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Section 1

Some basic axioms of Z− as a subsystem of
ZFC
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Our Axioms (so far)

Axiom (Existence)

∃x(x = x)

Axiom (Extensionality)

∀x∀y(∀z(z ∈ x ⇐⇒ z ∈ y) =⇒ x = y)

Axiom (Comprehension Scheme)

For each formula ϕ without y free,

∀z∃y∀x(x ∈ y ⇐⇒ x ∈ z ∧ ϕ)
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Axioms (cont.)

Axiom (Pairing)

∀x∀y∃z(x ∈ z ∧ y ∈ z)

Axiom (Union)

∀F∃A∀Y ∀x(x ∈ Y ∧ Y ∈ F =⇒ x ∈ A)

Axiom (Power Set)

∀x∃y∀z(z ⊆ x =⇒ z ∈ y)
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Results

Using just the axioms we have so far, we can create lots of sets
and operations! The following are some examples.

∅ (Comprehension and Existence)

Arbitrary unions over families indexed by a set ∪ (Union and
Comprehension)

Pairs {x , y} (Pairing and Comprehension).

Ordered pairs {x , {x , y}} abbreviated as (x , y) (Pairing and
Comprehension).

Cartesian product X × Y , the set of all ordered pairs between
two sets (Power Set three times and Comprehension).

Functions and relations which are subsets of cartesian
products (Power Set three times and Comprehension).

Quotients (Power set and Comprehension).
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Section 2

Numbers
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Natural Numbers

Definition 1

If x is a set, then the successor of x , denoted S(x), is x ∪ {x}

Definition 2

i ∅ is 0.

ii 1 = S(0) = {∅}, 2 = S(1) = {∅, {∅}}, ..., n + 1 = S(n).

Idea

Each natural number n has n “layers” of brackets. These somehow
store information about order, together with the relation ϵ.
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Infinity

Axiom (Infinity)

∃x(∅ ∈ x ∧ ∀y ∈ x(S(y) ∈ x))

Definition 3

Using Infinity and Comprehension, we may define ω = {0, 1, 2, ...}

The “real” Natural Numbers?

(ω, ϵ) ∼= (N, <).

We can keep going!

ω + 1 = S(ω)

ω + 2 = S(ω + 1)

... ω + ω?
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Z,Q,R, and C

Definition 4

Z = (N× N)/ ∼

Definition 5

Q = (Z× (Z \ {0}))/ ∼

Definition 6

R = {X ∈ P(Q) | X ̸= ∅ ∧ X ̸= Q∧
∀x ∈ X∀y ∈ Q(y < x =⇒ y ∈ X )}

Definition 7

C = R× R
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Section 3

The universe of mathematical objects
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Foundations

We can begin to form sets differentiated by their complexity, i.e.,
how many “layers” of brackets there are in each.

Definition 8

V0 = ∅
V1 = P(V0)

...

Vn+1 = P(Vn)

...

Vω =
⋃
n∈ω

Vn

Fact: Everything in Vω is hereditarily finite.
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It doesn’t stop here

We have to keep going! Vω+1 = P(Vω). In fact, ω ̸∈ Vω, but
ω ∈ Vω+1.

Z ∈ Vω+4

Q ∈ Vω+7

R ∈ Vω+9

C ∈ Vω+12

(Q,+, 0) ∈ Vω+22
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ω + ω

This is the limit of ω + n for n = 1, 2, ....

Vω+ω is the closure of the power set operation on ω + n for
n = 1, 2, ...

Fact: Vω+ω is a universe for all regular mathematics, and is
the smallest such.
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It (still) doesn’t stop here

ω + ω + 1 = S(ω + ω),

ω + ω + ω = 3ω,

ω · ω = ω2,

ω2 · ω2 = ω4,

ωω,

ωωω
,

...E0...
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Do these large numbers exist?

Idea

Every “image” of a function defined by a formula on a set is still a
set.

Axiom (Replacement)

For each formula ϕ without Y free,

∀A∀x ∈ A∃!yϕ(x , y) =⇒ ∃Y ∀x ∈ A∃y ∈ Yϕ(x , y)

Define ϕ : ω → V by n 7→ ω + n. Thus, ϕ(ω) = ω + ω is a
definable set. So, all these sets do exist.
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The universe of mathematical objects

Axiom (Foundation)

∀x [∃y(y ∈ x) =⇒ ∃y(y ∈ x ∧ ¬∃z(z ∈ x ∧ z ∈ y))]]
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