
Mathematical Cryptography
Diffie Hellman, Discrete Log Problem, Collision Algorithms

Mentor: Tao Song , Mentee: Lisette del Pino

University of Pennsylvania Directed Reading Program

May 16, 2020

Mentor: Tao Song , Mentee: Lisette del Pino Mathematical Cryptography

Diffie Hellman Public Key Exchange
A Privacy Dillema

You and your friend want to exchange secret messages, in this
case, these numbers translate to words. You and your friend live
very far away from each other and can’t meet up to share secrets.
What do you do?

1 First, pick prime p, and a nonzero integer g mod p.

2 You: pick a secret integer a. Compute A ≡ ga mod p

3 Your friend: pick a secret integer b, Compute B ≡ gb mod p

4 Send A to your friend. Your friend sends B to you.

5 In private, you compute B ′ ≡ Ba mod p

6 In private, your friend computes A′ ≡ Ab mod p

7 This is the shared value. B ′ and A′ are the same.

8 Proof: A′ ≡ Ba ≡ gba ≡ Ab ≡ B ′ mod p

Mentor: Tao Song , Mentee: Lisette del Pino Mathematical Cryptography

Diffie Hellman Public Key Exchange
A Privacy Dillema

You and your friend want to exchange secret messages, in this
case, these numbers translate to words. You and your friend live
very far away from each other and can’t meet up to share secrets.
What do you do?

1 First, pick prime p, and a nonzero integer g mod p.

2 You: pick a secret integer a. Compute A ≡ ga mod p

3 Your friend: pick a secret integer b, Compute B ≡ gb mod p

4 Send A to your friend. Your friend sends B to you.

5 In private, you compute B ′ ≡ Ba mod p

6 In private, your friend computes A′ ≡ Ab mod p

7 This is the shared value. B ′ and A′ are the same.

8 Proof: A′ ≡ Ba ≡ gba ≡ Ab ≡ B ′ mod p

Mentor: Tao Song , Mentee: Lisette del Pino Mathematical Cryptography

Diffie Hellman Public Key Exchange
A Privacy Dillema

You and your friend want to exchange secret messages, in this
case, these numbers translate to words. You and your friend live
very far away from each other and can’t meet up to share secrets.
What do you do?

1 First, pick prime p, and a nonzero integer g mod p.

2 You: pick a secret integer a. Compute A ≡ ga mod p

3 Your friend: pick a secret integer b, Compute B ≡ gb mod p

4 Send A to your friend. Your friend sends B to you.

5 In private, you compute B ′ ≡ Ba mod p

6 In private, your friend computes A′ ≡ Ab mod p

7 This is the shared value. B ′ and A′ are the same.

8 Proof: A′ ≡ Ba ≡ gba ≡ Ab ≡ B ′ mod p

Mentor: Tao Song , Mentee: Lisette del Pino Mathematical Cryptography

Diffie Hellman Public Key Exchange
A Privacy Dillema

You and your friend want to exchange secret messages, in this
case, these numbers translate to words. You and your friend live
very far away from each other and can’t meet up to share secrets.
What do you do?

1 First, pick prime p, and a nonzero integer g mod p.

2 You: pick a secret integer a. Compute A ≡ ga mod p

3 Your friend: pick a secret integer b, Compute B ≡ gb mod p

4 Send A to your friend. Your friend sends B to you.

5 In private, you compute B ′ ≡ Ba mod p

6 In private, your friend computes A′ ≡ Ab mod p

7 This is the shared value. B ′ and A′ are the same.

8 Proof: A′ ≡ Ba ≡ gba ≡ Ab ≡ B ′ mod p

Mentor: Tao Song , Mentee: Lisette del Pino Mathematical Cryptography

Diffie Hellman Public Key Exchange
A Privacy Dillema

You and your friend want to exchange secret messages, in this
case, these numbers translate to words. You and your friend live
very far away from each other and can’t meet up to share secrets.
What do you do?

1 First, pick prime p, and a nonzero integer g mod p.

2 You: pick a secret integer a. Compute A ≡ ga mod p

3 Your friend: pick a secret integer b, Compute B ≡ gb mod p

4 Send A to your friend. Your friend sends B to you.

5 In private, you compute B ′ ≡ Ba mod p

6 In private, your friend computes A′ ≡ Ab mod p

7 This is the shared value. B ′ and A′ are the same.

8 Proof: A′ ≡ Ba ≡ gba ≡ Ab ≡ B ′ mod p

Mentor: Tao Song , Mentee: Lisette del Pino Mathematical Cryptography

Diffie Hellman Public Key Exchange
A Privacy Dillema

You and your friend want to exchange secret messages, in this
case, these numbers translate to words. You and your friend live
very far away from each other and can’t meet up to share secrets.
What do you do?

1 First, pick prime p, and a nonzero integer g mod p.

2 You: pick a secret integer a. Compute A ≡ ga mod p

3 Your friend: pick a secret integer b, Compute B ≡ gb mod p

4 Send A to your friend. Your friend sends B to you.

5 In private, you compute B ′ ≡ Ba mod p

6 In private, your friend computes A′ ≡ Ab mod p

7 This is the shared value. B ′ and A′ are the same.

8 Proof: A′ ≡ Ba ≡ gba ≡ Ab ≡ B ′ mod p

Mentor: Tao Song , Mentee: Lisette del Pino Mathematical Cryptography

Diffie Hellman Public Key Exchange
A Privacy Dillema

You and your friend want to exchange secret messages, in this
case, these numbers translate to words. You and your friend live
very far away from each other and can’t meet up to share secrets.
What do you do?

1 First, pick prime p, and a nonzero integer g mod p.

2 You: pick a secret integer a. Compute A ≡ ga mod p

3 Your friend: pick a secret integer b, Compute B ≡ gb mod p

4 Send A to your friend. Your friend sends B to you.

5 In private, you compute B ′ ≡ Ba mod p

6 In private, your friend computes A′ ≡ Ab mod p

7 This is the shared value. B ′ and A′ are the same.

8 Proof: A′ ≡ Ba ≡ gba ≡ Ab ≡ B ′ mod p

Mentor: Tao Song , Mentee: Lisette del Pino Mathematical Cryptography

Diffie Hellman Public Key Exchange
A Privacy Dillema

You and your friend want to exchange secret messages, in this
case, these numbers translate to words. You and your friend live
very far away from each other and can’t meet up to share secrets.
What do you do?

1 First, pick prime p, and a nonzero integer g mod p.

2 You: pick a secret integer a. Compute A ≡ ga mod p

3 Your friend: pick a secret integer b, Compute B ≡ gb mod p

4 Send A to your friend. Your friend sends B to you.

5 In private, you compute B ′ ≡ Ba mod p

6 In private, your friend computes A′ ≡ Ab mod p

7 This is the shared value. B ′ and A′ are the same.

8 Proof: A′ ≡ Ba ≡ gba ≡ Ab ≡ B ′ mod p

Mentor: Tao Song , Mentee: Lisette del Pino Mathematical Cryptography

Diffie Hellman Public Key Exchange
A Privacy Dillema

You and your friend want to exchange secret messages, in this
case, these numbers translate to words. You and your friend live
very far away from each other and can’t meet up to share secrets.
What do you do?

1 First, pick prime p, and a nonzero integer g mod p.

2 You: pick a secret integer a. Compute A ≡ ga mod p

3 Your friend: pick a secret integer b, Compute B ≡ gb mod p

4 Send A to your friend. Your friend sends B to you.

5 In private, you compute B ′ ≡ Ba mod p

6 In private, your friend computes A′ ≡ Ab mod p

7 This is the shared value. B ′ and A′ are the same.

8 Proof: A′ ≡ Ba ≡ gba ≡ Ab ≡ B ′ mod p

Mentor: Tao Song , Mentee: Lisette del Pino Mathematical Cryptography

A Numerical Example of the DHKE

Let’s try an explicit example with relatively small numbers. In
practice, you should pick primes about 4000 bits long.

1 First, pick prime p = 941, and a nonzero integer g = 627 mod
941.

2 You: pick a secret integer a = 347. Compute A = 390

3 Your friend: pick a secret integer b = 781, Compute B = 691

4 Send A to your friend. Your friend sends B to you.

5 The shared value is 470 ≡ 627347∗781 mod 941

Recall eavesdroppers know these values : A,B, ga, gb, g , p And
they need to find: gab This problem is no harder than the Discrete
Logarithm Problem

Mentor: Tao Song , Mentee: Lisette del Pino Mathematical Cryptography

A Numerical Example of the DHKE

Let’s try an explicit example with relatively small numbers. In
practice, you should pick primes about 4000 bits long.

1 First, pick prime p = 941, and a nonzero integer g = 627 mod
941.

2 You: pick a secret integer a = 347. Compute A = 390

3 Your friend: pick a secret integer b = 781, Compute B = 691

4 Send A to your friend. Your friend sends B to you.

5 The shared value is 470 ≡ 627347∗781 mod 941

Recall eavesdroppers know these values : A,B, ga, gb, g , p And
they need to find: gab This problem is no harder than the Discrete
Logarithm Problem

Mentor: Tao Song , Mentee: Lisette del Pino Mathematical Cryptography

A Numerical Example of the DHKE

Let’s try an explicit example with relatively small numbers. In
practice, you should pick primes about 4000 bits long.

1 First, pick prime p = 941, and a nonzero integer g = 627 mod
941.

2 You: pick a secret integer a = 347. Compute A = 390

3 Your friend: pick a secret integer b = 781, Compute B = 691

4 Send A to your friend. Your friend sends B to you.

5 The shared value is 470 ≡ 627347∗781 mod 941

Recall eavesdroppers know these values : A,B, ga, gb, g , p And
they need to find: gab This problem is no harder than the Discrete
Logarithm Problem

Mentor: Tao Song , Mentee: Lisette del Pino Mathematical Cryptography

A Numerical Example of the DHKE

Let’s try an explicit example with relatively small numbers. In
practice, you should pick primes about 4000 bits long.

1 First, pick prime p = 941, and a nonzero integer g = 627 mod
941.

2 You: pick a secret integer a = 347. Compute A = 390

3 Your friend: pick a secret integer b = 781, Compute B = 691

4 Send A to your friend. Your friend sends B to you.

5 The shared value is 470 ≡ 627347∗781 mod 941

Recall eavesdroppers know these values : A,B, ga, gb, g , p And
they need to find: gab This problem is no harder than the Discrete
Logarithm Problem

Mentor: Tao Song , Mentee: Lisette del Pino Mathematical Cryptography

A Numerical Example of the DHKE

Let’s try an explicit example with relatively small numbers. In
practice, you should pick primes about 4000 bits long.

1 First, pick prime p = 941, and a nonzero integer g = 627 mod
941.

2 You: pick a secret integer a = 347. Compute A = 390

3 Your friend: pick a secret integer b = 781, Compute B = 691

4 Send A to your friend. Your friend sends B to you.

5 The shared value is 470 ≡ 627347∗781 mod 941

Recall eavesdroppers know these values : A,B, ga, gb, g , p And
they need to find: gab This problem is no harder than the Discrete
Logarithm Problem

Mentor: Tao Song , Mentee: Lisette del Pino Mathematical Cryptography

A Numerical Example of the DHKE

Let’s try an explicit example with relatively small numbers. In
practice, you should pick primes about 4000 bits long.

1 First, pick prime p = 941, and a nonzero integer g = 627 mod
941.

2 You: pick a secret integer a = 347. Compute A = 390

3 Your friend: pick a secret integer b = 781, Compute B = 691

4 Send A to your friend. Your friend sends B to you.

5 The shared value is 470 ≡ 627347∗781 mod 941

Recall eavesdroppers know these values : A,B, ga, gb, g , p And
they need to find: gab This problem is no harder than the Discrete
Logarithm Problem

Mentor: Tao Song , Mentee: Lisette del Pino Mathematical Cryptography

Discrete Logarithm Problem

Recall that computing the shared value gab is no harder than
solving the Discrete Log Problem.

Fermat’s Little Theorem: if p is prime, any integer g gives us

gp−1 ≡ 1 mod p

recall elements of a finite multiplicative group F∗p with a generator
g are:

1, g1, g2, ..., gp−2

where gp−1 ≡ 1 mod p by Fermat’s Little Theorem.

Mentor: Tao Song , Mentee: Lisette del Pino Mathematical Cryptography

Discrete Logarithm Problem

Recall that computing the shared value gab is no harder than
solving the Discrete Log Problem.
Fermat’s Little Theorem: if p is prime, any integer g gives us

gp−1 ≡ 1 mod p

recall elements of a finite multiplicative group F∗p with a generator
g are:

1, g1, g2, ..., gp−2

where gp−1 ≡ 1 mod p by Fermat’s Little Theorem.

Mentor: Tao Song , Mentee: Lisette del Pino Mathematical Cryptography

Discrete Logarithm Problem

Recall that computing the shared value gab is no harder than
solving the Discrete Log Problem.
Fermat’s Little Theorem: if p is prime, any integer g gives us

gp−1 ≡ 1 mod p

recall elements of a finite multiplicative group F∗p with a generator
g are:

1, g1, g2, ..., gp−2

where gp−1 ≡ 1 mod p by Fermat’s Little Theorem.

Mentor: Tao Song , Mentee: Lisette del Pino Mathematical Cryptography

Discrete Logarithm Problem

Recall that computing the shared value gab is no harder than
solving the Discrete Log Problem.
Fermat’s Little Theorem: if p is prime, any integer g gives us

gp−1 ≡ 1 mod p

recall elements of a finite multiplicative group F∗p with a generator
g are:

1, g1, g2, ..., gp−2

where gp−1 ≡ 1 mod p by Fermat’s Little Theorem.

Mentor: Tao Song , Mentee: Lisette del Pino Mathematical Cryptography

Discrete Logarithm Problem

Recall that computing the shared value gab is no harder than
solving the Discrete Log Problem.

Discrete Log Problem: Given a primitive root (generator) g of a
finite group G = F∗p and h 6= 0 ∈ G = Fp

∗

find an x such that g x ≡ h mod p

Mentor: Tao Song , Mentee: Lisette del Pino Mathematical Cryptography

Discrete Logarithm Problem

Recall that computing the shared value gab is no harder than
solving the Discrete Log Problem.
Discrete Log Problem: Given a primitive root (generator) g of a
finite group G = F∗p

and h 6= 0 ∈ G = Fp
∗

find an x such that g x ≡ h mod p

Mentor: Tao Song , Mentee: Lisette del Pino Mathematical Cryptography

Discrete Logarithm Problem

Recall that computing the shared value gab is no harder than
solving the Discrete Log Problem.
Discrete Log Problem: Given a primitive root (generator) g of a
finite group G = F∗p and h 6= 0 ∈ G = Fp

∗

find an x such that g x ≡ h mod p

Mentor: Tao Song , Mentee: Lisette del Pino Mathematical Cryptography

Discrete Logarithm Problem

Recall that computing the shared value gab is no harder than
solving the Discrete Log Problem.
Discrete Log Problem: Given a primitive root (generator) g of a
finite group G = F∗p and h 6= 0 ∈ G = Fp

∗

find an x such that g x ≡ h mod p

Mentor: Tao Song , Mentee: Lisette del Pino Mathematical Cryptography

Discrete Logarithm Problem

Discrete Log Problem: find an x such that g x ≡ h mod p

Notice that if there is one such x , there are many. The solution is
not unique!
Proof: if x solves g x ≡ h mod p, then so does x + k(p − 1)∀k
we have:

g x+k(p−1) = g xgp−1k = h ∗ 1k ≡ h mod p

Mentor: Tao Song , Mentee: Lisette del Pino Mathematical Cryptography

Discrete Logarithm Problem

Discrete Log Problem: find an x such that g x ≡ h mod p
Notice that if there is one such x , there are many. The solution is
not unique!

Proof: if x solves g x ≡ h mod p, then so does x + k(p − 1)∀k
we have:

g x+k(p−1) = g xgp−1k = h ∗ 1k ≡ h mod p

Mentor: Tao Song , Mentee: Lisette del Pino Mathematical Cryptography

Discrete Logarithm Problem

Discrete Log Problem: find an x such that g x ≡ h mod p
Notice that if there is one such x , there are many. The solution is
not unique!
Proof: if x solves g x ≡ h mod p, then so does x + k(p − 1)∀k

we have:

g x+k(p−1) = g xgp−1k = h ∗ 1k ≡ h mod p

Mentor: Tao Song , Mentee: Lisette del Pino Mathematical Cryptography

Discrete Logarithm Problem

Discrete Log Problem: find an x such that g x ≡ h mod p
Notice that if there is one such x , there are many. The solution is
not unique!
Proof: if x solves g x ≡ h mod p, then so does x + k(p − 1)∀k
we have:

g x+k(p−1) = g xgp−1k = h ∗ 1k ≡ h mod p

Mentor: Tao Song , Mentee: Lisette del Pino Mathematical Cryptography

Discrete Logarithm Problem

Discrete Log Problem: find an x such that g x ≡ h mod p

We can also restate the D.L.P in terms of Group Theory:
Let g ∈ G , G is a finite group. x is a positive integer and star is
the group operation.

g x = g ∗ g ∗ g ∗ ... ∗ g

Mentor: Tao Song , Mentee: Lisette del Pino Mathematical Cryptography

Discrete Logarithm Problem

Discrete Log Problem: find an x such that g x ≡ h mod p
We can also restate the D.L.P in terms of Group Theory:

Let g ∈ G , G is a finite group. x is a positive integer and star is
the group operation.

g x = g ∗ g ∗ g ∗ ... ∗ g

Mentor: Tao Song , Mentee: Lisette del Pino Mathematical Cryptography

Discrete Logarithm Problem

Discrete Log Problem: find an x such that g x ≡ h mod p
We can also restate the D.L.P in terms of Group Theory:
Let g ∈ G , G is a finite group. x is a positive integer and star is
the group operation.

g x = g ∗ g ∗ g ∗ ... ∗ g

Mentor: Tao Song , Mentee: Lisette del Pino Mathematical Cryptography

Order of a Group, Order of an Element

The order of a group is its cardinality.

The order of an element a of that group is:
a postive integer d s.t ad = e, where e is the identity element.
otherwise, infinite order.

Mentor: Tao Song , Mentee: Lisette del Pino Mathematical Cryptography

Order of a Group, Order of an Element

The order of a group is its cardinality.
The order of an element a of that group is:

a postive integer d s.t ad = e, where e is the identity element.
otherwise, infinite order.

Mentor: Tao Song , Mentee: Lisette del Pino Mathematical Cryptography

Order of a Group, Order of an Element

The order of a group is its cardinality.
The order of an element a of that group is:
a postive integer d s.t ad = e, where e is the identity element.
otherwise, infinite order.

Mentor: Tao Song , Mentee: Lisette del Pino Mathematical Cryptography

Big O

We need to quantify difficulty of the Discrete Logarithm Problem

Big O: f (x) = O(g(x)) if there exist positive constants c and C
s.t.

f (x) ≤ cg(x),∀x ≥ C

also,

lim
x→+∞

f (x)

g(x)

exists and is finite

Mentor: Tao Song , Mentee: Lisette del Pino Mathematical Cryptography

Big O

We need to quantify difficulty of the Discrete Logarithm Problem
Big O: f (x) = O(g(x)) if there exist positive constants c and C
s.t.

f (x) ≤ cg(x),∀x ≥ C

also,

lim
x→+∞

f (x)

g(x)

exists and is finite

Mentor: Tao Song , Mentee: Lisette del Pino Mathematical Cryptography

Big O

We need to quantify difficulty of the Discrete Logarithm Problem
Big O: f (x) = O(g(x)) if there exist positive constants c and C
s.t.

f (x) ≤ cg(x),∀x ≥ C

also,

lim
x→+∞

f (x)

g(x)

exists and is finite

Mentor: Tao Song , Mentee: Lisette del Pino Mathematical Cryptography

Brute Force the Discrete Log

We need to quantify difficulty of the Discrete Logarithm Problem

Since our group has order p and we are applying group operations
at most p times, D.L.P runtime is O(p)
we chose our prime p to be a k-bit number (so a binary number),
so it’s approximately 2k

For our computer then, the runtime is

O(2k)

for the trial and error method. Pretty awful.

Mentor: Tao Song , Mentee: Lisette del Pino Mathematical Cryptography

Brute Force the Discrete Log

We need to quantify difficulty of the Discrete Logarithm Problem
Since our group has order p and we are applying group operations
at most p times, D.L.P runtime is O(p)

we chose our prime p to be a k-bit number (so a binary number),
so it’s approximately 2k

For our computer then, the runtime is

O(2k)

for the trial and error method. Pretty awful.

Mentor: Tao Song , Mentee: Lisette del Pino Mathematical Cryptography

Brute Force the Discrete Log

We need to quantify difficulty of the Discrete Logarithm Problem
Since our group has order p and we are applying group operations
at most p times, D.L.P runtime is O(p)
we chose our prime p to be a k-bit number (so a binary number),
so it’s approximately 2k

For our computer then, the runtime is

O(2k)

for the trial and error method. Pretty awful.

Mentor: Tao Song , Mentee: Lisette del Pino Mathematical Cryptography

Brute Force the Discrete Log

We need to quantify difficulty of the Discrete Logarithm Problem
Since our group has order p and we are applying group operations
at most p times, D.L.P runtime is O(p)
we chose our prime p to be a k-bit number (so a binary number),
so it’s approximately 2k

For our computer then, the runtime is

O(2k)

for the trial and error method. Pretty awful.

Mentor: Tao Song , Mentee: Lisette del Pino Mathematical Cryptography

Fast Exponentiation

Computers brute forcing the D.L.P use the Fast Exponentiation
Method

(A2 mod C = A∗A mod C = A mod C∗A mod C (mod C)

For our computer then, the runtime is

O(2k ∗ k)

for the trial and error method. Still exponential time.

Mentor: Tao Song , Mentee: Lisette del Pino Mathematical Cryptography

Fast Exponentiation

Computers brute forcing the D.L.P use the Fast Exponentiation
Method

(A2 mod C = A∗A mod C = A mod C∗A mod C (mod C)

For our computer then, the runtime is

O(2k ∗ k)

for the trial and error method. Still exponential time.

Mentor: Tao Song , Mentee: Lisette del Pino Mathematical Cryptography

Fast Exponentiation

Computers brute forcing the D.L.P use the Fast Exponentiation
Method

(A2 mod C = A∗A mod C = A mod C∗A mod C (mod C)

For our computer then, the runtime is

O(2k ∗ k)

for the trial and error method. Still exponential time.

Mentor: Tao Song , Mentee: Lisette del Pino Mathematical Cryptography

Shanks Baby-Step Giant-Step Algorithm

SBSGS runtime: O(
√

(N))

Let G be a finite group.
Let g ∈ G is an element with order N ≥ 2.
Then we can find x , where g x ≡ h mod p, in at most
O(
√

NlogN) steps

1 Let n = 1 + floor(
√

N), so that n ≥
√

N

2 Create two lists (use a hash table for efficient lookup!)

3 List 1: e, g , g2, ...gn (recall n ≥
√

N)

4 List 2: h, h ∗ g−n, h ∗ g−2n, ..., h ∗ gn2

5 Find a match between your two lists. If it exists, it’s
g i = hg−jn, i , j indices

6 Then x = i + jn is a solution to g x ≡ h mod p

Mentor: Tao Song , Mentee: Lisette del Pino Mathematical Cryptography

Shanks Baby-Step Giant-Step Algorithm

SBSGS runtime: O(
√

(N))
Let G be a finite group.

Let g ∈ G is an element with order N ≥ 2.
Then we can find x , where g x ≡ h mod p, in at most
O(
√

NlogN) steps

1 Let n = 1 + floor(
√

N), so that n ≥
√

N

2 Create two lists (use a hash table for efficient lookup!)

3 List 1: e, g , g2, ...gn (recall n ≥
√

N)

4 List 2: h, h ∗ g−n, h ∗ g−2n, ..., h ∗ gn2

5 Find a match between your two lists. If it exists, it’s
g i = hg−jn, i , j indices

6 Then x = i + jn is a solution to g x ≡ h mod p

Mentor: Tao Song , Mentee: Lisette del Pino Mathematical Cryptography

Shanks Baby-Step Giant-Step Algorithm

SBSGS runtime: O(
√

(N))
Let G be a finite group.
Let g ∈ G is an element with order N ≥ 2.

Then we can find x , where g x ≡ h mod p, in at most
O(
√

NlogN) steps

1 Let n = 1 + floor(
√

N), so that n ≥
√

N

2 Create two lists (use a hash table for efficient lookup!)

3 List 1: e, g , g2, ...gn (recall n ≥
√

N)

4 List 2: h, h ∗ g−n, h ∗ g−2n, ..., h ∗ gn2

5 Find a match between your two lists. If it exists, it’s
g i = hg−jn, i , j indices

6 Then x = i + jn is a solution to g x ≡ h mod p

Mentor: Tao Song , Mentee: Lisette del Pino Mathematical Cryptography

Shanks Baby-Step Giant-Step Algorithm

SBSGS runtime: O(
√

(N))
Let G be a finite group.
Let g ∈ G is an element with order N ≥ 2.
Then we can find x , where g x ≡ h mod p, in at most
O(
√

NlogN) steps

1 Let n = 1 + floor(
√

N), so that n ≥
√

N

2 Create two lists (use a hash table for efficient lookup!)

3 List 1: e, g , g2, ...gn (recall n ≥
√

N)

4 List 2: h, h ∗ g−n, h ∗ g−2n, ..., h ∗ gn2

5 Find a match between your two lists. If it exists, it’s
g i = hg−jn, i , j indices

6 Then x = i + jn is a solution to g x ≡ h mod p

Mentor: Tao Song , Mentee: Lisette del Pino Mathematical Cryptography

Shanks Baby-Step Giant-Step Algorithm

SBSGS runtime: O(
√

(N))
Let G be a finite group.
Let g ∈ G is an element with order N ≥ 2.
Then we can find x , where g x ≡ h mod p, in at most
O(
√

NlogN) steps

1 Let n = 1 + floor(
√

N), so that n ≥
√

N

2 Create two lists (use a hash table for efficient lookup!)

3 List 1: e, g , g2, ...gn (recall n ≥
√

N)

4 List 2: h, h ∗ g−n, h ∗ g−2n, ..., h ∗ gn2

5 Find a match between your two lists. If it exists, it’s
g i = hg−jn, i , j indices

6 Then x = i + jn is a solution to g x ≡ h mod p

Mentor: Tao Song , Mentee: Lisette del Pino Mathematical Cryptography

Shanks Baby-Step Giant-Step Algorithm

SBSGS runtime: O(
√

(N))
Let G be a finite group.
Let g ∈ G is an element with order N ≥ 2.
Then we can find x , where g x ≡ h mod p, in at most
O(
√

NlogN) steps

1 Let n = 1 + floor(
√

N), so that n ≥
√

N

2 Create two lists (use a hash table for efficient lookup!)

3 List 1: e, g , g2, ...gn (recall n ≥
√

N)

4 List 2: h, h ∗ g−n, h ∗ g−2n, ..., h ∗ gn2

5 Find a match between your two lists. If it exists, it’s
g i = hg−jn, i , j indices

6 Then x = i + jn is a solution to g x ≡ h mod p

Mentor: Tao Song , Mentee: Lisette del Pino Mathematical Cryptography

Shanks Baby-Step Giant-Step Algorithm

SBSGS runtime: O(
√

(N))
Let G be a finite group.
Let g ∈ G is an element with order N ≥ 2.
Then we can find x , where g x ≡ h mod p, in at most
O(
√

NlogN) steps

1 Let n = 1 + floor(
√

N), so that n ≥
√

N

2 Create two lists (use a hash table for efficient lookup!)

3 List 1: e, g , g2, ...gn (recall n ≥
√

N)

4 List 2: h, h ∗ g−n, h ∗ g−2n, ..., h ∗ gn2

5 Find a match between your two lists. If it exists, it’s
g i = hg−jn, i , j indices

6 Then x = i + jn is a solution to g x ≡ h mod p

Mentor: Tao Song , Mentee: Lisette del Pino Mathematical Cryptography

Shanks Baby-Step Giant-Step Algorithm

SBSGS runtime: O(
√

(N))
Let G be a finite group.
Let g ∈ G is an element with order N ≥ 2.
Then we can find x , where g x ≡ h mod p, in at most
O(
√

NlogN) steps

1 Let n = 1 + floor(
√

N), so that n ≥
√

N

2 Create two lists (use a hash table for efficient lookup!)

3 List 1: e, g , g2, ...gn (recall n ≥
√

N)

4 List 2: h, h ∗ g−n, h ∗ g−2n, ..., h ∗ gn2

5 Find a match between your two lists. If it exists, it’s
g i = hg−jn, i , j indices

6 Then x = i + jn is a solution to g x ≡ h mod p

Mentor: Tao Song , Mentee: Lisette del Pino Mathematical Cryptography

Shanks Baby-Step Giant-Step Algorithm

SBSGS runtime: O(
√

(N))
Let G be a finite group.
Let g ∈ G is an element with order N ≥ 2.
Then we can find x , where g x ≡ h mod p, in at most
O(
√

NlogN) steps

1 Let n = 1 + floor(
√

N), so that n ≥
√

N

2 Create two lists (use a hash table for efficient lookup!)

3 List 1: e, g , g2, ...gn (recall n ≥
√

N)

4 List 2: h, h ∗ g−n, h ∗ g−2n, ..., h ∗ gn2

5 Find a match between your two lists. If it exists, it’s
g i = hg−jn, i , j indices

6 Then x = i + jn is a solution to g x ≡ h mod p

Mentor: Tao Song , Mentee: Lisette del Pino Mathematical Cryptography

Shanks Baby-Step Giant-Step Algorithm

SBSGS runtime: O(
√

(N))
Let G be a finite group.
Let g ∈ G is an element with order N ≥ 2.
Then we can find x , where g x ≡ h mod p, in at most
O(
√

NlogN) steps

1 Let n = 1 + floor(
√

N), so that n ≥
√

N

2 Create two lists (use a hash table for efficient lookup!)

3 List 1: e, g , g2, ...gn (recall n ≥
√

N)

4 List 2: h, h ∗ g−n, h ∗ g−2n, ..., h ∗ gn2

5 Find a match between your two lists. If it exists, it’s
g i = hg−jn, i , j indices

6 Then x = i + jn is a solution to g x ≡ h mod p

Mentor: Tao Song , Mentee: Lisette del Pino Mathematical Cryptography

Shanks Baby-Step Giant-Step Algorithm Example

1 Use order of the group as estimate. Solve 3x ≡ 19mod59

2 Set n = 8, so n ≥
√

p − 1

31 ≡ 3 mod 59 3−1 ≡ 20 mod 59
32 ≡ 9 mod 59 3−8 ≡ 208 mod 59 ≡ 5 mod 59

33 ≡ 27 mod 59 19(3−8) ≡ 19(208) ≡ 19(5) ≡ 36 mod 59
34 ≡ 22 mod 59 19(3−16) ≡ 19(2016) ≡ 19(25) ≡ 3 mod 59
35 ≡ 7 mod 59

36 ≡ 21 mod 59
37 ≡ 4 mod 59

38 ≡ 12 mod 59

3 We’re done! We found a match!

4 then, 31 ≡ 19(2016) mod 59

5 and according to our algorithm, x = 1 + 16 = 17

6 Thus, 317 ≡ 19 mod 59

Mentor: Tao Song , Mentee: Lisette del Pino Mathematical Cryptography

Shanks Baby-Step Giant-Step Algorithm Example

1 Use order of the group as estimate. Solve 3x ≡ 19mod59

2 Set n = 8, so n ≥
√

p − 1

31 ≡ 3 mod 59 3−1 ≡ 20 mod 59
32 ≡ 9 mod 59 3−8 ≡ 208 mod 59 ≡ 5 mod 59

33 ≡ 27 mod 59 19(3−8) ≡ 19(208) ≡ 19(5) ≡ 36 mod 59
34 ≡ 22 mod 59 19(3−16) ≡ 19(2016) ≡ 19(25) ≡ 3 mod 59
35 ≡ 7 mod 59

36 ≡ 21 mod 59
37 ≡ 4 mod 59

38 ≡ 12 mod 59

3 We’re done! We found a match!

4 then, 31 ≡ 19(2016) mod 59

5 and according to our algorithm, x = 1 + 16 = 17

6 Thus, 317 ≡ 19 mod 59

Mentor: Tao Song , Mentee: Lisette del Pino Mathematical Cryptography

Shanks Baby-Step Giant-Step Algorithm Example

1 Use order of the group as estimate. Solve 3x ≡ 19mod59

2 Set n = 8, so n ≥
√

p − 1

31 ≡ 3 mod 59 3−1 ≡ 20 mod 59
32 ≡ 9 mod 59 3−8 ≡ 208 mod 59 ≡ 5 mod 59

33 ≡ 27 mod 59 19(3−8) ≡ 19(208) ≡ 19(5) ≡ 36 mod 59
34 ≡ 22 mod 59 19(3−16) ≡ 19(2016) ≡ 19(25) ≡ 3 mod 59
35 ≡ 7 mod 59

36 ≡ 21 mod 59
37 ≡ 4 mod 59

38 ≡ 12 mod 59

3 We’re done! We found a match!

4 then, 31 ≡ 19(2016) mod 59

5 and according to our algorithm, x = 1 + 16 = 17

6 Thus, 317 ≡ 19 mod 59

Mentor: Tao Song , Mentee: Lisette del Pino Mathematical Cryptography

Shanks Baby-Step Giant-Step Algorithm Example

1 Use order of the group as estimate. Solve 3x ≡ 19mod59

2 Set n = 8, so n ≥
√

p − 1

31 ≡ 3 mod 59 3−1 ≡ 20 mod 59
32 ≡ 9 mod 59 3−8 ≡ 208 mod 59 ≡ 5 mod 59

33 ≡ 27 mod 59 19(3−8) ≡ 19(208) ≡ 19(5) ≡ 36 mod 59
34 ≡ 22 mod 59 19(3−16) ≡ 19(2016) ≡ 19(25) ≡ 3 mod 59
35 ≡ 7 mod 59

36 ≡ 21 mod 59
37 ≡ 4 mod 59

38 ≡ 12 mod 59

3 We’re done! We found a match!

4 then, 31 ≡ 19(2016) mod 59

5 and according to our algorithm, x = 1 + 16 = 17

6 Thus, 317 ≡ 19 mod 59

Mentor: Tao Song , Mentee: Lisette del Pino Mathematical Cryptography

Shanks Baby-Step Giant-Step Algorithm Example

1 Use order of the group as estimate. Solve 3x ≡ 19mod59

2 Set n = 8, so n ≥
√

p − 1

31 ≡ 3 mod 59 3−1 ≡ 20 mod 59
32 ≡ 9 mod 59 3−8 ≡ 208 mod 59 ≡ 5 mod 59

33 ≡ 27 mod 59 19(3−8) ≡ 19(208) ≡ 19(5) ≡ 36 mod 59
34 ≡ 22 mod 59 19(3−16) ≡ 19(2016) ≡ 19(25) ≡ 3 mod 59
35 ≡ 7 mod 59

36 ≡ 21 mod 59
37 ≡ 4 mod 59

38 ≡ 12 mod 59

3 We’re done! We found a match!

4 then, 31 ≡ 19(2016) mod 59

5 and according to our algorithm, x = 1 + 16 = 17

6 Thus, 317 ≡ 19 mod 59

Mentor: Tao Song , Mentee: Lisette del Pino Mathematical Cryptography

Shanks Baby-Step Giant-Step Algorithm Example

1 Use order of the group as estimate. Solve 3x ≡ 19mod59

2 Set n = 8, so n ≥
√

p − 1

31 ≡ 3 mod 59 3−1 ≡ 20 mod 59
32 ≡ 9 mod 59 3−8 ≡ 208 mod 59 ≡ 5 mod 59

33 ≡ 27 mod 59 19(3−8) ≡ 19(208) ≡ 19(5) ≡ 36 mod 59
34 ≡ 22 mod 59 19(3−16) ≡ 19(2016) ≡ 19(25) ≡ 3 mod 59
35 ≡ 7 mod 59

36 ≡ 21 mod 59
37 ≡ 4 mod 59

38 ≡ 12 mod 59

3 We’re done! We found a match!

4 then, 31 ≡ 19(2016) mod 59

5 and according to our algorithm, x = 1 + 16 = 17

6 Thus, 317 ≡ 19 mod 59

Mentor: Tao Song , Mentee: Lisette del Pino Mathematical Cryptography

Shanks Baby-Step Giant-Step Algorithm Example

1 Use order of the group as estimate. Solve 3x ≡ 19mod59

2 Set n = 8, so n ≥
√

p − 1

31 ≡ 3 mod 59 3−1 ≡ 20 mod 59
32 ≡ 9 mod 59 3−8 ≡ 208 mod 59 ≡ 5 mod 59

33 ≡ 27 mod 59 19(3−8) ≡ 19(208) ≡ 19(5) ≡ 36 mod 59
34 ≡ 22 mod 59 19(3−16) ≡ 19(2016) ≡ 19(25) ≡ 3 mod 59
35 ≡ 7 mod 59

36 ≡ 21 mod 59
37 ≡ 4 mod 59

38 ≡ 12 mod 59

3 We’re done! We found a match!

4 then, 31 ≡ 19(2016) mod 59

5 and according to our algorithm, x = 1 + 16 = 17

6 Thus, 317 ≡ 19 mod 59

Mentor: Tao Song , Mentee: Lisette del Pino Mathematical Cryptography

Chinese Remainder Theorem

Let m1,m2, ...mk be a collection of pairwise relatively prime
integers. Just means:

gcd(mi ,mj) = 1,∀i 6= j

Let a1, ..., ak be arbritary integers
Then the system of congruences:

x ≡ a1 mod m1, x ≡ a2 mod m2, ..., x ≡ ak mod mk

has a solution x = c mod m1 ∗ ... ∗mk that is unique.
The C.R.T allows us to solve systems of modular congruences.

Mentor: Tao Song , Mentee: Lisette del Pino Mathematical Cryptography

Chinese Remainder Theorem

Let m1,m2, ...mk be a collection of pairwise relatively prime
integers. Just means:

gcd(mi ,mj) = 1,∀i 6= j

Let a1, ..., ak be arbritary integers
Then the system of congruences:

x ≡ a1 mod m1, x ≡ a2 mod m2, ..., x ≡ ak mod mk

has a solution x = c mod m1 ∗ ... ∗mk that is unique.
The C.R.T allows us to solve systems of modular congruences.

Mentor: Tao Song , Mentee: Lisette del Pino Mathematical Cryptography

Chinese Remainder Theorem

Let m1,m2, ...mk be a collection of pairwise relatively prime
integers. Just means:

gcd(mi ,mj) = 1,∀i 6= j

Let a1, ..., ak be arbritary integers

Then the system of congruences:

x ≡ a1 mod m1, x ≡ a2 mod m2, ..., x ≡ ak mod mk

has a solution x = c mod m1 ∗ ... ∗mk that is unique.
The C.R.T allows us to solve systems of modular congruences.

Mentor: Tao Song , Mentee: Lisette del Pino Mathematical Cryptography

Chinese Remainder Theorem

Let m1,m2, ...mk be a collection of pairwise relatively prime
integers. Just means:

gcd(mi ,mj) = 1,∀i 6= j

Let a1, ..., ak be arbritary integers
Then the system of congruences:

x ≡ a1 mod m1, x ≡ a2 mod m2, ..., x ≡ ak mod mk

has a solution x = c mod m1 ∗ ... ∗mk that is unique.

The C.R.T allows us to solve systems of modular congruences.

Mentor: Tao Song , Mentee: Lisette del Pino Mathematical Cryptography

Chinese Remainder Theorem

Let m1,m2, ...mk be a collection of pairwise relatively prime
integers. Just means:

gcd(mi ,mj) = 1,∀i 6= j

Let a1, ..., ak be arbritary integers
Then the system of congruences:

x ≡ a1 mod m1, x ≡ a2 mod m2, ..., x ≡ ak mod mk

has a solution x = c mod m1 ∗ ... ∗mk that is unique.
The C.R.T allows us to solve systems of modular congruences.

Mentor: Tao Song , Mentee: Lisette del Pino Mathematical Cryptography

Pohlig Hellman Algorithm Procedure

G = F ∗p , g ∈ G has a prime power order.

g ∈ G has order qe , so gqe ≡ e mod p
Then this algorithm lets us solve D.L.P in O(Sqe) steps.
In our worst case, where we can’t decompose p into small primes,
we use Shanks instead, so qe = g e1/2 =

√
N

Mentor: Tao Song , Mentee: Lisette del Pino Mathematical Cryptography

Pohlig Hellman Algorithm Procedure

G = F ∗p , g ∈ G has a prime power order.

g ∈ G has order qe , so gqe ≡ e mod p

Then this algorithm lets us solve D.L.P in O(Sqe) steps.
In our worst case, where we can’t decompose p into small primes,
we use Shanks instead, so qe = g e1/2 =

√
N

Mentor: Tao Song , Mentee: Lisette del Pino Mathematical Cryptography

Pohlig Hellman Algorithm Procedure

G = F ∗p , g ∈ G has a prime power order.

g ∈ G has order qe , so gqe ≡ e mod p
Then this algorithm lets us solve D.L.P in O(Sqe) steps.

In our worst case, where we can’t decompose p into small primes,
we use Shanks instead, so qe = g e1/2 =

√
N

Mentor: Tao Song , Mentee: Lisette del Pino Mathematical Cryptography

Pohlig Hellman Algorithm Procedure

G = F ∗p , g ∈ G has a prime power order.

g ∈ G has order qe , so gqe ≡ e mod p
Then this algorithm lets us solve D.L.P in O(Sqe) steps.
In our worst case, where we can’t decompose p into small primes,
we use Shanks instead, so qe = g e1/2 =

√
N

Mentor: Tao Song , Mentee: Lisette del Pino Mathematical Cryptography

Pohlig Hellman Algorithm Procedure

if our order factors into primes, then:

N = qe2
2 , qe2

2 , ..., qet
t

Then we solve D.L.P in O(
∑t

i=1 Sqiei + logN)
Let’s look at the procedure

Mentor: Tao Song , Mentee: Lisette del Pino Mathematical Cryptography

Pohlig Hellman Algorithm Procedure

if our order factors into primes, then:

N = qe2
2 , qe2

2 , ..., qet
t

Then we solve D.L.P in O(
∑t

i=1 Sqiei + logN)

Let’s look at the procedure

Mentor: Tao Song , Mentee: Lisette del Pino Mathematical Cryptography

Pohlig Hellman Algorithm Procedure

if our order factors into primes, then:

N = qe2
2 , qe2

2 , ..., qet
t

Then we solve D.L.P in O(
∑t

i=1 Sqiei + logN)
Let’s look at the procedure

Mentor: Tao Song , Mentee: Lisette del Pino Mathematical Cryptography

Pohlig Hellman Algorithm Procedure

1 ∀1 ≤ i ≤ t, let gi = gN/q
ei
i and let hi = hN/q

ei
i

2 since gi has prime power order qeis
i , we meed to solve each

Discrete Log Problem g y
i = hi

3 Use the Chinese Remainder Theorem to solve each modular
congruence

x1 ≡ y1 mod qe1
1 , ..., xt ≡ yt mod qet

t

Mentor: Tao Song , Mentee: Lisette del Pino Mathematical Cryptography

Pohlig Hellman Algorithm Procedure

1 ∀1 ≤ i ≤ t, let gi = gN/q
ei
i and let hi = hN/q

ei
i

2 since gi has prime power order qeis
i , we meed to solve each

Discrete Log Problem g y
i = hi

3 Use the Chinese Remainder Theorem to solve each modular
congruence

x1 ≡ y1 mod qe1
1 , ..., xt ≡ yt mod qet

t

Mentor: Tao Song , Mentee: Lisette del Pino Mathematical Cryptography

Pohlig Hellman Algorithm Procedure

1 ∀1 ≤ i ≤ t, let gi = gN/q
ei
i and let hi = hN/q

ei
i

2 since gi has prime power order qeis
i , we meed to solve each

Discrete Log Problem g y
i = hi

3 Use the Chinese Remainder Theorem to solve each modular
congruence

x1 ≡ y1 mod qe1
1 , ..., xt ≡ yt mod qet

t

Mentor: Tao Song , Mentee: Lisette del Pino Mathematical Cryptography

Pohlig Hellman Algorithm Runtime

Why that runtime?

Step 1, solving each Discrete Log, takes at most as long as it takes
to solve that Discrete Log using Shanks, but it’s a very small finite
group, since our order factored into small primes.
In reality, we might be able to get a much smaller runtime than
Shanks, which is why we write that step 1 takes:

O(Sqie1 + ... + Sqe
t t)

And Step 2 has a neglifible computation time. Solving modular
congrunces using C.R.T tajes only O(logN) steps

Mentor: Tao Song , Mentee: Lisette del Pino Mathematical Cryptography

Pohlig Hellman Algorithm Runtime

Why that runtime?
Step 1, solving each Discrete Log, takes at most as long as it takes
to solve that Discrete Log using Shanks, but it’s a very small finite
group, since our order factored into small primes.

In reality, we might be able to get a much smaller runtime than
Shanks, which is why we write that step 1 takes:

O(Sqie1 + ... + Sqe
t t)

And Step 2 has a neglifible computation time. Solving modular
congrunces using C.R.T tajes only O(logN) steps

Mentor: Tao Song , Mentee: Lisette del Pino Mathematical Cryptography

Pohlig Hellman Algorithm Runtime

Why that runtime?
Step 1, solving each Discrete Log, takes at most as long as it takes
to solve that Discrete Log using Shanks, but it’s a very small finite
group, since our order factored into small primes.
In reality, we might be able to get a much smaller runtime than
Shanks, which is why we write that step 1 takes:

O(Sqie1 + ... + Sqe
t t)

And Step 2 has a neglifible computation time. Solving modular
congrunces using C.R.T tajes only O(logN) steps

Mentor: Tao Song , Mentee: Lisette del Pino Mathematical Cryptography

Pohlig Hellman Algorithm Runtime

Why that runtime?
Step 1, solving each Discrete Log, takes at most as long as it takes
to solve that Discrete Log using Shanks, but it’s a very small finite
group, since our order factored into small primes.
In reality, we might be able to get a much smaller runtime than
Shanks, which is why we write that step 1 takes:

O(Sqie1 + ... + Sqe
t t)

And Step 2 has a neglifible computation time. Solving modular
congrunces using C.R.T tajes only O(logN) steps

Mentor: Tao Song , Mentee: Lisette del Pino Mathematical Cryptography

Pohlig Hellman Algorithm Example

1 Solve 3x ≡ 22 mod 31

2 Find relatively prime factors of 30, 5 ∗ 6

3 set first equation using first factor

x = 50a0 + 51a1 = a0 + 5a1

4 raise to second factor

(3a0+5a1)6 ≡ 226 mod 31

Mentor: Tao Song , Mentee: Lisette del Pino Mathematical Cryptography

Pohlig Hellman Algorithm Example

1 Solve 3x ≡ 22 mod 31

2 Find relatively prime factors of 30, 5 ∗ 6

3 set first equation using first factor

x = 50a0 + 51a1 = a0 + 5a1

4 raise to second factor

(3a0+5a1)6 ≡ 226 mod 31

Mentor: Tao Song , Mentee: Lisette del Pino Mathematical Cryptography

Pohlig Hellman Algorithm Example

1 Solve 3x ≡ 22 mod 31

2 Find relatively prime factors of 30, 5 ∗ 6

3 set first equation using first factor

x = 50a0 + 51a1 = a0 + 5a1

4 raise to second factor

(3a0+5a1)6 ≡ 226 mod 31

Mentor: Tao Song , Mentee: Lisette del Pino Mathematical Cryptography

Pohlig Hellman Algorithm Example

1 Then,
36a0+30a1 ≡ 226 mod 31

36a0(3a1)30 ≡ 36a0 ∗ 1 ≡ 8 mod 31

by F.L.T

(36)a0 = 229a0 = 16a0 ≡ 8 mod 31

2 Trial and error/ Shanks gives 162 ≡ 8 mod 31, so a0 = 2, our
first equation is then

x = 2 + 5a1

Mentor: Tao Song , Mentee: Lisette del Pino Mathematical Cryptography

Pohlig Hellman Algorithm Example

1 Then,
36a0+30a1 ≡ 226 mod 31

36a0(3a1)30 ≡ 36a0 ∗ 1 ≡ 8 mod 31

by F.L.T

(36)a0 = 229a0 = 16a0 ≡ 8 mod 31

2 Trial and error/ Shanks gives 162 ≡ 8 mod 31, so a0 = 2, our
first equation is then

x = 2 + 5a1

Mentor: Tao Song , Mentee: Lisette del Pino Mathematical Cryptography

Pohlig Hellman Algorithm Example

1 Then,
36a0+30a1 ≡ 226 mod 31

36a0(3a1)30 ≡ 36a0 ∗ 1 ≡ 8 mod 31

by F.L.T

(36)a0 = 229a0 = 16a0 ≡ 8 mod 31

2 Trial and error/ Shanks gives 162 ≡ 8 mod 31, so a0 = 2, our
first equation is then

x = 2 + 5a1

Mentor: Tao Song , Mentee: Lisette del Pino Mathematical Cryptography

Pohlig Hellman Algorithm Example

1 Then,
36a0+30a1 ≡ 226 mod 31

36a0(3a1)30 ≡ 36a0 ∗ 1 ≡ 8 mod 31

by F.L.T

(36)a0 = 229a0 = 16a0 ≡ 8 mod 31

2 Trial and error/ Shanks gives 162 ≡ 8 mod 31, so a0 = 2, our
first equation is then

x = 2 + 5a1

Mentor: Tao Song , Mentee: Lisette del Pino Mathematical Cryptography

Pohlig Hellman Algorithm Example

1 set second equation using second factor

x = 60b0 + 61b1 = b0 + 6b1

2 raise to first factor

(3b0+6b1)5 ≡ 225 mod 31

Mentor: Tao Song , Mentee: Lisette del Pino Mathematical Cryptography

Pohlig Hellman Algorithm Example

1 set second equation using second factor

x = 60b0 + 61b1 = b0 + 6b1

2 raise to first factor

(3b0+6b1)5 ≡ 225 mod 31

Mentor: Tao Song , Mentee: Lisette del Pino Mathematical Cryptography

Pohlig Hellman Algorithm Example

1 Then,
35b0+30b1 ≡ 225 mod 31

35b0(3b1)30 ≡ 35b0 ∗ 1 ≡ 6 mod 31

by F.L.T

(35)b0 = 243b0 = 26b0 ≡ 6 mod 31

2 Trial and error/ Shanks gives 265 ≡ 6 mod 31, so b0 = 5, our
second equation is then

x = 5 + 6b1

Mentor: Tao Song , Mentee: Lisette del Pino Mathematical Cryptography

Pohlig Hellman Algorithm Example

1 Then,
35b0+30b1 ≡ 225 mod 31

35b0(3b1)30 ≡ 35b0 ∗ 1 ≡ 6 mod 31

by F.L.T

(35)b0 = 243b0 = 26b0 ≡ 6 mod 31

2 Trial and error/ Shanks gives 265 ≡ 6 mod 31, so b0 = 5, our
second equation is then

x = 5 + 6b1

Mentor: Tao Song , Mentee: Lisette del Pino Mathematical Cryptography

Pohlig Hellman Algorithm Example

1 Then,
35b0+30b1 ≡ 225 mod 31

35b0(3b1)30 ≡ 35b0 ∗ 1 ≡ 6 mod 31

by F.L.T

(35)b0 = 243b0 = 26b0 ≡ 6 mod 31

2 Trial and error/ Shanks gives 265 ≡ 6 mod 31, so b0 = 5, our
second equation is then

x = 5 + 6b1

Mentor: Tao Song , Mentee: Lisette del Pino Mathematical Cryptography

Pohlig Hellman Algorithm Example

1 Then,
35b0+30b1 ≡ 225 mod 31

35b0(3b1)30 ≡ 35b0 ∗ 1 ≡ 6 mod 31

by F.L.T

(35)b0 = 243b0 = 26b0 ≡ 6 mod 31

2 Trial and error/ Shanks gives 265 ≡ 6 mod 31, so b0 = 5, our
second equation is then

x = 5 + 6b1

Mentor: Tao Song , Mentee: Lisette del Pino Mathematical Cryptography

Pohlig Hellman Algorithm Example

1 Then, our two moduar congrunces are

x ≡ 2 mod 5, x ≡ 5 mod 6

2 so now just use C.R.T to solve :

x = 17

solves both.

3 So 317 ≡ 22 mod 31

Mentor: Tao Song , Mentee: Lisette del Pino Mathematical Cryptography

Pohlig Hellman Algorithm Example

1 Then, our two moduar congrunces are

x ≡ 2 mod 5, x ≡ 5 mod 6

2 so now just use C.R.T to solve :

x = 17

solves both.

3 So 317 ≡ 22 mod 31

Mentor: Tao Song , Mentee: Lisette del Pino Mathematical Cryptography

Conclusion

Use multiplicative groups of large (at least 4000 bit) prime order to
encrypt information!

In cryptography, you’re always designing against the best known
decryption algorithm and its runtime
Longer decryption times with groups defined on elliptic curves

Mentor: Tao Song , Mentee: Lisette del Pino Mathematical Cryptography

Conclusion

Use multiplicative groups of large (at least 4000 bit) prime order to
encrypt information!
In cryptography, you’re always designing against the best known
decryption algorithm and its runtime

Longer decryption times with groups defined on elliptic curves

Mentor: Tao Song , Mentee: Lisette del Pino Mathematical Cryptography

Conclusion

Use multiplicative groups of large (at least 4000 bit) prime order to
encrypt information!
In cryptography, you’re always designing against the best known
decryption algorithm and its runtime
Longer decryption times with groups defined on elliptic curves

Mentor: Tao Song , Mentee: Lisette del Pino Mathematical Cryptography

