
Dependent Type Theory
Why, how and what to do with it?

Ruxandra Icleanu
Mentor: Julian Gould

DRP Fall 2022



Foundations

A few possible candidates for approaching foundations of
mathematics:

• set theory

• category theory

• type theory - everything is a type or a term of a given type



Simple Type Theory

• Simply typed lambda calculus

• ”q : Q” ⇔ q is a term of type Q ⇔ q is a proof (or witness) of Q

• syntax: context ⊢ conclusion

• we have rules for formation, introduction, elimination, and
computation

• we can prove statements like P ∧ Q → P

• ” → ”: corresponds to implication (logic)/ function (set)



Simple Type Theory



Dependent Type Theory

≈ simple type theory + dependent types

• a type can depend on a term of another type
e.g. type Vect(n) of vectors of length n
type isPrime(n)

• if types are propositions, then DT are predicates

• if types are sets, then DT are indexed families of sets

• if types are programs, then DT are programs with a given parameter



Dependent Type Theory



Dependent Type Theory: Function types

if x : A ⊢ B(x), then
∏
x :A

B(x) is a type

How to interpret them in
- set theory?
- logic?

e.g.
∏
n∈N

Vect(n)



Dependent Type Theory: Inductive Types

One example: Dependent pair Types (Σ types)

For a type family B over A, we can consider pairs (a, b) of terms with
a : A and b : B(a)

intuition: there is no term of type
∏
n∈N

isOdd(n)

but there are plenty of terms of type Σn∈NisOdd(n)

How to interpret them in
- set theory?
- logic?



Proof assistants

Tool for formal proofs based on the Curry-Howard isomorphism
propositions ⇔ types



Proof assistants: Example

We want to formalise a basic statement from group theory:

”In any group G , e is unqiue, i.e. if x ∈ G ,∀y ∈ satisfying
xy = yx = x , we have that x = e.”



Proof assistants: Example

Type of groups? Can be defined as following

A : Set

e : A

inv : A → A

m : A× A → A (or equivalently, m : A → (A → A))

Group G :=
∑

A:Set

∑
e:A

∑
i :A→A

∑
m:A×A→A

(axioms)

Axioms

• associativity: a ∗ (b ∗ c) = (a ∗ b) ∗ c ,∀a, b, c ∈ G

⇔
define is associative(m) :=

∏
a,b,c:A

(m(a,m(b, c)) = m(m(a, b), c))



Similarly, we can define functions that enforce the axiom for
identity and inverse:

• identity:
left id(e) :=

∏
x :G

(m(e, x) = x)

right id(e) :=
∏
x :G

(m(x , e) = x)

• inverse:
left inv(i) :=

∏
x :G

(m(i(x), x) = e)

right inv(i) :=
∏
x :G

(x ,m(i(x)) = e)

Back to the goal: formalising the fact that identity is unique∏
x :G

∏
y :G

((m(x , y) = x ∧m(y , x) = x) ⇒ x = e)



References

• Introduction to Homotopy Type Theory - Egbert Rijke

• School on Univalent Mathematics, Cortona, 2022


