Discrete Morse Theory

Iris Horng

University of Pennsylvania

December 2022

Motivation: Wireless Sensor networks

Cell phone towers have sensors to pick up cell phone signals

• Cell phone system covers the largest area possible

Point = cell tower, circle = tower's sensing area

Can we learn whether a particular region is covered so that no matter where you are, you will have cell phone service?

Motivation: Wireless Sensor networks

Only info we know: what cell towers are in the radius of other cell towers Connect any two towers where their ranges overlap

Motivation: Wireless Sensor networks

Fill in regions where 3 tower ranges overlap

filled in communication graph

simplicial complex

Classical Morse Theory

To study this torus, we break it down into fundamental piece

- o point
- curve
- cup

Stretching and bending these pieces can get back the torus

Height Function

What's an easier way to get those fundamental pieces? We define a "height function" : for any height z, we slice through the torus at height z and keep everything below

- $M_0 = \text{point}$
- $M_{0.5} = \operatorname{cup}$
- $M_{3.5} = \text{almost a torus}$
- Notice $M_4 = M_{3.5} + a cap$

Gluing occurs at critical points of our height function

• 0, 1, 3, 4 are critical points

This recovers the topology of our object and gives us info about our object (eg. its holes)

Discrete Morse Theory

Discrete Morse Theory:

- analogue to the "height function": put numbers on each part of the simplicial complex (generally increase numbers as dimension of simplex increases)
- 0 is the local min, 3 is the local max
- we can build a circle out of these two pieces

- \bullet Free pair: a pair of simplicies $\sigma^{(p-1)},\tau^{(p)}$ such that σ is a face of τ and τ has no other coface
- Elementary collapse: removing a free pair from a simplicial complex

- \bullet Free pair: a pair of simplicies $\sigma^{(p-1)},\tau^{(p)}$ such that σ is a face of τ and τ has no other coface
- Elementary collapse: removing a free pair from a simplicial complex

- \bullet Free pair: a pair of simplicies $\sigma^{(p-1)},\tau^{(p)}$ such that σ is a face of τ and τ has no other coface
- Elementary collapse: removing a free pair from a simplicial complex

- \bullet Free pair: a pair of simplicies $\sigma^{(p-1)},\tau^{(p)}$ such that σ is a face of τ and τ has no other coface
- Elementary collapse: removing a free pair from a simplicial complex

12/24

- \bullet Free pair: a pair of simplicies $\sigma^{(p-1)},\tau^{(p)}$ such that σ is a face of τ and τ has no other coface
- Elementary collapse: removing a free pair from a simplicial complex

Discrete Morse Theory

Let K be a simplicial complex.

A function $f: K \to \mathbb{R}$ is weakly increasing if $f(\sigma) \leq f(\tau)$ whenever $\sigma \subset \tau$.

• ie. lower dimensional simplex has a lower corresponding number

A basic discrete Morse Function $f: K \to \mathbb{R}$ is a weakly increasing function which satisfies two properties:

- 2-1
- if $f(\sigma) = f(\tau)$, then either $\sigma \subset \tau$ or $\tau \subset \sigma$

Critical Values

Let $f: K \to \mathbb{R}$ be a basic discrete Morse function. A simplex σ is **critical** if they have a unique value The value $f(\sigma)$ is the **critical value**

critical simplicies: 0, 6, 7

Gradient Vector Fields

We can graphically show what the discrete Morse function is doing to the complex ${\cal K}.$

 $\mathsf{complex}\ K$

Gradient Vector Field

We draw an arrow if a lower dimensional simplex has a greater value than its coface

Gradient Vector Field

Let f be a discrete Morse function on K. The **induced gradient vector field** V_f

$$V_f := \{ (\sigma^{(p)}, \tau^{(p+1)} : \sigma < \tau, f(\sigma) \ge f(\tau) \}$$

 (σ,τ) is an arrow. σ is a tail, τ is a head

Easier to see critical points in this example:

- an edge is critical iff it is not the head of an arrow
- a vertex is critical iff it is not the tail of an arrow

 $\mathsf{complex}\ K$

Gradient Vector Field

Persistence with discrete Morse functions

For a discrete Morse function, we can write its Betti numbers \rightarrow this forms a $\ensuremath{\text{homological sequence}}$

- Oth dimension: number of connected components
- 1st dimension: number of holes

Betti Numbers

Constructing Barcodes

Critical points occurred at points 0, 6, 7

β_0	1	1	1	1
β_1	0	1	2	2

Back to Wireless Sensor networks

Goal: detect holes in the region (areas with no service)

 \bullet nontrivial 1st homology \rightarrow there's a hole

• computing number of holes runs on the order of kn^3 where n is the number of lines VS discrete Morse Theory reduces the computational effort

Special Thank You to my amazing mentor, Jacob Van Hook!!

Nanda, V. (2021). Computational Algebraic Topology: Lectures on Algebraic Topology. Scoville, N. A. (2019). Discrete Morse theory (Vol. 90). American mathematical society.

Thank you! Questions?