Bézout's Theorem in Algebraic Geometry

Zhaobo (Tom) Han

December 13, 2022

Directed Reading Program, Fall 2022

Motivation

Definition

Projective n-Space $\mathbb{P}^n(k)$ is defined as $(k^{n+1}\setminus\{0\}) / \sim$, where $x \sim y \Leftrightarrow x = \lambda y$ for some $\lambda \in k^{\times}$. We use $[x_1, \dots, x_n]$ to denote the equivalence class of (x_1, \dots, x_n) .

Forms and Projective Plane Curves

Definition (Scale Invariance)

 $F \in k[x_1, x_2, \cdots, x_n]$ is homogeneous (form) if $F(\lambda x_1, \lambda x_2, \cdots, \lambda x_n) = \lambda^n F(x_1, x_2, \cdots, x_n)$ at any point (x_1, x_2, \cdots, x_n) .

Equivalent Definition

 $F \in k[x_1, \cdots, x_n]$ is a form if it is a sum of terms of the same degree.

Examples

 $x_1x_2 + x_1^2$ is a form while $x_1^2 + x_1x_2^2 + 1$ is not.

Definition

 $\gamma \subseteq \mathbb{P}^2(k)$ is a projective plane curve if there is a form F such that $\forall [(x_1, x_2, x_3)] \in \gamma, F(x_1, x_2, x_3) = 0$. We write $\gamma = V(F)$.

Definition

A polynomial in $k[x_1, \dots, x_n]$ is irreducible if it cannot be written as the product of two nonzero polynomials of lower degrees.

Examples

 $x_1^2 + x_2 \in \mathbb{C}[x_1, x_2]$ is irreducible. However $x_1^2 + x_2^2 = (x_1 + ix_2)(x_1 - ix_2)$ is not irreducible in $\mathbb{C}[x_1, x_2]$.

Theorem

Every polynomial $F \in k[x_1, \dots, x_n]$ can be written uniquely as the product of irreducible polynomials $\prod_{i=1}^n F_i^{e_i}$. Here, F_1, \dots, F_n are called the components of F.

Example and Visualization of Components

(d) Components of $(x+y-2)(x^2+y^2-1)$

Zhaobo (Tom) Han

Homogeneizing and Dehomogenizing

Homogenization

$$\begin{aligned} f &= f_0 + f_1 + \dots + f_d \in k[x_1, \dots, x_n], \text{ then the homogeneization of } f \text{ is } \\ f^* &= \sum_{i=0}^d x_{n+1}^{d-i} f_i \in k[x_1, \dots, x_n, x_{n+1}]. \end{aligned}$$

Examples

$$x_1x_2 + 1 \to x_1x_2 + x_3^2$$
 $x_1^2 + x_2 \to x_1^2 + x_2x_3$

Dehomogenization

 $F \in k[x_1, \cdots, x_n, x_{n+1}]$ is a form, then the dehomogeneization of F is $F_* = F(x_1, \cdots, x_n, 1) \in k[x_1, \cdots, x_n].$

Examples

 $x_1^2 +$

$$x_2x_3 \to x_1^2 + x_2$$
 $x_1x_2x_3 + x_2^2x_1 + x_3^3 \to x_1x_2 + x_2^2x_1 + 1$

Properties

- $(fg)^* = f^*g^*$
- $x_{n+1}^a(f+g)^* = x_{n+1}^b f^* + x_{n+1}^c g^*.$

•
$$(FG)_* = F_*G_*,$$

•
$$(F+G)_* = F_* + G_*$$

Remark

Here, a = deg(f) + deg(g) - deg(f + g), b = deg(g), c = deg(f). These properties can be summarized as "weakly additive" and "multiplicative."

8/16

Now we introduce the concept of intersection number. Firstly, we need the definition of local ring.

Let $p=[(x_1,\cdots,x_n,1)]=[(p',1)],$ we have

Definition

Let $\mathcal{O}_p(\mathbb{P}^2) = \{\frac{f}{g} | g(p) \neq 0, f, g \text{ are forms} \}$. This is the local ring at point p. Similarly, let $\mathcal{O}_{p'}(k^2) = \{\frac{f}{g} | f, g \in k[x_1, x_2], g(p) \neq 0 \}$.

Remark

There is a canonical isomorphism $\mathcal{O}_p(\mathbb{P}^2) \cong \mathcal{O}_{p'}(k^2)$.

Intersection Number Continued

Now we can define Intersection Number of projective plane curves.

Definition

$$I(p, F \cap G) = \dim_k \left(\mathcal{O}_p(\mathbb{P}^2) / (F_*, G_*) \right).$$

10/16

More Examples

Main Theorem

If F, G have no common components, $\sum_{p \in F \cap G} I(p, F \cap G) = deg(F)deg(G).$

Lemma

If $\gamma_1 = V(F), \gamma_2 = V(G)$ such that F and G have no common components, then $|\gamma_1 \cap \gamma_2| < \infty$.

Remark

- Two projective plane curves always intersect because k is algebraically closed.
- The lemma guarantees that the sum is well-defined.

Remark

Note that
$$I([x_1, x_2, x_3], F \cap G) = I((\frac{x_1}{x_3}, \frac{x_2}{x_3}), F_* \cap G_*).$$

Remark

With this result, Bézout's Lemma also applies to intersecting plane curves.

Idea of proof: Here we write $k[x_1, x_2, x_3] = A$, and the ideal of degree d forms $B_d, A/(F, G) = B$.

• Step 1: Reducing.

(1):
$$\sum_{p} I(p, F \cap G) = \sum_{p} I(p, F_* \cap G_*).$$

(2): $V(I) = \{P_1, \dots, P_N\}$
 $k[x_1, \dots, x_n]/I \cong \prod_{i=1}^N \mathcal{O}_{P_i}(k^2)/I\mathcal{O}_{P_i}(k^2)$
(3): $\Rightarrow \sum_{p} I(p, F_* \cap G_*) = dim_k(k[x, y]/(F_*, G_*)).$

Step 2: When d ≥ deg(F) + deg(G), we use an exact sequence to show that dim_k(B_d) = deg(F)deg(G).
0 → A → A² → A² → A → B → 0 where φ : H ↦ (GH, -FH), ψ : (A, B) ↦ AF + BG, π is the canonical projection. Then we restrict the sequence from A to forms of various degrees, so that the second to last term becomes B_d.

• Step 3:
$$B \to B, \overline{H} \mapsto \overline{x_3H}$$
 is injective.

• Step 4: Use homogeneization and dehomogeneization to show that a basis of B_d is also a basis of $k[x, y, 1]/(F_*, G_*)$.

Algebraic Curves–An Introduction to Algebraic Geometry, William Fulton. http://www.math.uchicago.edu/ may/VIGRE/VIGRE2011/ REUPapers/Menon.pdf