Bézout's Theorem in Algebraic Geometry

Zhaobo (Tom) Han

December 13, 2022

Directed Reading Program, Fall 2022

Motivation

Definition

Projective n-Space $\mathbb{P}^{n}(k)$ is defined as $\left(k^{n+1} \backslash\{0\}\right) / \sim$, where $x \sim y \Leftrightarrow x=\lambda y$ for some $\lambda \in k^{\times}$. We use $\left[x_{1}, \cdots, x_{n}\right]$ to denote the equivalence class of $\left(x_{1}, \cdots, x_{n}\right)$.

(a) Visualization of $\mathbb{R} \mathbb{P}^{1}$

(b) Visualization of $\mathbb{R P}^{2}$

(c) Asymptotes

Forms and Projective Plane Curves

Definition (Scale Invariance)

$F \in k\left[x_{1}, x_{2}, \cdots, x_{n}\right]$ is homogeneous (form) if $F\left(\lambda x_{1}, \lambda x_{2}, \cdots, \lambda x_{n}\right)=\lambda^{n} F\left(x_{1}, x_{2}, \cdots, x_{n}\right)$ at any point $\left(x_{1}, x_{2}, \cdots, x_{n}\right)$.

Equivalent Definition

$F \in k\left[x_{1}, \cdots, x_{n}\right]$ is a form if it is a sum of terms of the same degree.

Examples

$$
x_{1} x_{2}+x_{1}^{2} \text { is a form while } x_{1}^{2}+x_{1} x_{2}^{2}+1 \text { is not. }
$$

Definition

$\gamma \subseteq \mathbb{P}^{2}(k)$ is a projective plane curve if there is a form F such that $\forall\left[\left(x_{1}, x_{2}, x_{3}\right)\right] \in \gamma, F\left(x_{1}, x_{2}, x_{3}\right)=0$. We write $\gamma=V(F)$.

Irreducible Polynomials and Components

Definition

A polynomial in $k\left[x_{1}, \cdots, x_{n}\right]$ is irreducible if it cannot be written as the product of two nonzero polynomials of lower degrees.

Examples

$x_{1}^{2}+x_{2} \in \mathbb{C}\left[x_{1}, x_{2}\right]$ is irreducible. However $x_{1}^{2}+x_{2}^{2}=\left(x_{1}+i x_{2}\right)\left(x_{1}-i x_{2}\right)$ is not irreducible in $\mathbb{C}\left[x_{1}, x_{2}\right]$.

Theorem

Every polynomial $F \in k\left[x_{1}, \cdots, x_{n}\right]$ can be written uniquely as the product of irreducible polynomials $\prod_{i=1}^{n} F_{i}^{e_{i}}$. Here, F_{1}, \cdots, F_{n} are called the components of F.

Example and Visualization of Components

(d) Components of $(x+y-2)\left(x^{2}+y^{2}-1\right)$

Homogeneizing and Dehomogenizing

Homogenization

$f=f_{0}+f_{1}+\cdots+f_{d} \in k\left[x_{1}, \cdots, x_{n}\right]$, then the homogeneization of f is
$f^{*}=\sum_{i=0}^{d} x_{n+1}^{d-i} f_{i} \in k\left[x_{1}, \cdots, x_{n}, x_{n+1}\right]$.

Examples

$$
x_{1} x_{2}+1 \rightarrow x_{1} x_{2}+x_{3}^{2} \quad x_{1}^{2}+x_{2} \rightarrow x_{1}^{2}+x_{2} x_{3}
$$

Dehomogenization

$F \in k\left[x_{1}, \cdots, x_{n}, x_{n+1}\right]$ is a form, then the dehomogeneization of F is $F_{*}=F\left(x_{1}, \cdots, x_{n}, 1\right) \in k\left[x_{1}, \cdots, x_{n}\right]$.

Examples

$x_{1}^{2}+x_{2} x_{3} \rightarrow x_{1}^{2}+x_{2} \quad x_{1} x_{2} x_{3}+x_{2}^{2} x_{1}+x_{3}^{3} \rightarrow x_{1} x_{2}+x_{2}^{2} x_{1}+1$

An Example

(e) Dehomogeneization of $x^{2}-y^{2}+x y$

Homogeneization of $x^{2}+x-1$

Properties of Homogeneizing/Dehomogeneizing

Properties

- $(f g)^{*}=f^{*} g^{*}$
- $x_{n+1}^{a}(f+g)^{*}=x_{n+1}^{b} f^{*}+x_{n+1}^{c} g^{*}$.
- $(F G)_{*}=F_{*} G_{*}$,
- $(F+G)_{*}=F_{*}+G_{*}$

Remark

Here, $a=\operatorname{deg}(f)+\operatorname{deg}(g)-\operatorname{deg}(f+g), b=\operatorname{deg}(g), c=\operatorname{deg}(f)$. These properties can be summarized as "weakly additive" and "multiplicative."

Intersection Number

Now we introduce the concept of intersection number. Firstly, we need the definition of local ring.
Let $p=\left[\left(x_{1}, \cdots, x_{n}, 1\right)\right]=\left[\left(p^{\prime}, 1\right)\right]$, we have

Definition

Let $\mathcal{O}_{p}\left(\mathbb{P}^{2}\right)=\left\{\left.\frac{f}{g} \right\rvert\, g(p) \neq 0, f, g\right.$ are forms $\}$. This is the local ring at point p. Similarly, let $\mathcal{O}_{p^{\prime}}\left(k^{2}\right)=\left\{\left.\frac{f}{g} \right\rvert\, f, g \in k\left[x_{1}, x_{2}\right], g(p) \neq 0\right\}$.

Remark

There is a canonical isomorphism $\mathcal{O}_{p}\left(\mathbb{P}^{2}\right) \cong \mathcal{O}_{p^{\prime}}\left(k^{2}\right)$.

Intersection Number Continued

Now we can define Intersection Number of projective plane curves.

Definition

$$
I(p, F \cap G)=\operatorname{dim}_{k}\left(\mathcal{O}_{p}\left(\mathbb{P}^{2}\right) /\left(F_{*}, G_{*}\right)\right)
$$

(f) $I(0, F \cap G)=1$
(g) $I(p, F \cap G)=\infty$
$y^{2}-x$ and $x-y$

$$
\begin{aligned}
& x^{3}-y^{2}-2 \text { and } \\
& \left(x^{3}-y^{2}-2\right)(x y-2)
\end{aligned}
$$

More Examples

Bézout's Theorem

Main Theorem

If F, G have no common components,
$\sum_{p \in F \cap G} I(p, F \cap G)=\operatorname{deg}(F) \operatorname{deg}(G)$.

Lemma

If $\gamma_{1}=V(F), \gamma_{2}=V(G)$ such that F and G have no common components, then $\left|\gamma_{1} \cap \gamma_{2}\right|<\infty$.

Remark

- Two projective plane curves always intersect because k is algebraically closed.
- The lemma guarantees that the sum is well-defined.

Examples

Remark

Note that $I\left(\left[x_{1}, x_{2}, x_{3}\right], F \cap G\right)=I\left(\left(\frac{x_{1}}{x_{3}}, \frac{x_{2}}{x_{3}}\right), F_{*} \cap G_{*}\right)$.

Remark

With this result, Bézout's Lemma also applies to intersecting plane curves.

(j) $y^{2}+x^{2}-1$ and $x-y$

(k) $x^{2}+y^{2}-1$ and $x+1$

Idea of Proof

Idea of proof: Here we write $k\left[x_{1}, x_{2}, x_{3}\right]=A$, and the ideal of degree d forms $B_{d}, A /(F, G)=B$.

- Step 1: Reducing.
(1): $\sum_{p} I(p, F \cap G)=\sum_{p} I\left(p, F_{*} \cap G_{*}\right)$.
(2): $V(I)=\left\{P_{1}, \cdots, P_{N}\right\}$
$k\left[x_{1}, \cdots, x_{n}\right] / I \cong \prod_{i=1}^{N} \mathcal{O}_{P_{i}}\left(k^{2}\right) / I \mathcal{O}_{P_{i}}\left(k^{2}\right)$
(3): $\Rightarrow \sum_{p} I\left(p, F_{*} \cap G_{*}\right)=\operatorname{dim}_{k}\left(k[x, y] /\left(F_{*}, G_{*}\right)\right)$.

Proof Continued

- Step 2: When $d \geq \operatorname{deg}(F)+\operatorname{deg}(G)$, we use an exact sequence to show that $\operatorname{dim}_{k}\left(B_{d}\right)=\operatorname{deg}(F) \operatorname{deg}(G)$. $0 \longrightarrow A \xrightarrow{\phi} A^{2} \xrightarrow{\psi} A \xrightarrow{\pi} B \longrightarrow 0$ where $\phi: H \mapsto(G H,-F H), \psi:(A, B) \mapsto A F+B G, \pi$ is the canonical projection. Then we restrict the sequence from A to forms of various degrees, so that the second to last term becomes B_{d}.
- Step 3: $B \rightarrow B, \bar{H} \mapsto \overline{x_{3} H}$ is injective.
- Step 4: Use homogeneization and dehomogeneization to show that a basis of B_{d} is also a basis of $k[x, y, 1] /\left(F_{*}, G_{*}\right)$.

Bibliography

Algebraic Curves-An Introduction to Algebraic Geometry, William Fulton. http://www.math.uchicago.edu/ may/VIGRE/VIGRE2011/ REUPapers/Menon.pdf

