omega+\omega)$,
- $\omega+\omega+\omega=3 \omega$,
- $\omega \cdot \omega=\omega^{2}$,
- $\omega^{2} \cdot \omega^{2}=\omega^{4}$,
- ω^{ω},
- $\omega^{\omega^{\omega}}$,
- ... $\mathcal{E}_{0} \ldots$

Do these large numbers exist?

Idea

Every "image" of a function defined by a formula on a set is still a set.

Axiom (Replacement)

For each formula ϕ without Y free,

$$
\forall A \forall x \in A \exists!y \phi(x, y) \Longrightarrow \exists Y \forall x \in A \exists y \in Y \phi(x, y)
$$

Define $\phi: \omega \rightarrow \mathbf{V}$ by $n \mapsto \omega+n$. Thus, $\phi(\omega)=\omega+\omega$ is a definable set. So, all these sets do exist.

The universe of mathematical objects

Axiom (Foundation)

$$
\forall x[\exists y(y \in x) \Longrightarrow \exists y(y \in x \wedge \neg \exists z(z \in x \wedge z \in y))]]
$$

References

囯 [Set Theory, 1980] Kenneth Kunen

