Hyperelliptic Curves with Points over Cyclotomic Extensions

Quincy Alston

Department of Mathematics

December 13, 2022

Outline

Galois Theory

Our Problem

Methodology

Results

Definition (Field Extension/Adjoinment)

A field K is a **field extension** of $\mathbb Q$ if $\mathbb Q$. A **field extension** K of $\mathbb Q$ is denoted $K/\mathbb Q$. If $\alpha \notin \mathbb Q$, the smallest field extension of $\mathbb Q$ containing α , denoted $\mathbb Q(\alpha)$, is a **field adjoinment**.

Definition (Field Extension/Adjoinment)

A field K is a **field extension** of $\mathbb Q$ if $\mathbb Q$. A **field extension** K of $\mathbb Q$ is denoted $K/\mathbb Q$. If $\alpha \notin \mathbb Q$, the smallest field extension of $\mathbb Q$ containing α , denoted $\mathbb Q(\alpha)$, is a **field adjoinment**.

Example: Define $\mathbb{Q}(i) := \{a + ib \mid a, b \in \mathbb{Q}\}.$

Definition (Field Extension/Adjoinment)

A field K is a **field extension** of $\mathbb Q$ if $\mathbb Q$. A **field extension** K of $\mathbb Q$ is denoted $K/\mathbb Q$. If $\alpha \notin \mathbb Q$, the smallest field extension of $\mathbb Q$ containing α , denoted $\mathbb Q(\alpha)$, is a **field adjoinment**.

```
Example: Define \mathbb{Q}(i) := \{a + ib \mid , a, b \in \mathbb{Q}\}. \mathbb{Q}(i) is a field extension of \mathbb{Q} because \mathbb{Q} \subset \mathbb{Q}(i). We construct \mathbb{Q}(i) by adjoining i to \mathbb{Q}.
```


Definition (Field Extension/Adjoinment)

A field K is a **field extension** of $\mathbb Q$ if $\mathbb Q$. A **field extension** K of $\mathbb Q$ is denoted $K/\mathbb Q$. If $\alpha \notin \mathbb Q$, the smallest field extension of $\mathbb Q$ containing α , denoted $\mathbb Q(\alpha)$, is a **field adjoinment**.

```
Example: Define \mathbb{Q}(i) := \{a + ib \mid , a, b \in \mathbb{Q}\}. \mathbb{Q}(i) is a field extension of \mathbb{Q} because \mathbb{Q} \subset \mathbb{Q}(i). We construct \mathbb{Q}(i) by adjoining i to \mathbb{Q}.
```

Definition (Splitting Field)

Let h(x) be a polynomial with coefficients in the field F. A field K is the **splitting field** of h(x) if K/\mathbb{Q} is the smallest field extension over which h(x) can be factored into linear factors.

Definition (Field Extension/Adjoinment)

A field K is a **field extension** of $\mathbb Q$ if $\mathbb Q$. A **field extension** K of $\mathbb Q$ is denoted $K/\mathbb Q$. If $\alpha \notin \mathbb Q$, the smallest field extension of $\mathbb Q$ containing α , denoted $\mathbb Q(\alpha)$, is a **field adjoinment**.

```
Example: Define \mathbb{Q}(i) := \{a + ib \mid , a, b \in \mathbb{Q}\}. \mathbb{Q}(i) is a field extension of \mathbb{Q} because \mathbb{Q} \subset \mathbb{Q}(i). We construct \mathbb{Q}(i) by adjoining i to \mathbb{Q}.
```

Definition (Splitting Field)

Let h(x) be a polynomial with coefficients in the field F. A field K is the **splitting field** of h(x) if K/\mathbb{Q} is the smallest field extension over which h(x) can be factored into linear factors.

Example: $\mathbb{Q}(i)$ is the splitting field of $h(x) = x^2 - 1 = (x+i)(x-i)$.

Definition (Galois Extension)

A field extension K/F is a **Galois Extension** if K is the splitting field of a set of polynomials over F that have distinct roots.

Definition (Galois Extension)

A field extension K/F is a **Galois Extension** if K is the splitting field of a set of polynomials over F that have distinct roots.

Example: Let $K := \mathbb{Q}(i)$. Define $F := \mathbb{Q}$.

Definition (Galois Extension)

A field extension K/F is a **Galois Extension** if K is the splitting field of a set of polynomials over F that have distinct roots.

Example: Let $K := \mathbb{Q}(i)$. Define $F := \mathbb{Q}$. Then $\mathbb{Q}(i)/\mathbb{Q}$ is a Galois Extension because $\mathbb{Q}(i)$ is the splitting field of the polynomials $f(x) = x^2 + 1$ and f has distinct roots i, -i.

Definition (Automorphism)

Let K/\mathbb{Q} be a field extension of \mathbb{Q} . A homomorphism $f:K\to K$ is an **automorphism** over \mathbb{Q} if f is an isomorphism and f fixes \mathbb{Q} .

Definition (Automorphism)

Let K/\mathbb{Q} be a field extension of \mathbb{Q} . A homomorphism $f:K\to K$ is an **automorphism** over \mathbb{Q} if f is an isomorphism and f fixes \mathbb{Q} .

Definition (Galois Group)

Consider the Galois extension K/\mathbb{Q} . The **Galois Group** G of K/\mathbb{Q} , denoted $Gal(K/\mathbb{Q})$, is the group under function composition of K-automorphisms that fix \mathbb{Q} .

Definition (Automorphism)

Let K/\mathbb{Q} be a field extension of \mathbb{Q} . A homomorphism $f:K\to K$ is an **automorphism** over \mathbb{Q} if f is an isomorphism and f fixes \mathbb{Q} .

Definition (Galois Group)

Consider the Galois extension K/\mathbb{Q} . The **Galois Group** G of K/\mathbb{Q} , denoted $Gal(K/\mathbb{Q})$, is the group under function composition of K-automorphisms that fix \mathbb{Q} .

Proposition: Let $K = \mathbb{Q}(i)$. Then

Definition (Automorphism)

Let K/\mathbb{Q} be a field extension of \mathbb{Q} . A homomorphism $f:K\to K$ is an **automorphism** over \mathbb{Q} if f is an isomorphism and f fixes \mathbb{Q} .

Definition (Galois Group)

Consider the Galois extension K/\mathbb{Q} . The **Galois Group** G of K/\mathbb{Q} , denoted $Gal(K/\mathbb{Q})$, is the group under function composition of K-automorphisms that fix \mathbb{Q} .

Proposition: Let $K = \mathbb{Q}(i)$. Then $Gal(\mathbb{Q}(i)/\mathbb{Q}) \cong \mathbb{Z}/2\mathbb{Z}$.

Definition (Automorphism)

Let K/\mathbb{Q} be a field extension of \mathbb{Q} . A homomorphism $f:K\to K$ is an **automorphism** over \mathbb{Q} if f is an isomorphism and f fixes \mathbb{Q} .

Definition (Galois Group)

Consider the Galois extension K/\mathbb{Q} . The **Galois Group** G of K/\mathbb{Q} , denoted $Gal(K/\mathbb{Q})$, is the group under function composition of K-automorphisms that fix \mathbb{Q} .

Proposition: Let
$$K = \mathbb{Q}(i)$$
. Then $Gal(\mathbb{Q}(i)/\mathbb{Q}) \cong \mathbb{Z}/2\mathbb{Z}$.

Proof: There are two automorphisms that map $\mathbb{Q}(i) \to \mathbb{Q}(i)$ and fix \mathbb{Q} : f(a+bi)=a+bi and f(a+bi)=a-bi.

Definition (Automorphism)

Let K/\mathbb{Q} be a field extension of \mathbb{Q} . A homomorphism $f:K\to K$ is an **automorphism** over \mathbb{Q} if f is an isomorphism and f fixes \mathbb{Q} .

Definition (Galois Group)

Consider the Galois extension K/\mathbb{Q} . The **Galois Group** G of K/\mathbb{Q} , denoted $Gal(K/\mathbb{Q})$, is the group under function composition of K-automorphisms that fix \mathbb{Q} .

Proposition: Let
$$K = \mathbb{Q}(i)$$
. Then $Gal(\mathbb{Q}(i)/\mathbb{Q}) \cong \mathbb{Z}/2\mathbb{Z}$.

Proof: There are two automorphisms that map $\mathbb{Q}(i) \to \mathbb{Q}(i)$ and fix \mathbb{Q} : f(a+bi)=a+bi and f(a+bi)=a-bi. The automorphisms of $\mathbb{Q}(i)$ form the group $\mathbb{Z}/2\mathbb{Z}$ because $g^2=f=id$.

Galois Correspondence

There is a 1-1 correspondence between subfield extensions of a Galois extension and subgroups of the Galois group.

Galois Correspondence

There is a 1-1 correspondence between subfield extensions of a Galois extension and subgroups of the Galois group.

Galois Correspondence

- e = id
- $f:\sqrt{2}\to-\sqrt{2}$
- $g:\sqrt{3}\rightarrow -\sqrt{3}$

Algebraic Curves

Definition (Plane Curve)

A **plane curve** is the set of points $(\alpha, \beta) \in \mathbb{C}^2$ such that $F(\alpha, \beta) = 0$ for some polynomial F(x, y) with coefficients in \mathbb{Q} .

Algebraic Curves

Definition (Plane Curve)

A **plane curve** is the set of points $(\alpha, \beta) \in \mathbb{C}^2$ such that $F(\alpha, \beta) = 0$ for some polynomial F(x,y) with coefficients in \mathbb{Q} .

Example (Hyperelliptic Curves)

A plane curve E is **hyperelliptic** if it is of the form $y^2 = f(x)$ where $f(x) \in \mathbb{Q}[x]$. E is **elliptic** if $\deg(f(x)) = 3$.

Algebraic Curves

Definition (Plane Curve)

A **plane curve** is the set of points $(\alpha, \beta) \in \mathbb{C}^2$ such that $F(\alpha, \beta) = 0$ for some polynomial F(x,y) with coefficients in \mathbb{Q} .

Example (Hyperelliptic Curves)

A plane curve E is **hyperelliptic** if it is of the form $y^2 = f(x)$ where $f(x) \in \mathbb{Q}[x]$. E is **elliptic** if $\deg(f(x)) = 3$.

Example: The curve $E: y^2 = x^3 - x + 1$ is an elliptic curve.

Definition (Field Adjoining a Point on a Curve)

Let $P = (\alpha, \beta), \alpha, \beta \in \overline{\mathbb{Q}}$ be a point on E : F(x, y) = 0 over \mathbb{Q} .

Definition (Field Adjoining a Point on a Curve)

Let $P = (\alpha, \beta), \alpha, \beta \in \overline{\mathbb{Q}}$ be a point on E : F(x, y) = 0 over \mathbb{Q} . By adjoining each coordinate of P to \mathbb{Q} , we **adjoin the point** P **to** \mathbb{Q} to get $\mathbb{Q}(P) := \mathbb{Q}(\alpha, \beta)$.

Definition (Field Adjoining a Point on a Curve)

Let $P=(\alpha,\beta), \alpha,\beta\in\overline{\mathbb{Q}}$ be a point on E:F(x,y)=0 over \mathbb{Q} . By adjoining each coordinate of P to \mathbb{Q} , we **adjoin the point** P **to** \mathbb{Q} to get $\mathbb{Q}(P):=\mathbb{Q}(\alpha,\beta)$.

Example: Let $E: y^2 = x^3 - x + 1$ and $P = (2, \sqrt{7})$.

Definition (Field Adjoining a Point on a Curve)

Let $P=(\alpha,\beta), \alpha,\beta\in\overline{\mathbb{Q}}$ be a point on E:F(x,y)=0 over \mathbb{Q} . By adjoining each coordinate of P to \mathbb{Q} , we **adjoin the point** P **to** \mathbb{Q} to get $\mathbb{Q}(P):=\mathbb{Q}(\alpha,\beta)$.

Example: Let $E: y^2 = x^3 - x + 1$ and $P = (2, \sqrt{7})$. Since P is a point on E, we define $\mathbb{Q}(P) = \mathbb{Q}(2, \sqrt{7}) = \mathbb{Q}(\sqrt{7})$.

Definition (Field Adjoining a Point on a Curve)

Let $P=(\alpha,\beta), \alpha,\beta\in\overline{\mathbb{Q}}$ be a point on E:F(x,y)=0 over \mathbb{Q} . By adjoining each coordinate of P to \mathbb{Q} , we **adjoin the point** P **to** \mathbb{Q} to get $\mathbb{Q}(P):=\mathbb{Q}(\alpha,\beta)$.

Example: Let $E: y^2 = x^3 - x + 1$ and $P = (2, \sqrt{7})$. Since P is a point on E, we define $\mathbb{Q}(P) = \mathbb{Q}(2, \sqrt{7}) = \mathbb{Q}(\sqrt{7})$.

Definition (Parameterization)

Consider a plane curve E: F(x,y)=0. Let x(t),y(t) be polynomials with coefficients in $\mathbb Q$. Then the polynomial F(x(t),y(t))=0 is a **parameterization** of F(x,y). The roots of F(x(t),y(t)) give us points on E.

Definition (Field Adjoining a Point on a Curve)

Let $P=(\alpha,\beta), \alpha,\beta\in\overline{\mathbb{Q}}$ be a point on E:F(x,y)=0 over \mathbb{Q} . By adjoining each coordinate of P to \mathbb{Q} , we **adjoin the point** P **to** \mathbb{Q} to get $\mathbb{Q}(P):=\mathbb{Q}(\alpha,\beta)$.

Example: Let $E: y^2 = x^3 - x + 1$ and $P = (2, \sqrt{7})$. Since P is a point on E, we define $\mathbb{Q}(P) = \mathbb{Q}(2, \sqrt{7}) = \mathbb{Q}(\sqrt{7})$.

Definition (Parameterization)

Consider a plane curve E: F(x,y)=0. Let x(t),y(t) be polynomials with coefficients in \mathbb{Q} . Then the polynomial F(x(t),y(t))=0 is a **parameterization** of F(x,y). The roots of F(x(t),y(t)) give us points on E.

Example: Consider $F(x,y) = x^2 + y^2 - 1 = 0$. Let x(t) = 2t and y(t) = t - 1. Then $F(x(t),y(t)) = 5t^2 - 2t = 0$ is a parameterization of F(x,y).

Which finite groups can be realized as Galois groups over \mathbb{Q} ?

• This is an open number theory problem known as the Inverse Galois Problem

Which finite groups can be realized as Galois groups over \mathbb{Q} ?

• This is an open number theory problem known as the Inverse Galois Problem

Inverse Galois Problem for Plane Curves

Let *C* be a plane curve over \mathbb{Q} . If we consider $\mathbb{Q}(P)$ such that *P* is a point on *C*, which groups can arise as $G = \operatorname{Gal}(\mathbb{Q}(P)/\mathbb{Q})$?

Which finite groups can be realized as Galois groups over \mathbb{Q} ?

This is an open number theory problem known as the Inverse Galois Problem

Inverse Galois Problem for Plane Curves

Let *C* be a plane curve over \mathbb{Q} . If we consider $\mathbb{Q}(P)$ such that *P* is a point on *C*, which groups can arise as $G = \operatorname{Gal}(\mathbb{Q}(P)/\mathbb{Q})$?

Our Question

Fix a plane curve C: F(x,y) = 0. What parameterizations $x(t), y(t) \in \mathbb{Q}[t]$ give us polynomials with Galois group $G \not\cong S_n$?

Which finite groups can be realized as Galois groups over \mathbb{Q} ?

• This is an open number theory problem known as the Inverse Galois Problem

Inverse Galois Problem for Plane Curves

Let *C* be a plane curve over \mathbb{Q} . If we consider $\mathbb{Q}(P)$ such that *P* is a point on *C*, which groups can arise as $G = \operatorname{Gal}(\mathbb{Q}(P)/\mathbb{Q})$?

Our Question

Fix a plane curve C: F(x,y) = 0. What parameterizations $x(t), y(t) \in \mathbb{Q}[t]$ give us polynomials with Galois group $G \not\cong S_n$?

• Particularly, we are searching for curves and parameterizations that give us cyclotomic polynomials, whose Galois groups are always abelian (i.e. not S_n).

Which finite groups can be realized as Galois groups over \mathbb{Q} ?

• This is an open number theory problem known as the Inverse Galois Problem

Inverse Galois Problem for Plane Curves

Let *C* be a plane curve over \mathbb{Q} . If we consider $\mathbb{Q}(P)$ such that *P* is a point on *C*, which groups can arise as $G = \operatorname{Gal}(\mathbb{Q}(P)/\mathbb{Q})$?

Our Question

Fix a plane curve C: F(x,y) = 0. What parameterizations $x(t), y(t) \in \mathbb{Q}[t]$ give us polynomials with Galois group $G \not\cong S_n$?

- Particularly, we are searching for curves and parameterizations that give us cyclotomic polynomials, whose Galois groups are always abelian (i.e. not S_n).
- Can we get a Galois group of the form $(\mathbb{Z}/n\mathbb{Z})^{\times}$ from an elliptic curve?

Our Method

Claim [Keyes]

The parameterization $x(t)=t, \ y(t)=\frac{g(t)}{h(t)}$ on the hyperelliptic curve $F:y^2=f(x)$ gives the following:

Our Method

Claim [Keyes]

The parameterization $x(t)=t, \ y(t)=\frac{g(t)}{h(t)}$ on the hyperelliptic curve $F:y^2=f(x)$ gives the following:

$$\frac{g(t)^{2}}{h(t)^{2}} - f(t) = 0$$

$$\Theta(t) = g(t)^{2} - h(t)^{2} f(t) = 0$$

Our Method

Claim [Keyes]

The parameterization $x(t)=t, \ y(t)=\frac{g(t)}{h(t)}$ on the hyperelliptic curve $F:y^2=f(x)$ gives the following:

$$\frac{g(t)^{2}}{h(t)^{2}} - f(t) = 0$$

$$\Theta(t) = g(t)^{2} - h(t)^{2} f(t) = 0$$

For each root α such that $\Theta(\alpha)=0$, we adjoin $\mathbb{Q}(\alpha,\frac{g(\alpha)}{h(\alpha)})$ to get a Galois extension.

The field $\mathbb{Q}(\alpha, \frac{g(\alpha)}{h(\alpha)})$ is equal to $\mathbb{Q}(\alpha)$. [1]

Cyclotomic Polynomials

Definition (Cyclotomic Polynomial)

The *n*th **cyclotomic polynomial** denoted $\Phi_n(x)$ is the monic polynomial of minimal degree with Galois group $(\mathbb{Z}/n\mathbb{Z})^{\times}$.

Example: The 4th cyclotomic polynomial is $\Phi_4(x) = x^2 + 1$

- Alternatively: $\Phi_n(x) = \prod_{a \in (\mathbb{Z}/n\mathbb{Z})^{\times}} (x \zeta_n^a)$
- Let p be prime. Then $\Phi_{p^n}(x) = \Phi_p(x^{p^{n-1}})$.
- The degree of $\Phi_n(x)$ is given by the Euler-Totient function

Cyclotomic Polynomials

Definition (Cyclotomic Polynomial)

The nth **cyclotomic polynomial** denoted $\Phi_n(x)$ is the monic polynomial of minimal degree with Galois group $(\mathbb{Z}/n\mathbb{Z})^{\times}$.

Example: The 4th cyclotomic polynomial is $\Phi_4(x) = x^2 + 1$

- Alternatively: $\Phi_n(x) = \prod_{\sigma \in (\mathbb{Z}/n\mathbb{Z})^{\times}} (x \zeta_n^{\sigma})$
- Let p be prime. Then $\Phi_{p^n}(x) = \Phi_p(x^{p^{n-1}})$.
- The degree of $\Phi_n(x)$ is given by the Euler-Totient function

Remark

Set $\Theta(t) := \Phi_n(t)$, the nth cyclotomic polynomial. If $\Theta(\alpha) = 0$ for some $\alpha \in \overline{\mathbb{Q}}$, then $\mathbb{Q}(x(\alpha), y(\alpha))/\mathbb{Q}$ gives a cyclotomic field extension of \mathbb{Q} .

Results

We computed examples using SageMath and generated a conjecture on how Cyclotomics factor. This conjecture implies results about our factoring method. We proved the following:

- **Theorem:** Let $n=p^m$ where $p\equiv 1\mod 4$. Then $R(x)=x^{\frac{d}{2}}-\Phi_n(x)$ is reducible with a square factor.
- Theorem: Let $n=3^m\cdot 2^\ell$. Then $R(x)=x^{\frac{d}{2}}-\Phi_n(x)$ is a perfect square.
- Recall our parametrization: $\Theta(t)=g(t)^2-h(t)^2f(t)=0$. Then $\Phi_n(x)=\Theta(x)$, $g(x)^2=x^{\frac{d}{2}}$, and $h(x)^2f(x)=R(x)$.
- Thus $y^2 = f(x)$ is a hyperelliptic curve with a point over the *nth* cyclotomic field.

References

C. D. Keyes, *Growth of points on hyperelliptic curves over number fields*, (2019).

