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Principal Component Analysis 
as a Transformation

● invented in 1901 by Karl Pearson

● rotation of data from one coordinate system to 

another

● Goal: 

dimension reduction of multidimensional datasets

https://en.wikipedia.org/wiki/Karl_Pearson


Fitting the Best Ellipsoid on the data

● multidimensional data:
○ rows: sample values

○ columns: measured variables

● fitting a p-dimensional ellipsoid to the 

data

● each axis of the ellipsoid represents a 

principal component

● the small axes represent small variances

https://en.wikipedia.org/wiki/Ellipsoid


Computing PCA 
through the EVD of the covariance matrix

● original data matrix is Y
○ subtract data means from each point
○ X is the shifted version of Y with column-wise 0 empirical mean

● covariance matrix is XT * X 

● first component’s direction computed by maximizing the variance: 
○ other components will be computed by iterating this
○ and with the help of Gram-orthogonalization

1. calculate data covariance matrix of the original data

2. perform eigenvalue decomposition (EVD) on the covariance matrix 

https://en.wikipedia.org/wiki/Covariance
https://en.wikipedia.org/wiki/Eigendecomposition_of_a_matrix


Result of computing PCA using EVD

●  this way we obtain a W matrix 

○ this is orthonormal
● result is T = X*W

○ W is a p-by-p matrix of weights 

○ columns: eigenvectors of XT * X

● last few columns of T can be omitted, in case the majority of the 

variance can be explained using the first few columns

○ dimension reduction



Another Computational Method: 
Singular Value Decomposition
● factorization of a real or complex matrix

● m*n M matrix is given → SVD gives:

M= U Σ VT 
○ U is m*m unitary matrix (rotation or reflection) 

○ Σ is an m*n rectangular diagonal matrix 

○ VT  is an n*n unitary matrix

● diagonal entries σ
i 
=  Σ

ii
 of Σ are non-negative numbers

○ known as the singular values of M 

https://en.wikipedia.org/wiki/Matrix_decomposition
https://en.wikipedia.org/wiki/Real_number
https://en.wikipedia.org/wiki/Complex_number
https://en.wikipedia.org/wiki/Matrix_(mathematics)
https://en.wikipedia.org/wiki/Singular_value


Computing Principal Component Analysis 
using Singular Value Decomposition

● SVD of the data matrix X:   X = UΣWT 

● we get T = UΣ form (polar decomposition of T)

→NO need to determine the covariance matrix 

● more numerically stable than using EVD on covariance matrix

● Primary method to compute PCA

○ (unless only a handful of components are required)



Why/why not use
Principal Component Analysis?

Pros

● reflects our intuitions about the data

● allows estimating probabilities in 

high-dimensional data

● monumental reduction in size of data
○ faster processing
○ smaller storage

Cons

● cubic time of computing 
○ expensive for huge datasets

● only for continuous variables

● assumes linearity of the data

● catastrophic for fine-grained tasks 
○ outliers, interesting special cases



Applications of Principal Component Analysis

● quantitative finance 

○ risk management of interest rate 

derivative portfolios

● eigen-faces 

○ facial recognition 

● image compression 

● countless other applications 

○ for example in neuroscience, medical 

data correlation etc.


