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Motivation
Operator maps between function spaces: G: X→ Y
Compute G(u)(y) for any u 𝝐 X and any y in domain of G(u). 
 
Example: 

f(x) = sin(x), y = 0
G(f)(y)  = f'(y) = cos(0) = 1



Difficulties

Function spaces are infinite dimension; how do encode functions?
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Abstract Architecture

Image from Seidman et. al. (2022).



3 Maps: Encoder, Approximator, Decoder

Image from Seidman et. al. (2022).



Encoder

u is an infinite dimensional 
function. How do we encode u?
● Store its values at series of points 

(sensors)
● Store as vector

Ie, f(0), f(π/2) f(π), = sin(0), sin(π/2), sin(π)     
= 0, 1, 0,…



Universal Approximation Thm: 
Operator Version…

Lu, Jin & Karniadakis (2019)



u(x1, x2…xn) → b(u) 𝝐 R p

Encoded input function mapped to a 
vector that represents output function

y → t(y) 𝝐 R p

Input function inputs mapped to a 
vector

Trunk Network

Final value: G(u)(y) ≅  b · t 

Branch Network



…Inspires DeepONet



So what?

Conventional PDE solvers Neural operators

Solve one instance Learn a family of PDE

Require the explicit form Black-box, data-driven

Speed-accuracy trade-off on resolution Resolution-invariant, mesh-invariant

Slow on fine grids; fast on coarse grids Slow to train; fast to evaluate

https://zongyi-li.github.io/neural-operator/
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Example: Climate Modelling

Kissas et. al. (2022).



Applications in:
● Hurricane predictions
● Chaotic systems (ie  Kolmogorov Flow)
● Real-time calculations: Flight control
● Blood flow for medical imaging
● Carbon sequestration

https://zongyi-li.github.io/neural-operator/
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Questions?

http://bit.ly/2PfT4lq


Classical vs Operator ML

Classical Operator

Approximates function f Approximates operator L

f: vectors → vectors L: functions → functions

Useful for: Finite-dimensional mapping Useful for: Infinite-dimensional mapping; 
physical laws govern system

Value: easier to train Value: simple forward-pass

Examples: images, NLP, product 
recommendation, (and more)

Examples: fluid flows, solid mechanics, 
climate modelling


