Basics	Classification	Applications	References

Covering Spaces

Kevin You

Fall 2021

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Basics 000000	Classification 0000	Applications 00000	References 0
Outline			
1 Basics			3
2 Classification			9
3 Applications			13
4 References			18

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

Basics	Classification	Applications
00000		

Section 1

Basics

Basics 0●0000	Classification 0000	Applications 00000	References O
Preamble			

Motivation

To understand the structures of objects better, we often look for "extensions" of them that may be easier to deal with.

Convention

Since we are in the category of topological spaces, a "map" will refer to a continuous function, and a "space" will refer to a set endowed with a topology. The topologies we consider will all be the standard ones; expect nothing exotic.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Basics	Classification	Applications	References
00000			
The Fundar	mental Group		

Idea

Informally, it is the set of all "classes" of loops at a given base point, which forms a group under concatenation. We denote the fundamental group of a space B at b_0 as $\pi_1(B, b_0)$, or when the base point is not relevant, simply $\pi_1(B)$.

Basics	Classification	Applications	References
000●00	0000	00000	0
Diving In			

Definition

Let $p: E \to B$ be a surjective map. We say that p is a **covering** if for every $b \in B$, there exists a neighborhood U_b in B containing bsuch that $P^{-1}(U_b) = \bigcup_{\alpha} V_{\alpha}$ where each V_{α} is open, mapped homeomorphically onto U_b by p, and for any $\alpha_1 \neq \alpha_2$, $V_{\alpha_1} \cap V_{\alpha_2} = \emptyset$. We say that E is a **covering space** of B.

Visual

Basic: 0000	5	Classification 0000	Applications 00000	References O
Ex	amples			
	Example			
	Let X be a sp	ace. $\mathit{id}_X:X o X$ i	s a covering.	

Example

 $p: \mathbb{R} \to S^1$ defined by $x \mapsto (cos(2\pi x), sin(2\pi x))$ is a covering.

$$\longrightarrow \bigcup_{p \in \mathcal{M}} \bigcup$$

Basics 00000	•	Classification 0000	Applications 00000	References 0
Bas	sic Properties	;		
	Liftings			
		E	Ē	

| p

Embeddings

$$\pi_1(E, e_0) \stackrel{p_*}{\longrightarrow} \pi_1(B, b_0)$$

 $[0,1] \xrightarrow{f} B$

Lifting Correspondence

$$\pi_1(B,b_0)
i [f] \longmapsto \widetilde{f}(1) \in p^{-1}(b_0)$$

Ba	isi		
00	00	0	DO

Section 2

Classification

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Basics	Classification	Applications	References
000000	○●○○	00000	O
Existence			

Idea

Every subgroup of the fundamental group of a "nice" space corresponds to a covering space.

Theorem

Let $b_0 \in B$. If B is path connected, locally path connected, and semilocally simply connected, then for every $H \le \pi_1(B, b_0)$, there exists a covering $p : E \to B$ such that $p_*(\pi_1(E, e_0)) = H$.

Convention

Hereafter, we assume that B is path connected and locally path connected, and that E is path connected.

Applications 00000	O O
ntially the same?	
B be coverings. An equival such that $p' \circ h = p$.	lence is a
 B be coverings. They are end E') are conjugate viewed as s 	quivalent subgroups
	the same? B be coverings. An equival such that $p' \circ h = p$. B be coverings. They are e

Basics	Classification	Applications	References
	0000		
Transformat	ions		

Idea

We want to consider "symmetries" of a covering space.

Definition

An equivalence of a covering space with itself is called a **covering transformation**. The set of all of these forms a group under composition, and is called the **deck transformation group**, denoted C(E, p, B), where E, p, and B are the covering space, covering, and base space respectively.

Theorem

If *E* is simply connected, then $C(E, p, B) \cong \pi_1(B)$.

Basics	Classification	Applications	References
		●0000	

Section 3

Applications

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = のへで

Basics	Classification	Applications	References
000000	0000	o●ooo	0
Fundamental Gr	oup of S^1		

Theorem

$$\pi_1(S^1, b_0) \cong \mathbb{Z}.$$

Proof.

Basic idea.

- $p:\mathbb{R} o S^1$ as defined before. Let $b_0=(1,0)$
- Lifting correspondence $[f]\mapsto \widetilde{f}(1)$ is well defined

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- $\bullet\,$ Since ${\mathbb R}$ is simply connected, it is a bijection
- Moreover, it is a homomorphism

•
$$\pi_1(S^1, b_0) \cong p^{-1}(b_0) = \mathbb{Z}$$

Basics 000000	Classification 0000	Applications 00●00	References O
Fundame	ntal Group of S^1 C	ont.	
Visual			
	Ser -	257	
	IR CO		
		$<_{2}$ (F(1,0)	
	\sim		
	P		
	\leq \forall)(1,0)	

Basics	Classification	Applications	References
000000	0000	00000	O
Maps $S^n o S^1$			

Definition

A map is **nullhomotopic** if it is homotopic to a constant map.

Theorem

Every map $f: S^n \to S^1$ is nullhomotopic where n > 1.

Proof.

Basic idea.

- f can be lifted (by a more general lifting lemma) to a map f̃ in ℝ since π₁(Sⁿ) is trivial for n > 1
- Any map in $\mathbb R$ is nullhomotopic
- Homotopy in $\mathbb R$ is projected down to S^1

Basics 000000	Classification	Applications 00000	O O
Free Groups			

Theorem

Every subgroup of a free group is free.

Proof.

Basic idea.

- {Free groups F} \leftrightarrow {graphs B}
- {Subgroups $H \leq F$ } \leftrightarrow {Coverings E}
- Every covering of a graph is a graph, hence E is a graph

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

• $\pi_1(E) \cong H$ is a free group

Basics	Classification	Applications	References
000000	0000	00000	•
References			

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- [Topology, 2003] James R. Munkres
- [Algebra, 1974] Thomas W. Hungerford
- Algebraic Topology, 2000] Allen E. Hatcher