Fun with the Fundamental Group Functor

Directed Reading Program

Presenter: Yi Ling Yu Mentor: Elijah Gunther Fall 2020

Homotopy

- A **homotopy** between two continuous functions f and g from a topological space X to a topological space Y is defined to be a continuous function $H: X \times [0, 1] \rightarrow Y$ such that for all $x \in X$
 - H(x, 0) = f(x) and
 - H(x, 1) = g(x).
- Intuition : deforming one function into another
- For Spaces X and Y, having a homotopy from X to Y is an **equivalence relation** on the set of continuous function from X to Y.

Figure 1: Homotopy

Homotopy Equivalence

- Given two topological spaces X and Y, a **homotopy equivalence** between X and Y is a pair of continuous maps $f: X \to Y$ and $g: Y \to X$, such that $g \circ f$ is **homotopic** to the identity map Id_X and $f \circ g$ is **homotopic** to Id_Y .
- Intuition: homotopy equivalent spaces are spaces that can be deformed continuously into one another.

Figure 2: Homotopy Equivalence

Path Homotopy

- Path: a **path** in a topological space X is a continuous function $f: [0, 1] \rightarrow X$ with initial point f(0) and terminal point f(1).
- A homotopy of paths from f to g is a family $H : [0, 1] \times [0, 1] \rightarrow X$ such that
 - The endpoints $H(0) = x_0$ and $H(1) = x_1$ are independent of t
 - $H(s, 0) = f(s), H(s, 1) = g(s), H(0, t) = x_0, \text{ and } H(1, t) = x_1$
- Intuition: continuously deforming a path when keeping its endpoints fixed.

Figure 3: Path Homotopy

Product Path

• Given two paths $f, g : [0, 1] \rightarrow X$ such that f(1) = g(0), there is a concatenation of path $f \cdot g$ that traverses first f then g

$$(f \cdot g)(s) = \begin{cases} f(2s) & 0 \le s \le \frac{1}{2} \\ g(2s-1) & \frac{1}{2} \le s \le 1. \end{cases}$$

Figure 4: $(f \cdot g)(s)$

Fundamental Group

- Loops are paths $f: [0, 1] \to X$ with the same starting and ending point $f(0) = f(1) = x_0$, and their common starting and ending point x_0 is called the **basepoint**.
- The **fundamental group** is the sets of path homotopy classes of the set of all loops, denoted $\pi_1(X, x_0)$.
 - + Basepointed topological spaces \rightarrow Groups
 - Multiplication is concatenation of paths
 - Basepoint preserving continuous functions \rightarrow Group homomorphisms
 - \cdot if f and g are homotopic they give the same group homomorphism

Examples of the Fundamental Group

- Example 1: $\pi_1(S^1, x_0) \cong \mathbb{Z}$
 - · Clockwise positive, anti-clockwise negative

- Example 2 : $\pi_1(D^2, x_0) \cong \{0\}$
 - Intuition: D^2 is homotopy equivalent to a point so they have isomorphic fundamental groups. There's only one function from [0, 1] to a point so $\pi_1(D^2, x_0) \cong \{0\}$

Category

- A Category is a collection of objects{X, Y, Z...} and morphisms{f, g, h...} between objects. For a pair of objects X and Y we have a collection of morphisms {f, g, h, ...} from X to Y so that
 - Each object has a designated **identity morphism** $Id_X : X \to X$
 - For any pair of morphisms f, g where $f: X \to Y$ and $g: Y \to Z$, we have $g \circ f: X \to Z$.
- A category is also subject to the following two rules:
 - For any $f: X \to Y$, we have $Id_Y \circ f = f = f \circ Id_X$
 - Compositions are **associative**: $(g \circ h) \circ f = g \circ (h \circ f)$

Figure 5: The Category [2]

Categories Objects

- Set
- Sets
- Vect_R
- Grp
- Тор
- Top_{*}

- $\cdot\,$ Vector spaces over R
- Groups
- Topological spaces
- Base pointed
 topological space

Morphisms

- Functions
- Linear Functions
- Group homomorphisms
- continuous functions
- continuous functions that maps basepoints to each other

Functors

- A **Functor** *F* is a mapping $F : C \rightarrow D$ that relates two categories *C* and *D* such that it associates
 - Each $x \in Obj(C)$ to a $F(x) \in Obj(D)$
 - Each $f: x_1 \to x_2$ in C to a $F(f): F(x_1) \to F(x_2)$ in D.
- A Functor also satisfies the following two conditions
 - For each object $x \in Obj(C)$, $F(Id_x) = Id_{F(x)}$
 - For all morphisms $g, f \in C$, $F(g \circ f) = F(g) \circ F(f)$

An Example of functor

- The Fundamental group is a functor.
 - $\cdot \ \mathsf{Top}_* \to \mathsf{Grp}$
 - Basepoint preserving continuous functions \rightarrow Group homomorphisms
 - two homotopic basepoint preserving continuous functions give the same group homomorphism

Want To Show: No retraction from a disc to a circle

- Intuition: one has a 'hole' in it and the other does not, so they must be different in some way.
- Alternative framing: Is there a continuous function $r: D^2 \to S^1$ that fixes the boundary?

Proof:

Let $i: S^1 \to D^2$ be the inclusion. Suppose for contradiction that r exists, such that $r \circ i = Id_{S^1}$.

$$x \in S^1 \rightarrow i(x) = x, r(x) = x.$$

So now *i*, *r* are morphisms in Top_{*}, and we can apply the fundamental group.

 $\pi_1(S^1, x) \cong \mathbb{Z}$ $\pi_1(D^2, x) \cong \{0\}.$

These give us

 $\pi_1(i): \mathbb{Z} \to \{0\}$ $\pi_1(r): \{0\} \to \mathbb{Z},$

which is saying

$$id_{\mathbb{Z}} = \pi_1(id_{S^1}) = \pi_1(r \circ i) = \pi_1(r) \circ \pi_1(i) = 0.$$

Contradiction \implies the assumption that *r* exists is false.

References

- Hatcher's Algebraic Topology
- Riehl's Category Theory in Context
- Wikipedia https://en.wikipedia.org/wiki/File:Fundamental groupofthecircle.gif
- https://www.math3ma.com/blog/what-is-a-functor-part-1

Thank you so much for listening!