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Section 1

Projective Plane



The Projective Plane

Definition
The complex projective plane is the set of equivalence classes of
C3\{0}, such that two vectors are equivalent if one is a scalar
multiple of another. We denote [x : y : z ] as the equivalence class
of the vector (x , y , z).

In practice, we can think of the 2D real projective plane as the real
plane adjoined to all directions on the plane.



Figure: Points on the Projective Plane



Projective Plane Curves

Definition
Given a polynomial F ∈ k[X ,Y ,Z ] such that all terms in F are of
the same degree d , the set of points in the projective plane for
which F = 0, called the vanishing set of F , forms a projective
plane curve.

Any affine planar curve can be extended to a projective plane curve
by using the third variable Z to homogenize the equation. For
example, the affine curve corresponding to the vanishing of
Y 2 − X 2 − 1 can be extended to a projective curve corresponding
to the vanishing of Y 2 − X 2 − Z 2.



Figure: The Vanishing Set of Y 2 − X 2 − Z 2 as a Projective Curve



Section 2

Statement of Bézout’s Theorem



Intersection Numbers

We say a point P on a curve F is simple if either FX (P) ̸= 0 or
FY (P) ̸= 0. If a point P is simple on curves F and G , and the
curves meet transversally (the tangents to F and G are distinct),
we wish to define the intersection number I (P,F ∩ G ) = 1.

Definition
The intersection number of two projective plane curves F and G
at a point P equals dimk(OP(P2)/(F ,G )), where OP(P2) is the
field of rational functions on P2.



Intersection Numbers: Visual Example

Figure: The forms Y and X have
an intersection number of 1 at
(0,0).

Figure: The forms YZ − X 2 and
Y have an intersection number
of 2 at (0,0).



Bézout’s Theorem

Given two projective plane curves F and G , of degrees m and n
respectively, such that F and G have no common component, we
have ∑

P

I (P,F ∩ G ) = mn



Section 3

Applications of Bézout’s Theorem



Pascal’s Theorem and Pappus’s Hexagon Theorem
Pascal’s Theorem: Given any conic and six points P1, P2, P3, P4,
P5, P6 forming a hexagon on that conic, the intersections of
opposite sides of the hexagon are collinear.

Pappus’s Theorem: Given any two lines and points P1, P2, P3 on
one line and points Q1, Q2, Q3 on the other, the intersections of
the three pairs of crossing lines are collinear.

Figure: Pascal’s and Pappus’s Theorem



Max Noether’s Fundamental Theorem

If F , G , and H are projective plane curves, F and G have no
common component, and Noether’s conditions are satisfied at each
point P where F and G intersect, then there exist curves A and B
to satify the equation H = AF + BG .

Corollary: If F and G are projective curves such that every
intersection of F and G is simple, and H is a projective curve such
that H passes through every intersection of F and G , there exists a
curve B such that B intersects F exactly in the points where H
intersects F but G does not.
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