Dependent Type Theory

Why, how and what to do with it?

Ruxandra Icleanu
Mentor: Julian Gould

$$
\text { DRP Fall } 2022
$$

Foundations

A few possible candidates for approaching foundations of mathematics:

- set theory
- category theory
- type theory - everything is a type or a term of a given type

Simple Type Theory

- Simply typed lambda calculus
- " $q: Q$ " $\Leftrightarrow q$ is a term of type $Q \Leftrightarrow q$ is a proof (or witness) of Q
- syntax: context \vdash conclusion
- we have rules for formation, introduction, elimination, and computation
- we can prove statements like $P \wedge Q \rightarrow P$
- " \rightarrow ": corresponds to implication (logic)/ function (set)

Simple Type Theory

$$
\begin{aligned}
& \frac{P \text { type } Q \text { type }}{P \wedge Q \text { type }} \wedge \text { - form } \\
& \frac{\text { P type } Q \text { type }}{P \rightarrow Q \text { type }} \rightarrow-\text { form } \\
& \frac{\Gamma \vdash p: P \quad \Gamma \vdash q: Q}{\Gamma \vdash(p, q): P \wedge Q} \wedge \text {-intro } \\
& \Gamma \vdash s: P \wedge Q \\
& \Gamma \vdash \text { left-prs: } P \quad \wedge \text { - elim-r } \\
& \Gamma \vdash s: P \wedge Q \quad \wedge \text {-elim-1 } \\
& \Gamma \vdash \text { right-pr s: Q }
\end{aligned}
$$

$$
\wedge \text { - and } \rightarrow \text { - computation rules (omitted) }
$$

Dependent Type Theory

\approx simple type theory + dependent types

- a type can depend on a term of another type e.g. type $\operatorname{Vect}(n)$ of vectors of length n type isPrime(n)
- if types are propositions, then DT are predicates
- if types are sets, then DT are indexed families of sets
- if types are programs, then DT are programs with a given parameter

Dependent Type Theory

$$
\Gamma \vdash P \text { type } \quad \Gamma \vdash Q \text { type } \quad \rightarrow-\text { form }
$$

$$
\wedge \text { - and } \rightarrow \text { - computation rules (omitted) }
$$

$$
\begin{aligned}
& \Gamma \vdash P \text { type } \Gamma \vdash Q \text { type } \\
& \Gamma \vdash P \wedge Q \text { type } \\
& \wedge \text { - form } \\
& \frac{\Gamma \vdash p: P \quad \Gamma \vdash q: Q}{\Gamma \vdash(p, q): P \wedge Q} \wedge \text {-intro } \\
& \Gamma \vdash s: P \wedge Q \\
& \Gamma \vdash \text { left-prs: } P \quad \wedge \text {-elim-r } \\
& \Gamma \vdash \underline{s: P \wedge Q} \wedge \text {-elim-1 } \\
& \Gamma \vdash \text { right-pr s: } \mathrm{Q}
\end{aligned}
$$

Dependent Type Theory: Function types

if $x: A \vdash B(x)$, then $\prod_{x: A} B(x)$ is a type
How to interpret them in

- set theory?
- logic?
e.g. $\prod_{n \in \mathbb{N}} \operatorname{Vect}(n)$

Dependent Type Theory: Inductive Types

One example: Dependent pair Types (Σ types)
For a type family B over A, we can consider pairs (a, b) of terms with $a: A$ and $b: B(a)$
intuition: there is no term of type $\prod_{n \in \mathbb{N}}$ is $\operatorname{Odd}(n)$
but there are plenty of terms of type $\Sigma_{n \in \mathbb{N}} i s O d d(n)$
How to interpret them in

- set theory?
- logic?

Proof assistants

Tool for formal proofs based on the Curry-Howard isomorphism propositions \Leftrightarrow types

Proof assistants: Example

We want to formalise a basic statement from group theory:
"In any group G, e is unqiue, i.e. if $x \in G, \forall y \in$ satisfying $x y=y x=x$, we have that $x=e$."

Proof assistants: Example

Type of groups? Can be defined as following
A : Set
e: A
inv: $A \rightarrow A$
$m: A \times A \rightarrow A$ (or equivalently, $m: A \rightarrow(A \rightarrow A)$)
Group $G:=\sum_{A: \text { Set }} \sum_{e: A} \sum_{A: A \rightarrow A} \sum_{m: A \times A \rightarrow A}$ (axioms)
Axioms

- associativity: $a *(b * c)=(a * b) * c, \forall a, b, c \in G$
\Leftrightarrow
define is_associative $(m):=\prod_{a, b, c: A}(m(a, m(b, c))=m(m(a, b), c))$

Similarly, we can define functions that enforce the axiom for identity and inverse:

- identity:

$$
\begin{aligned}
& \text { left_id }(e):=\prod_{x: G}(m(e, x)=x) \\
& \text { right_id }(e):=\prod_{x: G}(m(x, e)=x)
\end{aligned}
$$

- inverse:

$$
\begin{aligned}
& \text { left_inv }(i):=\prod_{x: G}(m(i(x), x)=e) \\
& \text { right_inv }(i):=\prod_{x: G}(x, m(i(x))=e)
\end{aligned}
$$

Back to the goal: formalising the fact that identity is unique

$$
\prod_{x: G} \prod_{y: G}((m(x, y)=x \wedge m(y, x)=x) \Rightarrow x=e)
$$

References

- Introduction to Homotopy Type Theory - Egbert Rijke
- School on Univalent Mathematics, Cortona, 2022

