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Introduction

Topological Data Analysis (TDA)

- Data analysis method designed to mathematically describe the
shape of data

Persistent Homology

- The main tool used in TDA
- The shape can be quantified using persistence diagrams
(barcodes)

Figure 1: The illustration of a filtration process using persistent homology [1].



Simplicial Complexes

Due to simultaneous relationships between points within a point
cloud, simplicies are used to give the point cloud a topology.

An n-simplex is the convex hull of n + 1 affinely independent points
in R".
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Figure 2: From simplicies to simplicial complexes [2].



Filtrations

Construction of a simplicial complex is done by a filtration

Definition
Let S be a simplicial complex; a filtration of S (of length n) is a
nested sequence of subcomplexes of the form

FRSCFKRSC...CF,.4SCF,S=S

with inclusion maps g; : F;S — Fi;4S
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Figure 3: Illustration of a filtration and inclusion maps.



Vietoris-Rips Filtration

Definition

Let (M, d) be a finite metric space. The Vietoris-Rips filtration of M
is an increasing family of simplicial complexes VR.(M) such that a
subset Xq, X1, . .., X C M forms a k-dimensional simplex in VR.(M) if
and only if the pairwise distances satisfy d(x;, x;) < e forall i, ;.

Figure 4: Simplicial complex built from a Vietoris-Rips filtration [3].



Chains and Boundary Maps

A filtration is only as good as the best chosen e. Instead of searching
for the optimal ¢, we instead look at a continuum of VR, for all (¢)}.

Definition

For each dimension k > 0, the k-th chain group of S is the vector
space C over IF generated by treating the k-simplicies of S as a
basis.

There are maps d : C, — Cr_4 called boundary maps.
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Figure 5: © maps a 3-simplex to four 2-simplices [4].



Chain Complexes and Cycles

The boundary maps give us a chain complex defined as
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The elements of Im(k4+) in Cy, are called boundaries (By). Elements
of Ci, that are mapped to zero in C,_4 by 0 are called cycles.

Let Z be the cycles of Ci, then

Zk = Ker(@,?)



Homology and Betti Numbers

Let S be a simplicial complex. Then, the k-th homology group of S is

HiS = Ker(dk)/Im(e41) = Zi/Bx

Figure 6: Relationship between boundaries, cycles, and homology groups [5].

The dimension of HyS is the k-th Betti Number 3.
dim(HyS) = Br = dim(Zy) — dim(By)



Persistent Homology

Notation

Let S! be a filtration of a simplicial complex S at [, and Z} = Z(S")
and B} = Bi(S') be the k-th cycle and boundary group of S,
respectively. The k-th homology group of S'is H\ = Z} /BL. The k-th
Betti number B}, of S'is dim(H}).

The p-persistent k-th homology group of the [-th complex S' in
filtration is
HP =Z/(B* nZ)

The p-persistent k-th Betti number ﬁ,’j’p is

BitP = dim(H.P)

Thus, ﬂfjp counts the homological classes in the complex SP that
were created during filtration in the complex St or earlier. 8



Everything Together
M B e

Figure 7: An example of barcodes [6].

Barcodes represent the "life span” of connected components as e
increases. The Betti numbers of a certain degree (0, 1, or 2 in this
example) at a certain value of e is the number of barcodes at that

degree. .



Examples

Point cloud Barcode Persistence Diagram
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Figure 8: Barcode and persistence diagram of a point cloud of a sample of a
circle and noisy circle [7]. 10
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Questions?



