Introduction to Lie Groups, Lie Algebra, and Representation Theory

Dennica Mitev

University of Pennsylvania

April 30th, 2020

- Matrix Lie Group: Any subgroup G of GL(n; C) with the property that if A_m is any sequence of matrices in G and A_m converges to some matrix A, then either A ∈ G or A is not invertible.
- Call a matrix Lie group compact if:
 - For any sequence A_m in G where A_m converges to A, A is in G
 - ▶ There exists ad constant *C* such that for all $A \in G$, $|A_{ij} \leq C|$ for all $1 \leq i, j \leq n$
- Call a matrix Lie group G simply connected if it is connected and every loop in G can be shrunk continuously to a point in G.

Key Definitions, Lie Algebra

- For G a matrix Lie group, its Lie Algebra denoted g is the set of all matrix X such that e^{tX} is in G for all real numbers t
- The definition of matrix exponential we'll be using:

$$e^{x} := \sum_{m=0}^{\infty} \frac{X^{m}}{m!}$$

▶ For *n* × *n* matrices *A*, *B* define **commutator** of *A*, *B* as:

$$[A,B] := AB - BA$$

The adjoint mapping for each A ∈ G is the linear map Ad_A : g → g defined by the formula

$$Ad_A(X) = AXA^{-1}$$

What we want is to be able to express the group product for a matrix Lie group completely in terms of its Lie algebra.

Theorem For all $n \times n$ complex matrices X and Y with ||X|| and ||Y|| sufficiently small,

$$\log(e^{X}e^{Y}) = X + \int_0^1 g(e^{ad_X}e^{tad_Y})(Y)dt$$

where

$$g(A) := \sum_{m=0}^{\infty} a_m (A-I)^m$$

Now we can easily go from elements of one to the elements of the other!

Call a finite-dimensional complex representation (f.d.c.r) of G the Lie group homomorphism $\Pi : G \to GL(n; \mathbb{C})$. Likewise, a f.d.c.r. of g is the Lie algebra homomorphism $\pi : g \to g/(n; \mathbb{C})$.

Think of a representation as a linear **action** of a group or Lie algebra on some vector space V. Then, say that a subspace W of V is **invariant** if $\Pi(A)w \in W$ for all $w \in W$ and for all $A \in G$. Likewise, a representation is **irreducible** if it has no invariant subspaces other than $W = \{0\}$ and W = V.

If there exists an isomorphism between two representations, then they are **equivalent**.

For Π a Lie group representation on G, its associated Lie algebra representation can be found by

$$\Pi(e^X)=e^{\pi(X)}$$

for all $X \in \mathfrak{g}$.

Can generate representations in three main ways:

- Direct Sums
- Tensor Products
- Dual Representations

We say that \mathfrak{g} is **indecomposable** if \mathfrak{g} and $\{0\}$ are its only subalgebras such that $[X, H] \in \mathfrak{h}$ for $X \in \mathfrak{g}$ and $H \in \mathfrak{h}$. Then, we call \mathfrak{g} simple if \mathfrak{g} is indecomposable and dim $\mathfrak{g} \geq 2$. Further, we say that \mathfrak{g} is semisimple if it is isomorphic to a direct sum of simple Lie algebras.

For a complex semisimple Lie algebra $\mathfrak{g},$ we then say that \mathfrak{h} is a Cartan subalgebra of \mathfrak{g} if:

- ▶ For all $H_1, H_2 \in \mathfrak{h}, [H_1, H_2] = 0$
- ▶ For all $X \in \mathfrak{g}$, if [H, X] = 0 for all $H \in \mathfrak{h}$, then $X \in \mathfrak{h}$
- ▶ *ad_H* is diagonalizable

We say something is a **root** of \mathfrak{g} relative to Cartan subalgebra \mathfrak{h} if its a nonzero linear functional α on \mathfrak{h} such that $\in \mathfrak{g}, X \neq 0$ with

$$[H,X] = \alpha(H)X$$

We then say that the **root space** \mathfrak{g}_{α} is the space of all X for which $[H, X] = \alpha(H)X$ for all $H \in \mathfrak{h}$. Similarly, an element of \mathfrak{g}_{α} is a **root vector**, and we can define a respective inner product.

This just describes the eigenspace for $\mathfrak{g}!$

Visualizing the Root Space

Figure 1: General Root System.

Figure 2: B3 Root System.

To generalize these roots to the inner product space containing them, we look to weights.

For π a f.d.r of \mathfrak{g} on a vector space V, we say that $\mu \in \mathfrak{h}$ is a **weight** for π if $v \in V, v \neq 0$ such that

$$\pi(H)\mathbf{v} = \langle \mu, H \rangle \mathbf{v}$$

for all $H \in \mathfrak{h}$. Say that v is a **weight vector** for a specific weight μ , and the set of all weight vectors with weight μ is the **weight space**. The dimension of the weight space is the **multiplicity** of the weight.

We can further classify a weight as a **dominant integral element** if $2\frac{\langle \mu, \alpha \rangle}{\langle \alpha, \alpha \rangle}$ is a non-negative integer for each α in the basis of our inner product space.

Theorem of the Highest Weight

- Every irreducible representation has highest weight
- Two irreducible representations with the same highest weight are equivalent
- The highest weight of every irreducible representation is a dominant integral element
- Every dominant integral element occurs as the highest weight of an irreducible representation