Fun with the Fundamental Group Functor
 Directed Reading Program

Presenter: Yi Ling Yu
Mentor: Elijah Gunther
Fall 2020

Homotopy

- A homotopy between two continuous functions f and g from a topological space X to a topological space Y is defined to be a continuous function $H: X \times[0,1] \rightarrow Y$ such that for all $x \in X$
- $H(x, 0)=f(x)$ and
- $H(x, 1)=g(x)$.
- Intuition : deforming one function into another
- For Spaces X and Y, having a homotopy from X to Y is an equivalence relation on the set of continuous function from X to Y.

Figure 1: Homotopy

Homotopy Equivalence

- Given two topological spaces X and Y, a homotopy equivalence between X and Y is a pair of continuous maps $f: X \rightarrow Y$ and $g: Y \rightarrow X$, such that $g \circ f$ is homotopic to the identity map $I d_{X}$ and $f \circ g$ is homotopic to $I d_{\gamma}$.
- Intuition: homotopy equivalent spaces are spaces that can be deformed continuously into one another.

Figure 2: Homotopy Equivalence

Path Homotopy

- Path: a path in a topological space X is a continuous function $f:[0,1] \rightarrow X$ with initial point $f(0)$ and terminal point $f(1)$.
- A homotopy of paths from f to g is a family $H:[0,1] \times[0,1] \rightarrow X$ such that
- The endpoints $H(0)=x_{0}$ and $H(1)=x_{1}$ are independent of t

$$
\text { - } H(s, 0)=f(s), H(s, 1)=g(s), H(0, t)=x_{0}, \text { and } H(1, t)=x_{1}
$$

- Intuition: continuously deforming a path when keeping its endpoints fixed.

Figure 3: Path Homotopy

Product Path

- Given two paths $f, g:[0,1] \rightarrow X$ such that $f(1)=g(0)$, there is a concatenation of path $f \cdot g$ that traverses first f then g

$$
(f \cdot g)(s)= \begin{cases}f(2 s) & 0 \leq s \leq \frac{1}{2} \\ g(2 s-1) & \frac{1}{2} \leq s \leq 1\end{cases}
$$

Figure 4: $(f \cdot g)(s)$

Fundamental Group

- Loops are paths $f:[0,1] \rightarrow X$ with the same starting and ending point $f(0)=f(1)=x_{0}$, and their common starting and ending point x_{0} is called the basepoint.
- The fundamental group is the sets of path homotopy classes of the set of all loops, denoted $\pi_{1}\left(X, x_{0}\right)$.
- Basepointed topological spaces \rightarrow Groups
- Multiplication is concatenation of paths
- Basepoint preserving continuous functions \rightarrow Group homomorphisms
- if f and g are homotopic they give the same group homomorphism

Examples of the Fundamental Group

- Example 1: $\pi_{1}\left(S^{1}, x_{0}\right) \cong \mathbb{Z}$
- Clockwise positive, anti-clockwise negative
- Example 2: $\pi_{1}\left(D^{2}, x_{0}\right) \cong\{0\}$
- Intuition: D^{2} is homotopy equivalent to a point so they have isomorphic fundamental groups. There's only one function from $[0,1]$ to a point so $\pi_{1}\left(D^{2}, x_{0}\right) \cong\{0\}$

Category

- A Category is a collection of objects $\{X, Y, Z \ldots\}$ and morphisms $\{f, g, h \ldots\}$ between objects. For a pair of objects X and Y we have a collection of morphisms $\{f, g, h, \ldots\}$ from X to Y so that
- Each object has a designated identity morphism $I d_{X}: X \rightarrow X$
- For any pair of morphisms f, g where $f: X \rightarrow Y$ and $g: Y \rightarrow Z$, we have $g \circ f: X \rightarrow Z$.
- A category is also subject to the following two rules:
- For any $f: X \rightarrow Y$, we have $I d_{Y} \circ f=f=f \circ I d_{X}$
- Compositions are associative: $(g \circ h) \circ f=g \circ(h \circ f)$

Figure 5: The Category [2]

More Examples of Categories

Categories	Objects
- Set	• Sets
- Vect $_{R}$	• Vector spaces over R
- Grp	• Groups
- Top	- Topological spaces
- Top	• Base pointed
	topological space

Morphisms

- Functions
- Linear Functions
- Group homomorphisms
- continuous functions
- continuous functions that maps basepoints to each other

Functors

- A Functor F is a mapping $F: C \rightarrow D$ that relates two categories C and D such that it associates
- Each $x \in \operatorname{Obj}(C)$ to a $F(x) \in \operatorname{Obj}(D)$
- Each $f: x_{1} \rightarrow x_{2}$ in C to a $F(f): F\left(x_{1}\right) \rightarrow F\left(x_{2}\right)$ in D.
- A Functor also satisfies the following two conditions
- For each object $x \in \operatorname{Obj}(C), F\left(I d_{x}\right)=I d_{F(x)}$
- For all morphisms $g, f \in C, F(g \circ f)=F(g) \circ F(f)$

An Example of functor

- The Fundamental group is a functor.
- Top $_{*} \rightarrow$ Grp
- Basepoint preserving continuous functions \rightarrow Group homomorphisms
- two homotopic basepoint preserving continuous functions give the same group homomorphism

\{o\}

$\{\mathbb{Z}\}$

$\{\mathbb{Z} \times \mathbb{Z}\}$

Example of using functor in algebraic topology

Want To Show: No retraction from a disc to a circle

- Intuition: one has a 'hole' in it and the other does not, so they must be different in some way.
- Alternative framing: Is there a continuous function $r: D^{2} \rightarrow S^{1}$ that fixes the boundary?

Proof:

Let $i: S^{1} \rightarrow D^{2}$ be the inclusion. Suppose for contradiction that r exists, such that $r \circ i=I d_{s^{1}}$.

$$
x \in S^{1} \rightarrow i(x)=x, r(x)=x .
$$

Example Continued

So now i, r are morphisms in Top $_{*}$, and we can apply the fundamental group.

$$
\begin{gathered}
\pi_{1}\left(S^{1}, x\right) \cong \mathbb{Z} \\
\pi_{1}\left(D^{2}, x\right) \cong\{0\} .
\end{gathered}
$$

These give us

$$
\begin{array}{r}
\pi_{1}(i): \mathbb{Z} \rightarrow\{0\} \\
\pi_{1}(r):\{0\} \rightarrow \mathbb{Z}
\end{array}
$$

which is saying

$$
i d_{\mathbb{Z}}=\pi_{1}\left(i d_{S^{\prime}}\right)=\pi_{1}(r \circ i)=\pi_{1}(r) \circ \pi_{1}(i)=0 .
$$

Contradiction \Longrightarrow the assumption that r exists is false.

References

References

- Hatcher's Algebraic Topology
- Riehl's Category Theory in Context
- Wikipedia - https://en.wikipedia.org/wiki/File:Fundamental groupofthecircle.gif
- https://www.math3ma.com/blog/what-is-a-functor-part-1

Thank You

Thank you so much for listening!

