Representations of Matrix Lie Groups

Directed Reading Project

Iris Horng

Mentor: Jacob Van Hook

General Linear Group

General Linear Group over the Reals

- denoted $\mathrm{GL}_{\mathrm{n}}(\mathbb{R})$
- the group of all nxn invertible matrices with real entries

SO(3)

SO(3): the group of all rotations about the origin of a 3D Euclidean space

Matrix Lie Group

Matrix Lie Group: A subset G of $G L_{n}(\mathbb{R})$ such that

- it is a subgroup of $G L_{n}(\mathbb{R})$
- if A_{n} is any sequence of matrices in G, and A_{n} converges to some matrix A, then either $A \in G$, or A is not invertible
- ie. G must be a subgroup that is topologically closed

Examples of Matrix Lie Groups

- $G L_{n}(\mathbb{R})$
- $\mathrm{GL}_{\mathrm{n}}(\mathbb{C})$
- O(n) orthogonal groups
- reflections in n-dimensional space
- SO(n) special orthogonal groups
- rotations in n-dimensional space

Lie Algebra

Lie Algebra of a matrix group $G \subset \mathrm{GL}_{\mathrm{n}}(\mathrm{K}):$

- the tangent space to G at I

Examples:

- Lie algebra of G in R^{3} is a $2 D$ subspace of R^{3}
- Lie algebra of $G L_{n}(K)$ is all nxn matrices
- Lie algebra of $\mathrm{SO}(3)$ is skew symmetric matrices

Lie Bracket

Lie Bracket of two vectors A and B in \mathfrak{g} :

$$
[A, B]=\left.\frac{d}{d t}\right|_{t=0} A d_{a(t)} B
$$

Alternate definition: for all $\mathrm{A}, \mathrm{B} \in \mathfrak{g},[\mathrm{A}, \mathrm{B}]=\mathrm{AB}-\mathrm{BA}$

Properties:
For all $A, A_{1}, A_{2}, B, B_{1}, B_{2}, C \in \mathfrak{g}$ and $\lambda_{1}, \lambda_{2} \in \mathbb{R}$,
(1) $\left[\lambda_{1} A_{1}+\lambda_{2} A_{2}, B\right]=\lambda_{1}\left[A_{1}, B\right]+\lambda_{2}\left[A_{2}, B\right]$.
(2) $\left[A, \lambda_{1} B_{1}+\lambda_{2} B_{2}\right]=\lambda_{1}\left[A, B_{1}\right]+\lambda_{2}\left[A, B_{2}\right]$.
(3) $[A, B]=-[B, A]$.
(4) (Jacobi identity) $[[A, B], C]+[[B, C], A]+[[C, A], B]=0$.

Adjoint Action

Action of a matrix group G on \mathbb{R}^{m} :

- a homomorphism from G to $\mathrm{GL}_{\mathrm{m}}(\mathbb{R})$
- determines how elements of G act on vectors in \mathbb{R}^{m}

Adjoint Action

- a smooth homomorphism Ad: G -> $\mathrm{GL}_{\mathrm{d}}(\mathbb{R})$

$$
\mathrm{g}->\operatorname{Ad}_{\mathrm{g}}^{\mathrm{a}} \text { where } \mathrm{Ad}_{\mathrm{g}}(\mathrm{~A})=\mathrm{gAg}^{-1}
$$

Adjoint Actions of SO(3)

$\left\{E_{1}=\left(\begin{array}{ccc}0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0\end{array}\right), E_{2}=\left(\begin{array}{ccc}0 & 0 & 1 \\ 0 & 0 & 0 \\ -1 & 0 & 0\end{array}\right), E_{3}=\left(\begin{array}{ccc}0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)\right\}$
Lie bracket structure: $\left[\mathrm{E}_{1}, \mathrm{E}_{2}\right]=\mathrm{E}_{3},\left[\mathrm{E}_{2}, \mathrm{E}_{3}\right]=\mathrm{E}_{1},\left[\mathrm{E}_{3}, \mathrm{E}_{1}\right]=\mathrm{E}_{2}$ This determines a vector space isomorphism $\mathrm{f}: \mathbb{R}^{3}$-> so(3)

$$
(a, b, c) \stackrel{f}{\mapsto}\left(\begin{array}{ccc}
0 & -c & b \\
c & 0 & -a \\
-b & a & 0
\end{array}\right)
$$

Consider the map Ad: SO(3) -> GL ${ }_{3}(\mathbb{R})$

- it's the inclusion map (sends every matrix to itself)

Adjoint Action of $\operatorname{Sp}(\mathbf{1})$

Sp(1)

- Group of unit quaternions

Adjoint action of $\mathrm{Sp}(1)$

- Ad: Sp(1) -> O(3)

However, note:

- $\operatorname{Sp}(1)$ is path connected -> output must be path connected
- So output must be $\mathrm{SO}(3)$

Adjoint action should be $\mathrm{Sp}(1)$-> $\mathrm{SO}(3)$

Double Covers

Local Diffeomorphism

- \exists a neighborhood of any point of the domain, restricted to which the function is a diffeomorphism onto its image

Double Cover

- a surjective 2-to-1 local diffeomorphism between compact manifolds

Ad: $\mathrm{Sp}(1)$-> $\mathrm{SO}(3)$ is a double cover

- 2-to-1: $\operatorname{Ker}(A d)=\{1,-1\}$
- Ad is a local diffeomorphism at I
- surjective

Double Covers: More Examples

- for every $\mathrm{n}>2$, there is a matrix group which double-covers $\mathrm{SO}(\mathrm{n})$
- $\operatorname{Sp}(1)$-> SO(3)
- $\operatorname{Sp}(1) \times \operatorname{Sp}(1)$-> SO(4)
- Sp(2) -> SO(5)
- SU(4) -> SO(6)

References

Collins, Brenden. "AN INTRODUCTION TO LIE THEORY THROUGH MATRIX GROUPS." (2014).

Hall, Brian C. "An Elementary Introduction to Groups and Representations." Graduate Texts in Mathematics, 2000, pp. 1-122., https://doi.org/10.1007/978-3-319-13467-3_1.
Tapp, Kristopher. Matrix Groups for Undergraduates. American Mathematical Society, 2005.

THANK YOU!

Questions?

