Symplectic Geometry and Geometric Quantization

Samuel Goldstein

Mentor: Christopher Bailey

December 10, 2020

Definition:

In classical mechanics the **phase space** is the set of all possible states of a system. For a mechanical system, the phase space consists of pairs (\vec{q}, \vec{p}) of generalized coordinates (\vec{q}) and generalized momenta (\vec{p})

Some Remarks:

- The set of all positions is called the configuration space of the system
- *Example:* The phase space of an unconstrained particle in moving in 3 dimensions can be represented by $(\vec{q}, \vec{p}) \in \mathbb{R}^3 \times \mathbb{R}^3 \sim \mathbb{R}^6$

Definition:

A **Hamiltonian** is a smooth function on the phase space: $\mathcal{H}: \mathcal{P} \to \mathbb{R}$

• The Hamiltonian encodes the total energy of a system

Definition:

Given a Hamiltonian \mathcal{H} , the time evolution of a system in phase space is determined by solutions to **Hamilton's Equations:**

$$\dot{q}_i(t)=rac{\partial \mathcal{H}}{\partial
ho_i}(ec{q},ec{
ho}) ext{ and } \dot{
ho}_i(t)=-rac{\partial \mathcal{H}}{\partial q_i}(ec{q},ec{
ho})$$

ullet Can prove Newton's Laws \iff Hamilton's equations are satisfied

Definition:

Given two smooth functions $F, G : M \to \mathbb{R}$ on the phase space, the **Poisson bracket** gives a third function $\{F, G\} = \sum_{i=1}^{N} \left(\frac{\partial F}{\partial q_i} \frac{\partial G}{\partial p_i} - \frac{\partial F}{\partial p_i} \frac{\partial G}{\partial q_i} \right)$

• For any function $F(\vec{q}(t), \vec{p}(t), t)$ on the phase space, the Poisson bracket can be used to compute its time derivative: $\frac{dF}{dt} = \{F, \mathcal{H}\} + \frac{\partial F}{\partial t}$

Definition:

A symplectic manifold is a 2n dimensional smooth manifold M equipped with a two-form ω called the symplectic form which has the following properties:

- ω is closed: $d\omega = 0$
- ω is non-degenerate: if $\omega_p(v, w) = 0$ for all $v \in T_p M$, then $w = \vec{0}$.

The following theorem suggests that *all* symplectic manifolds of the same dimension are locally the same

Darboux's Theorem:

Let (M, ω) be a 2n dimensional symplectic manifold. For every $p \in U \subset M$ there exists a chart $(U, x_1, ..., x_n, y_1, ..., y_n)$ about p such that $\omega = \sum_{j=1}^n dx_i \wedge dy_j$

Symplectic Manifolds are the Natural Setting for Classical Mechanics

- Configuration space can often be represented by a smooth manifold ${\it M}$
- Phase space represented by the cotangent bundle of *M*:

$$\mathcal{T}^* \mathcal{M} \coloneqq \{(q,p) \mid q \in \mathcal{M}, \; p \in \mathcal{T}^*_q \mathcal{M}\}$$

 Natural symplectic structure on *T*^{*}*M* with ω := dq ∧ dp which determines the Poisson Bracket {*H*, *K*} = ω(X_H, X_K)

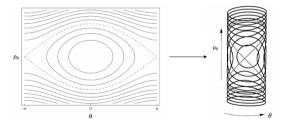


Figure: Phase space of simple pendulum is a cylinder. The configuration space is $M = S^1$ which has trivial cotangent bundle, hence $T^*M = S^1 \times \mathbb{R} \simeq C$

Classical vs. Quantum Mechanics

- Can we use symplectic geometry to understand quantum mechanics?
 - Quantum mechanical states cannot have definite position and momenta $(\Delta x \cdot \Delta p \geq \frac{\hbar}{2})$

Classical Mechanics

- Set of states given by a *symplectic* manifold M
- Time evolution determined by a Hamiltonian $\mathcal{H}: M \to \mathbb{R}$ and Hamilton's equations

Quantum Mechanics

- Set of states is given by a *Hilbert* Space V
- Time evolution is determined by a linear operator $\hat{H}: V \to V$ and the Schrödinger Equation

Geometric Quantization

Kähler Manifolds and Hermitian Line Bundles

Kähler Manifolds provide the underlying structure for generalizing a classical phase space into a Hilbert space

Definition:

A Kähler manifold is a manifold with three mutually compatible structures:

- **(1)** a symplectic structure ω
- ② a complex structure $J : T_p M \to T_p M$ (analogous to 90° rotation from multiplication by *i* ∈ ℂ)
- a Riemannian metric g

such that: $\omega(v, Jw) = g(v, w)$ for all $v, w \in T_pM$.

- To geometrically quantize M need a Hermitian line bundle, L, over M with curvature $i\omega$
 - Set of all holmorphic sections of L forms a Hilbert space

 Phase space of classical spin-j particle is surface of sphere of radius j parametrized by angles (θ, φ) with elements representing possible angular momenta vectors:

$$\vec{j} \coloneqq (j_x, j_y, j_z) = (j \sin \theta \cos \phi, j \sin \theta \sin \phi, j \cos \theta)$$

• Requiring the Poisson Bracket $\{j_k, j_l\} = \epsilon_{kl}^m j_m$ yields the unique symplectic form:

$$\omega = j\sin\theta d\theta \wedge d\phi = d\phi \wedge d(j\cos\theta) \coloneqq dq \wedge dp$$

- How to construct Kähler manifold from (M, ω) ?
 - Riemannian Structure: standard metric on a sphere of radius \sqrt{j}
 - Complex Structure: to get Kähler manifold the real and imaginary parts must correspond to ω and g, respectively
 - This is just the Riemann sphere $M = \mathbb{C}P^1 \sim \mathcal{S}^2$ of radius \sqrt{j}

- How to equip $M = \mathbb{C}P^1$ with Hermitian L line bundle with curvature $i\omega$
 - From algebraic topology, specifically characteristic (Chern) classes, this exists iff. $\int_M \omega \in 2\pi\mathbb{Z}$

$$\int_{M} \omega = \int_{\mathcal{S}^2} j \sin \theta d\theta \wedge d\phi = \int_{0}^{2\pi} \int_{0}^{\pi} j \sin \theta d\theta d\phi = 4\pi j \in 2\pi \mathbb{Z} \iff j \in \frac{1}{2} \mathbb{Z}$$

• Desired line bundle exists only for half integer values $j = 0, \frac{1}{2}, 1, ...$

- Holomorphic sections of L?
 - Sections about $z = 0 \in \mathbb{C}P^1$ are given by $\mathcal{F} = \{1, z, z^2, ..., z^N, ...\}$
 - \implies Sections about $z = \infty \in \mathbb{C}P^1$ are given by $\mathcal{G} = \{z^{-2j}, z^{-2j+1}, ..., z^{-2j+N}, ...\}$
 - For \mathcal{F},\mathcal{G} to be regular at 0 and $\infty,$ respectively we need $N\leq -2j$
 - Hilbert space, V, corresponds to 2j + 1 dimensional complex vector space

The Spin- $\frac{1}{2}$ Particle

- How to quantize spin- $\frac{1}{2}$ particle?
 - $j = \frac{1}{2} \implies 2j + 1 = 2$, hence we expect dim (V) = 2
 - Formally, L is the dual of tautological line bundle on $M = \mathbb{C}P^1$
 - Sections are linear functionals $f:\mathbb{C}^2 \to \mathbb{C}$
 - $\bullet \implies V = \mathbb{C}^{2*} \simeq \mathbb{C}^2$
- Is \mathbb{C}^2 the anticipated Hilbert space?
 - From QM, arbitrary spin- $\frac{1}{2}$ particle is in state $|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$, with $\alpha, \beta \in \mathbb{C}$
 - $\implies \mathbb{C}^2$ is the Hilbert space we expect to describe spin- $\frac{1}{2}$ degree of freedom

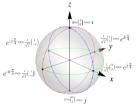


Figure: Quantum mechanical states of a spin- $\frac{1}{2}$ particle visualized using Bloch sphere

- Symplectic geometry is the natural setting for studying classical mechanics
 - Classical phase spaces are symplectic manifolds
- Recasting classical mechanics using symplectic geometry establishes parallels with quantum mechanics
- Geometric Quantization: Symplectic Manifold
 Hilbert Space
 - Geometric quantization provides insights into quantum phenomena, such as spin

- Harvard Notes on Classical Mechanics and Symplectic Geometry
- Ø Berkeley Notes on Quantizing Spin
- John Baez's Notes on Geometric Quantization