Topological Data Analysis and Persistent Homology

Josh Ibrahim

Mentored by Miguel Lopez

Introduction

Topological Data Analysis (TDA)

• Data analysis method designed to mathematically describe the shape of data

Persistent Homology

- \cdot The main tool used in TDA
- The shape can be quantified using persistence diagrams (barcodes)

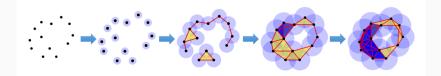


Figure 1: The illustration of a filtration process using persistent homology [1].

Simplicial Complexes

Due to simultaneous relationships between points within a point cloud, **simplicies** are used to give the point cloud a topology.

Definition

An *n*-**simplex** is the convex hull of n + 1 affinely independent points in \mathbb{R}^n .

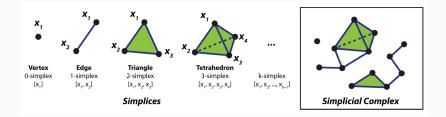


Figure 2: From simplicies to simplicial complexes [2].

Filtrations

Construction of a simplicial complex is done by a filtration

Definition

Let *S* be a simplicial complex; a **filtration** of *S* (of length *n*) is a nested sequence of subcomplexes of the form

$$F_1S \subset F_2S \subset \ldots \subset F_{n-1}S \subset F_nS = S$$

with inclusion maps $g_i : \mathbf{F}_i S \to \mathbf{F}_{i+1} S$

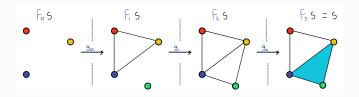


Figure 3: Illustration of a filtration and inclusion maps.

Vietoris-Rips Filtration

Definition

Let (M, d) be a finite metric space. The Vietoris-Rips filtration of M is an increasing family of simplicial complexes $VR_{\epsilon}(M)$ such that a subset $x_0, x_1, \ldots, x_k \subset M$ forms a k-dimensional simplex in $VR_{\epsilon}(M)$ if and only if the pairwise distances satisfy $d(x_i, x_j) \leq \epsilon$ for all i, j.

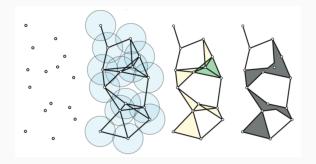


Figure 4: Simplicial complex built from a Vietoris-Rips filtration [3].

Chains and Boundary Maps

A filtration is only as good as the best chosen ϵ . Instead of searching for the optimal ϵ , we instead look at a continuum of VR_{ϵ_i} for all $(\epsilon_i)_1^N$.

Definition

For each dimension $k \ge 0$, the *k*-th **chain group** of *S* is the vector space C_k over \mathbb{F} generated by treating the *k*-simplicies of *S* as a basis.

There are maps $\partial_k : C_k \to C_{k-1}$ called **boundary maps**.

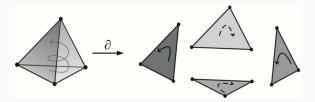


Figure 5: ∂ maps a 3-simplex to four 2-simplices [4].

Chain Complexes and Cycles

Definition

The boundary maps give us a chain complex defined as

$$\cdots \xrightarrow{\partial_{k+1}} C_k \xrightarrow{\partial_k} C_{k-1} \xrightarrow{\partial_{k-1}} C_{k-2} \xrightarrow{\partial_{k-2}} \cdots \xrightarrow{\partial_3} C_2 \xrightarrow{\partial_2} C_1 \xrightarrow{\partial_1} C_0 \xrightarrow{\partial_0} 0$$

with $\partial_{k-1} \circ \partial_k = 0$

The elements of $Im(\partial_{k+1})$ in C_k , are called boundaries (**B**_k). Elements of C_k that are mapped to zero in C_{k-1} by ∂_k are called **cycles**.

Definition

Let Z_k be the cycles of C_k , then

$$Z_k = Ker(\partial_k)$$

Homology and Betti Numbers

Definition

Let S be a simplicial complex. Then, the k-th homology group of S is

$$\mathsf{H}_{\mathsf{k}}\mathsf{S} = \mathsf{Ker}(\partial_k)/\mathsf{Im}(\partial_{k+1}) = \mathsf{Z}_{\mathsf{k}}/\mathsf{B}_{\mathsf{k}}$$

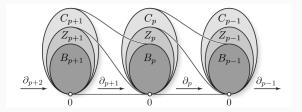


Figure 6: Relationship between boundaries, cycles, and homology groups [5].

The dimension of H_kS is the *k*-th **Betti Number** β_k .

$$dim(\mathbf{H}_k S) = \beta_k = dim(\mathbf{Z}_k) - dim(\mathbf{B}_k)$$

Persistent Homology

Notation

Let S^l be a filtration of a simplicial complex S at l, and $\mathbf{Z}_k^l = Z_k(S^l)$ and $\mathbf{B}_k^l = B_k(S^l)$ be the k-th cycle and boundary group of S^l , respectively. The k-th homology group of S^l is $\mathbf{H}_k^l = \mathbf{Z}_k^l/\mathbf{B}_k^l$. The k-th Betti number β_k^l of S^l is $dim(\mathbf{H}_k^l)$.

Definition

The *p*-persistent *k*-th homology group of the *l*-th complex S^l in filtration is

$$\mathsf{H}_k^{l,p} = \mathsf{Z}_k^l/(\mathsf{B}_k^{l+p} \cap \mathsf{Z}_k^l)$$

The *p*-persistent *k*-th Betti number β_k^{l+p} is

$$\mathcal{B}_{k}^{l+p} = dim(\mathsf{H}_{k}^{l,p})$$

Thus, β_k^{l+p} counts the homological classes in the complex S^p that were created during filtration in the complex S^l or earlier.

Everything Together

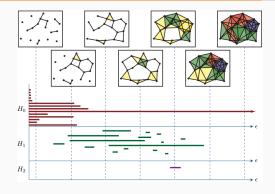
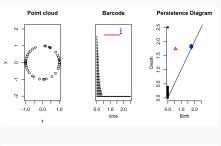


Figure 7: An example of barcodes [6].

Barcodes represent the "life span" of connected components as ϵ increases. The Betti numbers of a certain degree (0, 1, or 2 in this example) at a certain value of ϵ is the number of barcodes at that degree.

Examples



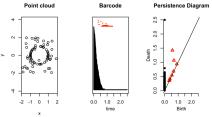


Figure 8: Barcode and persistence diagram of a point cloud of a sample of a circle and noisy circle [7].

References i

- Pun, Chi Seng, et al. "Persistent-Homology-Based Machine Learning and Its Applications – A Survey." ArXiv.org, 1 Nov. 2018, https://arxiv.org/abs/1811.00252.
- [2] Zhang, Mengsen, et al. "Topological Portraits of Multiscale Coordination Dynamics." Journal of Neuroscience Methods, Elsevier, 6 Mar. 2020, https://doi.org/10.1016/j.jneumeth.2020.108672.
- [3] Chambers, Erin W., et al. "Rips Complexes of Planar Point Sets." ArXiv.org, 3 Dec. 2007, https://arxiv.org/abs/0712.0395.
- [4] Maletic, Slobodan, et al. "Persistent Topological Features of Dynamical Systems." ArXiv.org, 22 Oct. 2015, https://arxiv.org/abs/1510.06933.
- [5] S. Balakrishnan et al. "Minimax Rates for Homology Inference." ArXiv.org, 23 Dec. 2011, https://arxiv.org/abs/1112.5627.
- [6] Ghrist, Robert. "Barcodes: The Persistent Topology of Data." American Mathematical Society, 26 Oct. 2007, http://www.ams.org/journal-getitem?pii=S0273-0979-07-01191-3.

- [7] Kraft, Rami. "Illustrations of Data Analysis Using the Mapper Algorithm and Persistent Homology." 2016.
- [8] Sizemore, Ann E., et al. "The Importance of the Whole: Topological Data Analysis for the Network Neuroscientist." ArXiv.org, 13 June 2018, https://arxiv.org/abs/1806.05167.
- [9] Nanda, Vidit. "Computational Algebraic Topology." https://people.maths.ox.ac.uk/nanda/cat/.
- [10] Ghrist, Robert. "Elementary Applied Topology". Createspace, 2014, https://www2.math.upenn.edu/~ghrist/notes.html.

Questions?