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CORRELATION IS NOT CAUSATION.



Causation

Outcome Y

Possible Cause X

AX — AY?

ceteris paribus - all else equal

The changes in Y can only be attributed to the differences in X.
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Rubin Causal Model

e Treatment Indicator: D; = 1(J is treated)
e Y;(1) is outcome if i is treated.

e Y;(0) is outcome if i is untreated.

We want: E(Y;(1) — Y;(0)) ceteris paribus

Fundamental Problem of Causal Inference

Yi = DiYi(1) + (1 = D;) Yi(0) = Yi(Dy).
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What is the causal impact of a treatment on the outcome?

e Randomization

Differences-in-Differences

e Find a counterfactual.
e First difference: washes out systematic differences.
e Second difference: average causal effect.

Regression Discontinuity Design
e An exogeneous shock

e E.g., merit-based scholarship, SAT cutoffs

e Instrumental Variables, Structural Models, Propensity Score Matching,
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What could go wrong?

e We cannot randomize.

Selection Bias

Omitted Variable Bias

Simultaneity

Violation of Stable Unit Treatment Value Assumption (SUTVA)

Quantification of Uncertainty
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e Is randomization all that great?
e Dynamic Potential Outcomes Model

e Non-parametric and Semi-parametric designs

Machine Learning, Network Theory
1. unsupervised learning: heterogeneous treatment effects
prediction techniques: synthetic control
Big Data: finite population uncertainty
networks model interference effects: relax SUTVA and adopt NIA

NSRS

model-driven vs. data-driven ; standard errors and statistical properties
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