Dependent Type Theory
Why, how and what to do with it?

Ruxandra Icleanu
Mentor: Julian Gould

DRP Fall 2022

Foundations

A few possible candidates for approaching foundations of
mathematics:

® set theory
® category theory
® type theory - everything is a type or a term of a given type

Simple Type Theory

® Simply typed lambda calculus

® "qg: Q" < qisaterm of type Q < ¢ is a proof (or witness) of Q

® syntax: context F conclusion

® we have rules for formation, introduction, elimination, and
computation

® we can prove statements like PA Q@ — P

”

® " —": corresponds to implication (logic)/ function (set)

Simple Type Theory

Ptype Qtype
P A Q type A - form

F-p:P Tr~qg:Q
F=(p,q):PaQ

A - intro

MN-s:PaQ
I+ left-prs:P A - elim - r

r-s:PaQ

=AM A -elim-1
I~ right-prs: Q

Ptype Qtype
P — Qtype

MN-x:P-q:Q
M-ixg:P>Q

Fr-p:P f:P->Q

Fr=fp:Q

» - and — - computation rules (omitted)

— - form

— - intro

— - elim

Dependent Type Theory

~ simple type theory + dependent types

® a type can depend on a term of another type
e.g. type Vect(n) of vectors of length n
type isPrime(n)

® if types are propositions, then DT are predicates
® if types are sets, then DT are indexed families of sets

® if types are programs, then DT are programs with a given parameter

Dependent Type Theory

[+~ Ptype T+ Qtype

[P aQtype A -form
F-p:P Tr~qg:Q
F=(p,q):PaQ

A - intro

MN-s:PaQ
I+ left-prs:P A - elim - r

r-s:PaQ

=AM A -elim-1
I~ right-prs: Q

F=Ptype [—Qtype
=P Qtype

MN-x:P-q:Q
M-ixg:P>Q

Fr-p:P f:P->Q

Fr=fp:Q

» - and — - computation rules (omitted)

— - form

— - intro

— - elim

Dependent Type Theory: Function types

if x : AF B(x), then [] B(x) is a type
x:A

How to interpret them in
- set theory?
- logic?

e.g. [] Vect(n)
neN

Dependent Type Theory: Inductive Types

One example: Dependent pair Types (X types)

For a type family B over A, we can consider pairs (a, b) of terms with
a:Aand b: B(a)

intuition: there is no term of type [[isOdd(n)
neN
but there are plenty of terms of type ¥ ,cnisOdd(n)

How to interpret them in
- set theory?
- logic?

Proof assistants

Tool for formal proofs based on the Curry-Howard isomorphism
propositions <> types

Proof assistants: Example

We want to formalise a basic statement from group theory:

"In any group G, e is ungiue, i.e. if x € G,Vy € satisfying
Xy = yx = X, we have that x = e."

Proof assistants: Example

Type of groups? Can be defined as following

A: Set

e:A

inv:A— A

m:AxA— A (or equivalently, m: A — (A — A))

Group G:= > > > > (axioms)

A:Set e:AitA—-A mAXA—A
Axioms

® associativity: ax (bxc) = (axb)*xc,Va,b,c € G
=

define is_associative(m) := {[.A(m(a, m(b, c)) = m(m(a, b), ¢))

Similarly, we can define functions that enforce the axiom for
identity and inverse:
® identity:
left_id(e) := [] (m(e, x) = x)
x:G
right_id(e) := [] (m(x, e) = x)
x:G
® inverse:

left_inv(i) := l—g(m(i(x),x) = e)
= [1(x, m(i(x)) = e)

x:G

right_inv(/) :

Back to the goal: formalising the fact that identity is unique

HH (x,y)=xAm(y,x) =x)=>x=¢)

x:Gy:G

References

® Introduction to Homotopy Type Theory - Egbert Rijke

® School on Univalent Mathematics, Cortona, 2022

