Dependent Type Theory Why, how and what to do with it?

> Ruxandra Icleanu Mentor: Julian Gould

> > DRP Fall 2022

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Foundations

A few possible candidates for approaching foundations of mathematics:

- set theory
- category theory
- type theory everything is a type or a term of a given type

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Simple Type Theory

- Simply typed lambda calculus
- "q: Q" $\Leftrightarrow q$ is a term of type $Q \Leftrightarrow q$ is a proof (or witness) of Q

- syntax: context ⊢ conclusion
- we have rules for formation, introduction, elimination, and computation
- we can prove statements like $P \land Q
 ightarrow P$
- " \rightarrow ": corresponds to implication (logic)/ function (set)

Simple Type Theory

P type Q type P ∧ Q type ∧ - form	$\frac{P \text{ type } Q \text{ type}}{P \rightarrow Q \text{ type}}$	\rightarrow - form
$\frac{\Gamma \vdash p: P \Gamma \vdash q: Q}{\Gamma \vdash (p, q): P \land Q} \land - \text{ intro}$	$\frac{\Gamma \vdash \mathbf{x} : \mathbf{P} \vdash \mathbf{q} : \mathbf{Q}}{\Gamma \vdash \lambda \mathbf{x} . \mathbf{q} : \mathbf{P} \rightarrow \mathbf{Q}}$	\rightarrow - intro
$ \begin{array}{l} \Gamma \vdash \underline{s} : \underline{P} \land \underline{Q} \\ \Gamma \vdash \overline{left-prs} : \underline{P} & \land - elim - r \end{array} $	$\Gamma \vdash p: P f: P \to Q$	\rightarrow - elim
$\begin{array}{l} \Gamma \vdash \underline{s} : \underline{P} \land \underline{Q} \\ \Gamma \vdash right-pr \ s : \underline{Q} \end{array} \qquad \land - elim - I \end{array}$	I⊢fp:Q	

 \wedge - and \rightarrow - computation rules (omitted)

(ロ)、(型)、(E)、(E)、 E) の(()

Dependent Type Theory

 \approx simple type theory + dependent types

- a type can depend on a term of another type e.g. type Vect(n) of vectors of length n type isPrime(n)
- if types are propositions, then DT are predicates
- if types are sets, then DT are indexed families of sets
- if types are programs, then DT are programs with a given parameter

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Dependent Type Theory

 \wedge - and \rightarrow - computation rules (omitted)

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Dependent Type Theory: Function types

if $x : A \vdash B(x)$, then $\prod_{x:A} B(x)$ is a type How to interpret them in - set theory?

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- logic?

e.g. $\prod_{n \in \mathbb{N}} Vect(n)$

Dependent Type Theory: Inductive Types

One example: Dependent pair Types (Σ types)

For a type family B over A, we can consider pairs (a, b) of terms with a : A and b : B(a)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

intuition: there is no term of type $\prod_{n \in \mathbb{N}} isOdd(n)$ but there are plenty of terms of type $\sum_{n \in \mathbb{N}} isOdd(n)$

How to interpret them in

- set theory?
- logic?

Proof assistants

Tool for formal proofs based on the Curry-Howard isomorphism propositions \Leftrightarrow types

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

We want to formalise a basic statement from group theory:

"In any group G, e is unquue, i.e. if $x \in G, \forall y \in \text{satisfying}$ xy = yx = x, we have that x = e."

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Proof assistants: Example

Type of groups? Can be defined as following

A: Set

e : A

 $inv: A \rightarrow A$

m:A imes A o A (or equivalently, m:A o (A o A))

Group
$$G := \sum_{A:Set} \sum_{e:A} \sum_{i:A \to A} \sum_{m:A \times A \to A} (axioms)$$

Axioms

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Similarly, we can define functions that enforce the axiom for identity and inverse:

$$left_id(e) := \prod_{x:G} (m(e,x) = x)$$

right_id(e) :=
$$\prod_{x:G} (m(x,e) = x)$$

inverse:

$$left_inv(i) := \prod_{x:G} (m(i(x), x) = e)$$

right_inv(i) :=
$$\prod_{x:G} (x, m(i(x)) = e)$$

Back to the goal: formalising the fact that identity is unique

$$\prod_{x:G} \prod_{y:G} ((m(x,y) = x \land m(y,x) = x) \Rightarrow x = e)$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

References

• Introduction to Homotopy Type Theory - Egbert Rijke

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

• School on Univalent Mathematics, Cortona, 2022