Category Theory in Geometry

> Abigail Timmel Mentor: Thomas Brazelton

Categories

Category: a collection of objects and morphisms between objects

- \succ Every object c has an identity morphism I_c
- ➤ For morphisms f : c → d and g : d → e, there is a composite morphism gf : c → e

Examples:

- Sets & functions
- Groups & group homomorphisms
- Topological spaces & continuous functions

Categories

An isomorphism is a morphism f : c \rightarrow d with g : d \rightarrow c so that fg = I_d and gf = I_c

Examples

- ≻ Set: bijections
- Group: group isomorphisms
- ➤ Top: homeomorphisms

Functors

Functor: a map $F : C \rightarrow D$ between categories taking objects to objects and morphisms to morphisms

- Preserves identity morphisms
- Preserves function composition

Examples:

- > Forgetful: Group \rightarrow Set sends groups to sets of elements
- > C(c, -): C → Set sends x to set of morphisms $c \rightarrow x$ and morphisms $x \rightarrow y$ to C(c,x)→C(c,y) by postcomposition
- ➤ Constant: C → c sends every object in C to c, every morphism to the identity on c

Diagrams

Diagram $F : J \rightarrow C$:

- An indexing category J of a certain shape
- A functor F assigning objects and morphism in C to that shape

Natural Transformations

Natural transformation $F \Rightarrow G$ of functors F, G : C \rightarrow D:

- ➤ A collection of morphisms called components α_c : Fc → Gc
- For all f : c → c', the diagram commutes

If the components are isomorphisms, we have a natural isomorphism $F \cong G$

Cones

Cone over a diagram $F : J \rightarrow C$:

- > A natural transformation between the constant functor c : J \rightarrow c and the diagram F : J \rightarrow C
- > The components λ_i are called legs

Universal Properties

A functor F : C \rightarrow Set is representable if there is an object c in C so that C(c, -) \cong F

 Recall C(c, -) takes an object c' to the set of morphisms c → c'

The functor F encodes a universal property of c

Limits

A limit is a universal cone:

- ➤ There is a natural isomorphism
 C(, lim F) ≅ Cone(, F)
- Morphisms c → Lim F are in bijection with cones with summit c over F

Limits in Geometry

Product

Diagram shape

Product of spaces

Limits in Geometry

Pullback

Conclusion

Category Theory is everywhere

- Mathematical objects and their functions belong to categories
- Maps between different types of objects/functions are functors
- Universal properties such as limits describe constructions like products and fibers

Reference

"Category Theory in Context" by Emily Riehl