Introduction to Category Theory Directed Reading Project Presentation

> Adam Zheleznyak Mentor: Andres Mejia

December 10, 2020

My Project: Category Theory and Algebraic Topology

- Books: "Basic Category Theory" by Tom Leinster and "Algebraic Topology" by Allen Hatcher.
- Category theory first began in the 1940s with motivations from algebraic topology.
- Today, category theory finds itself throughout many areas of mathematics, formalizing certain patterns that occur even in seemingly disparate areas.

Categories

A category \mathscr{A} consists of:

- ▶ Objects: ob(𝒜)
- Morphisms: $\mathscr{A}(A, B)$ where $A, B \in ob(\mathscr{A})$
- ▶ Composition: Given any $f \in \mathscr{A}(A, B)$ and $g \in \mathscr{A}(B, C)$, we can obtain a unique $g \circ f \in \mathscr{A}(A, C)$

▶ Identity: There is an identity $1_A \in \mathscr{A}(A, A)$ for all $A \in ob(\mathscr{A})$ Satisfying the following properties:

Associativity: For any $f \in \mathscr{A}(A, B)$, $g \in \mathscr{A}(B, C)$, and $h \in \mathscr{A}(C, D)$:

$$(h \circ g) \circ f = h \circ (g \circ f)$$

▶ Identity Laws: For any $f \in \mathscr{A}(A, B)$, $f \circ 1_A = f = 1_B \circ f$

Categories: Examples

Set

- Objects: Sets
- Morphisms: Maps
- Grp
 - Objects: Groups
 - Morphisms: Group homomorphisms
- \blacktriangleright Vect_{\mathbb{R}}
 - Objects: Real vector spaces
 - Morphisms: Linear maps

▶ Тор

- Objects: Topological spaces
- Morphisms: Continuous maps
- ► **T**op_{*}
 - Objects: Topological spaces with a specified basepoint
 - Morphisms: Basepoint-preserving continuous maps

Functors

A map between categories is called a functor. Formally, a functor $F : \mathscr{A} \to \mathscr{B}$ consists of:

- ▶ A function $ob(\mathscr{A}) \to ob(\mathscr{B})$
- A function $\mathscr{A}(A, A') \to \mathscr{B}(F(A), F(A'))$

Satisfying:

$$\blacktriangleright F(f' \circ f) = F(f') \circ F(f)$$

$$\blacktriangleright F(1_A) = 1_{F(A)}$$

Examples:

- Forgetful functor: "forgets" the structure of something e.g. $U : \mathbf{Top} \to \mathbf{Set}$ where U(X) is the underlying set of the space X and U(f) is the same map as the continuous map f.
- Fundamental group: π_1 is a functor $\mathbf{Top}_* \to \mathbf{Grp}$

Adjoints

Take two functors in opposite directions, $F : \mathscr{A} \to \mathscr{B}$ and $G : \mathscr{B} \to \mathscr{A}$. We say that F is *left adjoint* to G and G is *right adjoint* to F when there is a "natural" bijection:

 $\mathscr{B}(F(A),B)\cong\mathscr{A}(A,G(B))$

for any objects $A \in ob(\mathscr{A})$, $B \in ob(\mathscr{B})$.

Essentially, this says that the maps $F(A) \rightarrow B$ are pretty much the same as the maps $A \rightarrow G(B)$.

Example: It turns out that the forgetful functor $U : \mathbf{Top} \to \mathbf{Set}$ has a left adjoint $D : \mathbf{Set} \to \mathbf{Top}$, where D(S) is the set S with the discrete topology, i.e. all subsets are open.

U also has a right adjoint $I : \mathbf{Set} \to \mathbf{Top}$, where I(S) is the set *S* with a trivial topology, i.e. only \emptyset and *S* are open.

Example of a Limit: Product

Given category \mathscr{A} and objects X, Y, a *product* of X and Y consists of an object $P \in ob(\mathscr{A})$ and maps

such that for all objects A with maps

there is a unique map $\overline{f} : A \to P$ such that this diagram commutes:

Example of a Limit: Product

Suppose $\mathscr{A} = \mathbf{Set}$ (so X, Y are sets), then a limit is $P = X \times Y$ with p_1, p_2 acting as projection maps.

This is because given any A and f_1 , f_2 , there is a unique map that satisfies the diagram above:

$$ar{f}(a)=(f_1(a),f_2(a))$$

The fact that a unique map exists given any A and f_1 , f_2 is an example of a *universal property*.

Example of a Colimit: Pushout

Say we have $s : Z \to X$ and $t : Z \to Y$. A *pushout* is an object *P* with maps i_1, i_2 such that

$$egin{array}{ccc} Z & \stackrel{t}{\longrightarrow} & Y \ \downarrow^{s} & \downarrow^{i_2} \ X & \stackrel{i_1}{\longrightarrow} & P \end{array}$$

commutes, and so that given any

$$egin{array}{ccc} Z & \stackrel{t}{\longrightarrow} & Y \ \downarrow s & & \downarrow f_2 \ X & \stackrel{f_1}{\longrightarrow} & A \end{array}$$

there is a unique \bar{f} making this diagram commute:

Example of a Colimit: Pushout

Say we are working in **Set** and are given sets X, Y, and the inclusion maps $X \cap Y \hookrightarrow X$ and $X \cap Y \hookrightarrow Y$. We get the pushout to be $X \cup Y$ with the following diagram:

$$\begin{array}{cccc} X \cap Y & \longrightarrow Y \\ & & & \downarrow \\ X & \longrightarrow X \cup Y \end{array}$$

Theorem

If F is a left adjoint of G, then G preserves limits and F preserves colimits.

Recall that D is a left adjoint of U where D is the functor that gives sets the discrete topology. Because pushouts are an example of colimits, we have the same pushout when $X, Y, X \cap Y, X \cup Y$ are given the discrete topology.

For those who know of the Seifert-van Kampen theorem, a similar idea can be used to prove/think about the theorem.

Acknowledgements

Prof. Mona Merling Thomas Brazelton George Wang Andres Mejia