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Galois Theory

Definition (Field Extension/Adjoinment)

Afield K is a field extension of Q if Q. A field extension K of Q is denoted K/Q. If
a ¢ Q, the smallest field extension of Q containing «, denoted Q(«), is a
field adjoinment.
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Galois Theory

Definition (Field Extension/Adjoinment)

Afield K is a field extension of Q if Q. A field extension K of Q is denoted K/Q. If
a ¢ Q, the smallest field extension of Q containing «, denoted Q(«), is a
field adjoinment.

Example: Define Q(i) := {a+ib|,a,b € Q}.
Q(i) is a field extension of Q because Q C Q(i). We construct Q(i) by adjoining i to
Q.

Definition (Splitting Field)

Let h(x) be a polynomial with coefficients in the field F. A field K is the splitting field
of h(x) if K/Q is the smallest field extension over which h(x) can be factored into
linear factors.
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Galois Theory

Definition (Field Extension/Adjoinment)
Afield K is a field extension of Q if Q. A field extension K of Q is denoted K/Q. If
a ¢ Q, the smallest field extension of Q containing «, denoted Q(«), is a
field adjoinment.
Example: Define Q(i) := {a+ib|,a,b € Q}.
Q(i) is a field extension of Q because Q C Q(i). We construct Q(i) by adjoining i to
Q.
Definition (Splitting Field)
Let h(x) be a polynomial with coefficients in the field F. A field K is the splitting field

of h(x) if K/Q is the smallest field extension over which h(x) can be factored into
linear factors.

Example: Q(i) is the splitting field of h(x) = x> — 1 = (x + i)(x — i).
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Galois Theory

Definition (Galois Extension)

A field extension K/F is a Galois Extension if K is the splitting field of a set of
polynomials over F that have distinct roots.
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Galois Theory

Definition (Galois Extension)

A field extension K/F is a Galois Extension if K is the splitting field of a set of
polynomials over F that have distinct roots.

Example: Let K := Q(i). Define F := Q.
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Galois Theory

Definition (Galois Extension)
A field extension K/F is a Galois Extension if K is the splitting field of a set of
polynomials over F that have distinct roots.
Example: Let K := Q(i). Define F := Q.
Then Q(i)/Q s a Galois Extension because Q(i) is the splitting field of the polynomials
f(x) = x* + 1 and f has distinct roots i, —i.
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Galois Theory

Definition (Automorphism)

Let K/Q be a field extension of Q. A homomorphism f : K — Kis an
automorphism over Q if fis an isomorphism and f fixes Q.
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Galois Theory

Definition (Automorphism)

Let K/Q be a field extension of Q. A homomorphism f : K — Kis an
automorphism over Q if fis an isomorphism and f fixes Q.

Definition (Galois Group)
Consider the Galois extension K/Q. The Galois Group G of K/Q, denoted Gal(K/Q),
is the group under function composition of K-automorphisms that fix Q.

Proposition: Let K = Q(i). Then
Gal(Q())/Q) =2 Z/27.
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Galois Theory

Definition (Automorphism)
Let K/Q be a field extension of Q. A homomorphism f : K — Kis an
automorphism over Q if fis an isomorphism and f fixes Q.
Definition (Galois Group)
Consider the Galois extension K/Q. The Galois Group G of K/Q, denoted Gal(K/Q),
is the group under function composition of K-automorphisms that fix Q.
Proposition: Let K = Q(i). Then

Gal(Q(i)/Q) =2 Z/2Z.

Proof: There are two automorphisms that map Q(i) — Q(/) and fix Q:
fla + bi) = a+ biand f(a + bi) = a — bi.
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Galois Theory

Definition (Automorphism)

Let K/Q be a field extension of Q. A homomorphism f : K — Kis an
automorphism over Q if fis an isomorphism and f fixes Q.

Definition (Galois Group)
Consider the Galois extension K/Q. The Galois Group G of K/Q, denoted Gal(K/Q),
is the group under function composition of K-automorphisms that fix Q.
Proposition: Let K = Q(i). Then

Gal(Q())/Q) =2 Z/27.

Proof: There are two automorphisms that map Q(i) — Q(/) and fix Q:
fla + bi) = a + biand f(a + bi) = a — bi. The automorphisms of Q(i) form the
group Z/27 because g% = f = id.
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Galois Correspondence

There is a 1-1 correspondence between subfield extensions of a Galois extension and
subgroups of the Galois group.
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Galois Correspondence

There is a 1-1 correspondence between subfield extensions of a Galois extension and
subgroups of the Galois group.

K GaI(K/K) =~ {e}
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Galois Correspondence
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Algebraic Curves

Definition (Plane Curve)

A plane curve is the set of points (c, 3) € C? such that F(c, 3) = 0 for some
polynomial F(x, y) with coefficients in Q.
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Definition (Plane Curve)
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Example (Hyperelliptic Curves)

A plane curve E is hyperelliptic if it is of the form y? = f(x) where f(x) € Q[x]. Eis
elliptic if deg(f(x)) = 3.
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Algebraic Curves

Definition (Plane Curve)

A plane curve is the set of points (c, 3) € C? such that F(c, 3) = 0 for some
polynomial F(x, y) with coefficients in Q.

Example (Hyperelliptic Curves)

A plane curve E is hyperelliptic if it is of the form y? = f(x) where f(x) € Q[x]. Eis
elliptic if deg(f(x)) = 3.

Example: The curve E : y> = x> — x + L s an elliptic curve.
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Bringing it all Together

Definition (Field Adjoining a Point on a Curve)
LetP = (a, 3),a, B € QbeapointonE : F(x,y) = 0 over Q.
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Bringing it all Together

Definition (Field Adjoining a Point on a Curve)
LetP = (o, B),a, B € Qbeapointon E : F(x,y) = 0 over Q. By adjoining each
coordinate of P to Q, we adjoin the point P to Q to get Q(P) := Q(«, 3).

Example: LetE : y?> = x> —x+1and P = (2, \ﬁ) Since P is a point on E, we define

Q(P) = Q(2,v7) = Q(V7).

Definition (Parameterization)

Consider a plane curve £ : F(x,y) = 0. Let x(t), y(t) be polynomials with coefficients
in Q. Then the polynomial F(x(t),y(t)) = 0 is a parameterization of F(x, y). The
roots of F(x(t), y(t)) give us points on E.
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Bringing it all Together

Definition (Field Adjoining a Point on a Curve)
LetP = (o, B),a, B € Qbeapointon E : F(x,y) = 0 over Q. By adjoining each
coordinate of P to Q, we adjoin the point P to Q to get Q(P) := Q(«, 3).

Example: LetE : y?> = x> —x+1and P = (2, \ﬁ) Since P is a point on E, we define

Q(P) = Q(2,v7) = Q(V7).

Definition (Parameterization)

Consider a plane curve £ : F(x,y) = 0. Let x(t), y(t) be polynomials with coefficients
in Q. Then the polynomial F(x(t),y(t)) = 0 is a parameterization of F(x, y). The
roots of F(x(t), y(t)) give us points on E.

Example: Consider F(x,y) = x*> +y*> —1 = 0. Letx(t) = 2tandy(t) = t — 1. Then
F(x(t),y(t)) = 5t2 — 2t = 0 is a parameterization of F(x, ).
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Inverse Galois Problem

Which finite groups can be realized as Galois groups over Q?

* This is an open number theory problem known as the Inverse Galois Problem
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Inverse Galois Problem

Which finite groups can be realized as Galois groups over Q?
* This is an open number theory problem known as the Inverse Galois Problem
Inverse Galois Problem for Plane Curves

Let C be a plane curve over Q. If we consider Q(P) such that P is a point on C, which
groups can arise as G = Gal(Q(P)/Q)?
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cyclotomic polynomials, whose Galois groups are always abelian (i.e. not S,).
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Inverse Galois Problem

Which finite groups can be realized as Galois groups over Q?

* This is an open number theory problem known as the Inverse Galois Problem

Inverse Galois Problem for Plane Curves

Let C be a plane curve over Q. If we consider Q(P) such that P is a point on C, which
groups can arise as G = Gal(Q(P)/Q)?

Our Question

Fix a plane curve C : F(x,y) = 0. What parameterizations x(t), y(t) € Q[t] give us

polynomials with Galois group G 2 S,,?

+ Particularly, we are searching for curves and parameterizations that give us
cyclotomic polynomials, whose Galois groups are always abelian (i.e. not S,).

+ Can we get a Galois group of the form (Z/nZ)* from an elliptic curve?
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Our Method

Claim [Keyes]
The parameterization x(t) = ¢, y(t) = % on the hyperelliptic curve F : y? = f(x)
gives the following:
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Our Method

Claim [Keyes]
The parameterization x(t) = ¢, y(t) = % on the hyperelliptic curve F : y? = f(x)
gives the following:
g(t)?
h(t)?

1)) =0

O(t) = g(t)* = h(0)*f(t) = 0




Our Method

Claim [Keyes]
The parameterization x(t) = ¢, y(t) = fgtg on the hyperelliptic curve F : y? = f(x)
gives the following:

For each root a such that ©(«) = 0, we adjoin Q(« g(“% ) to get a Galois extension.

The field Q(cv, £23) is equal to Q(a). [1]
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Cyclotomic Polynomials

Definition (Cyclotomic Polynomial)
The nth cyclotomic polynomial denoted ®,(x) is the monic polynomial of minimal
degree with Galois group (Z/nZ)*.

Example: The 4th cyclotomic polynomial is ®4(x) = x> + 1
« Alternatively: ®,(x) = [ (=9

a€(Z/nZ)%

+ Let p be prime. Then @, (x) = ®,(x*" ).
* The degree of ®,(x) is given by the Euler-Totient function
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Cyclotomic Polynomials

Definition (Cyclotomic Polynomial)

The nth cyclotomic polynomial denoted ®,(x) is the monic polynomial of minimal
degree with Galois group (Z/nZ)*

Example: The 4th cyclotomic polynomial is ®4(x) = x> + 1

« Alternatively: ®,(x) = [ (=9
a€(Z/nz) %

+ Letp be prime. Then @, (x) = O, (x" ).
* The degree of ®,(x) is given by the Euler-Totient function

Remark

Set O(t) := ®,(t), the nth cyclotomic polynomial. If © () = 0 for some o € Q, then
Qx(a),y(a))/Q gives a cyclotomic field extension of Q.
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Results

We computed examples using SageMath and generated a conjecture on how
Cyclotomics factor. This conjecture implies results about our factoring method. We
proved the following:

+ Theorem: Let n = p" where p = 1 mod 4. Then R(x) = x% — ®,(x) is reducible
with a square factor.

+ Theorem: Let n = 3™ - 2¢. Then R(x) = x* — ®,(x) is a perfect square.

* Recall our parametrization: O(t) = g(t)? — h(t)*f(t) = 0. Then @, (x) = O(x),
g(x)* = x%, and h(x)f(x) = R(x).

« Thus y? = f(x) is a hyperelliptic curve with a point over the nth cyclotomic field.
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