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Definition



Motivation

Operator maps between function spaces: G: X—» Y
Compute G(u)(y)for any u eX and any yin domain of G(u).

The heat equation
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Difficulties

Function spaces are infinite dimension; how do encode functions?






Abstract Architecture
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Image from Seidman et. al. (2022). /




ﬁl\/naps: Encoder, Approximator, Decoder
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Encoder

Input function u

: L _ at fixed sensors ry,...,: P
uis an infinite dimensional 2

function. How do we encode u? ‘F’f ° T'm
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e Store its values at series of points ' < L5 F.

(sensors) -

e Store as vector .
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=0,1,0,.. Source: https://arxiv.org/abs/1910.03193



Universal Approximation Thm:
Operator Version...

Theorem 1 (Universal Approximation Theorem for Operator). Suppose that o is a continuous non-
polynomial function, X is a Banach Space, K; C X, Ky C RY are two compact sets in X and RS,
respectively, V' is a compact setin C(K,), G is a nonlinear continuous operator, which maps V' into C(K3).
Then for any € > (0, there are positive integers n, p, m, constants cf,{fj, 95“ ,(x € R, w € RY, z; € K,

b= s Mk =Ly By J= Lo Y0 SUCh that

u)(y) — ZZCO‘ Zuum_,)+0

k-lz 1

bra'nch.
holds for all w € V and y € K.

Lu, Jin & Karniadakis (2019)
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d Unstacked DeepONet
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Final value: G(u)(y)= b -t

G(u)(y)

Branch Network

u(x, x..x, )= b(u) eR”
Encoded input function mapped to a
vector that represents output function

Trunk Network

y = t(y) eRP
Input function inputs mapped to a
vector



..Inspires DeepONet
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Conventional PDE solvers

Solve one instance
Require the explicit form
Speed-accuracy trade-off on resolution

Slow on fine grids; fast on coarse grids

https://zongyi-li.github.io/neural-operator/

So what?

Neural operators

Learn a family of PDE
Black-box, data-driven
Resolution-invariant, mesh-invariant

Slow to train; fast to evaluate






Example: Climate Modelling

Input function Output function

Figure 1: An example sketch of operator learning for climate modeling: By solving an operator learning problem, we
can approximate an infinite-dimensional map between two functions of interest, and then predict one function using the

other. For example, by providing the model with an input function, e.g. a surface air temperature field, we can predict
an output function, e.g. the corresponding surface air pressure field.

Kissas et. al. (2022).



Applications in:

e Hurricane predictions
Chaotic systems (ie Kolmogorov Flow)
Real-time calculations: Flight control
Blood flow for medical imaging
Carbon sequestration
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https://zongyi-li.github.io/neural-operator/
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Ouestions?


http://bit.ly/2PfT4lq
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Classical vs Operator ML

Classical Operator
Approximates function f Approximates operator L
f: vectors = vectors L: functions - functions
Useful for: Finite-dimensional mapping Useful for: Infinite-dimensional mapping;

physical laws govern system

Value: easier to train Value: simple forward-pass

Examples: images, NLP, product Examples: fluid flows, solid mechanics,
recommendation, (and more) climate modelling




