Introduction to Category Theory
 Directed Reading Project Presentation

Adam Zheleznyak
Mentor: Andres Mejia

December 10, 2020

My Project: Category Theory and Algebraic Topology

- Books: "Basic Category Theory" by Tom Leinster and "Algebraic Topology" by Allen Hatcher.
- Category theory first began in the 1940s with motivations from algebraic topology.
- Today, category theory finds itself throughout many areas of mathematics, formalizing certain patterns that occur even in seemingly disparate areas.

Categories

A category \mathscr{A} consists of:

- Objects: ob (\mathscr{A})
- Morphisms: $\mathscr{A}(A, B)$ where $A, B \in \mathrm{ob}(\mathscr{A})$
- Composition: Given any $f \in \mathscr{A}(A, B)$ and $g \in \mathscr{A}(B, C)$, we can obtain a unique $g \circ f \in \mathscr{A}(A, C)$
- Identity: There is an identity $1_{A} \in \mathscr{A}(A, A)$ for all $A \in \mathrm{ob}(\mathscr{A})$

Satisfying the following properties:

- Associativity: For any $f \in \mathscr{A}(A, B), g \in \mathscr{A}(B, C)$, and $h \in \mathscr{A}(C, D)$:

$$
(h \circ g) \circ f=h \circ(g \circ f)
$$

- Identity Laws: For any $f \in \mathscr{A}(A, B), f \circ 1_{A}=f=1_{B} \circ f$

Categories: Examples

- Set
- Objects: Sets
- Morphisms: Maps
- Grp
- Objects: Groups
- Morphisms: Group homomorphisms
- Vect $_{\mathbb{R}}$
- Objects: Real vector spaces
- Morphisms: Linear maps
- Top
- Objects: Topological spaces
- Morphisms: Continuous maps
$-\mathbf{T o p}_{*}$
- Objects: Topological spaces with a specified basepoint
- Morphisms: Basepoint-preserving continuous maps

Functors

A map between categories is called a functor.
Formally, a functor $F: \mathscr{A} \rightarrow \mathscr{B}$ consists of:

- A function $\mathrm{ob}(\mathscr{A}) \rightarrow \mathrm{ob}(\mathscr{B})$
- A function $\mathscr{A}\left(A, A^{\prime}\right) \rightarrow \mathscr{B}\left(F(A), F\left(A^{\prime}\right)\right)$

Satisfying:

- $F\left(f^{\prime} \circ f\right)=F\left(f^{\prime}\right) \circ F(f)$
- $F\left(1_{A}\right)=1_{F(A)}$

Examples:

- Forgetful functor: "forgets" the structure of something e.g. $U: \mathbf{T o p} \rightarrow$ Set where $U(X)$ is the underlying set of the space X and $U(f)$ is the same map as the continuous map f.
- Fundamental group: π_{1} is a functor $\mathbf{T o p}_{*} \rightarrow \mathbf{G r p}$

Adjoints

Take two functors in opposite directions, $F: \mathscr{A} \rightarrow \mathscr{B}$ and $G: \mathscr{B} \rightarrow \mathscr{A}$. We say that F is left adjoint to G and G is right adjoint to F when there is a "natural" bijection:

$$
\mathscr{B}(F(A), B) \cong \mathscr{A}(A, G(B))
$$

for any objects $A \in \mathrm{ob}(\mathscr{A}), B \in \mathrm{ob}(\mathscr{B})$.
Essentially, this says that the maps $F(A) \rightarrow B$ are pretty much the same as the maps $A \rightarrow G(B)$.

Example: It turns out that the forgetful functor U : Top \rightarrow Set has a left adjoint $D:$ Set \rightarrow Top, where $D(S)$ is the set S with the discrete topology, i.e. all subsets are open.
U also has a right adjoint I : Set \rightarrow Top, where $I(S)$ is the set S with a trivial topology, i.e. only \emptyset and S are open.

Example of a Limit: Product

Given category \mathscr{A} and objects X, Y, a product of X and Y consists of an object $P \in \mathrm{ob}(\mathscr{A})$ and maps

such that for all objects A with maps

there is a unique map $\bar{f}: A \rightarrow P$ such that this diagram commutes:

Example of a Limit: Product

Suppose $\mathscr{A}=$ Set (so X, Y are sets), then a limit is $P=X \times Y$ with p_{1}, p_{2} acting as projection maps.

This is because given any A and f_{1}, f_{2}, there is a unique map that satisfies the diagram above:

$$
\bar{f}(a)=\left(f_{1}(a), f_{2}(a)\right)
$$

The fact that a unique map exists given any A and f_{1}, f_{2} is an example of a universal property.

Example of a Colimit: Pushout

Say we have $s: Z \rightarrow X$ and $t: Z \rightarrow Y$. A pushout is an object P with maps i_{1}, i_{2} such that

$$
\begin{aligned}
& Z \xrightarrow{t} Y \\
& \downarrow_{s} \\
& X \xrightarrow{\downarrow_{1}} \\
& P
\end{aligned}
$$

commutes, and so that given any

$$
\begin{array}{ll}
Z \xrightarrow{t} Y \\
\downarrow s & \downarrow f_{2} \\
X \xrightarrow{f_{1}} & A
\end{array}
$$

there is a unique \bar{f} making this diagram commute:

Example of a Colimit: Pushout

Say we are working in Set and are given sets X, Y, and the inclusion maps $X \cap Y \hookrightarrow X$ and $X \cap Y \hookrightarrow Y$. We get the pushout to be $X \cup Y$ with the following diagram:

Theorem

If F is a left adjoint of G, then G preserves limits and F preserves colimits.

Recall that D is a left adjoint of U where D is the functor that gives sets the discrete topology. Because pushouts are an example of colimits, we have the same pushout when $X, Y, X \cap Y, X \cup Y$ are given the discrete topology.

- For those who know of the Seifert-van Kampen theorem, a similar idea can be used to prove/think about the theorem.

Acknowledgements

Prof. Mona Merling
Thomas Brazelton
George Wang
Andres Mejia

