Principal Component Analysis in a Linear Algebraic View

by Anna Orosz

under the mentorship of Jakob Hansen
Directed Reading Program at the University of Pennsylvania

Principal Component Analysis as a Transformation

- invented in 1901 by Karl Pearson
- rotation of data from one coordinate system to another
- Goal:
 dimension reduction of multidimensional datasets

Fitting the Best Ellipsoid on the data

- multidimensional data:
 - o rows: sample values
 - o columns: measured variables
- fitting a p-dimensional ellipsoid to the data
- each axis of the ellipsoid represents a principal component
- the small axes represent small variances

Computing PCA through the EVD of the covariance matrix

- 1. calculate data covariance matrix of the original data
- 2. perform eigenvalue decomposition (EVD) on the covariance matrix
- original data matrix is Y
 - o subtract data means from each point
 - X is the shifted version of Y with column-wise 0 empirical mean
- covariance matrix is X^T * X
- first component's direction computed by maximizing the variance:
 - o other components will be computed by iterating this
 - o and with the help of Gram-orthogonalization

Result of computing PCA using EVD

- this way we obtain a W matrix
 - this is orthonormal
- result is **T** = **X***W
 - W is a p-by-p matrix of weights
 - o columns: eigenvectors of X^T * X
- last few columns of T can be omitted, in case the majority of the variance can be explained using the first few columns
 - dimension reduction

Another Computational Method: Singular Value Decomposition

- factorization of a real or complex matrix
- $m^*n M matrix is given \rightarrow SVD gives:$ $M = U \Sigma V^T$
 - **U** is m*m unitary matrix (rotation or reflection)
 - Σ is an m*n rectangular diagonal matrix
 - **V**^T is an n*n unitary matrix
- diagonal entries $\sigma_i = \Sigma_{ii}$ of Σ are non-negative numbers
 - o known as the *singular values of M*

Computing Principal Component Analysis using Singular Value Decomposition

- SVD of the data matrix X: $X = U\Sigma W^T$
- we get $T = U\Sigma$ form (polar decomposition of T)
 - \rightarrow NO need to determine the covariance matrix
- more numerically stable than using EVD on covariance matrix
- Primary method to compute PCA
 - (unless only a handful of components are required)

Why/why not use Principal Component Analysis?

Pros

- reflects our intuitions about the data
- allows estimating probabilities in high-dimensional data
- monumental reduction in size of data
 - faster processing
 - smaller storage

Cons

- cubic time of computing
 - expensive for huge datasets
- only for continuous variables
- assumes linearity of the data
- catastrophic for fine-grained tasks
 - o outliers, interesting special cases

Applications of Principal Component Analysis

- quantitative finance
 - risk management of interest rate derivative portfolios
- eigen-faces
 - facial recognition —————
- image compression
- countless other applications
 - for example in neuroscience, medical data correlation etc.

