Topological T-duality With Monodromy

David Baraglia

The Australian National University
Canberra, Australia

String-Math 2011
UPenn, June 6-11
Idea

Consider the following manifestations of T-duality:

- **Topological T-duality**
 - Principal torus bundles with flux
 - T-D: exchange Chern class and flux

- **Topological Mirror Symmetry**
 - Torus bundles with singularities
 - Monodromy around singular fibers
 - T-D: dualize monodromy, fill in singular fibers

We would like to bridge the gap between these constructions.
Topological T-duality can incorporate monodromy, singularities not yet considered.
Idea

Consider the following manifestations of T-duality:

Topological T-duality

- Principal torus bundles with flux
Consider the following manifestations of T-duality:

Topological T-duality

- Principal torus bundles with flux
- T-D: exchange Chern class and flux
Consider the following manifestations of T-duality:

Topological T-duality
- Principal torus bundles with flux
- T-D: exchange Chern class and flux

Topological Mirror Symmetry
- Torus bundles with singularities
- Monodromy around singular fibers
Consider the following manifestations of T-duality:

Topological T-duality
- Principal torus bundles with flux
- T-D: exchange Chern class and flux

Topological Mirror Symmetry
- Torus bundles with singularities
- Monodromy around singular fibers
- T-D: dualize monodromy, fill in singular fibers
Consider the following manifestations of T-duality:

Topological T-duality
- Principal torus bundles with flux
- T-D: exchange Chern class and flux

Topological Mirror Symmetry
- Torus bundles with singularities
- Monodromy around singular fibers
- T-D: dualize monodromy, fill in singular fibers

We would like to bridge the gap between these constructions. Top T-duality can incorporate monodromy, singularities not yet considered.
Affine Torus Bundles

Let \(V \cong \mathbb{R}^n, \quad \Lambda \cong \mathbb{Z}^n, \quad T^n = V/\Lambda \)

\[\text{Aff}(T^n) = \text{GL}(n, \mathbb{Z}) \rtimes T^n \]
Let $V \cong \mathbb{R}^n$, $\Lambda \cong \mathbb{Z}^n$, $T^n = V/\Lambda$

$\text{Aff}(T^n) = \text{GL}(n, \mathbb{Z}) \rtimes T^n$

Definition

An **affine torus bundle** on M is a torus bundle

$$\pi : E \to M$$

with transition functions valued in $\text{Aff}(T^n)$.
Affine Torus Bundles

Let $V \cong \mathbb{R}^n$, $\Lambda \cong \mathbb{Z}^n$, $T^n = V/\Lambda$

$$\text{Aff}(T^n) = \text{GL}(n, \mathbb{Z}) \rtimes T^n$$

Definition

An **affine torus bundle** on M is a torus bundle

$$\pi : E \to M$$

with transition functions valued in $\text{Aff}(T^n)$

$\text{Aff}(T^n) \to \text{Diff}(T^n)$ is a homotopy equivalence for $n \leq 3$.
Affine torus bundles over M in bijection with equiv classes of pairs (ρ, c)
Affine torus bundles over M in bijection with equiv classes of pairs (ρ, c)

- $\rho : \pi_1(M) \rightarrow \text{GL}(n, \mathbb{Z})$ \textit{monodromy}
- $c \in H^2(M, \Lambda_\rho)$ \textit{twisted Chern class}

where Λ_ρ is the local system given by action of $\pi_1(M)$ on $\Lambda \cong \mathbb{Z}^n$
Affine torus bundles over M in bijection with equiv classes of pairs (ρ, c)

- $\rho : \pi_1(M) \rightarrow \text{GL}(n, \mathbb{Z})$ \textit{monodromy}
- $c \in H^2(M, \Lambda_\rho)$ \textit{twisted Chern class}

where Λ_ρ is the local system given by action of $\pi_1(M)$ on $\Lambda \simeq \mathbb{Z}^n$

$(\rho, c) \simeq (\rho', c')$ if they are related by an element of $\text{GL}(n, \mathbb{Z})$
Topological T-duality (rank 1 case)

\(\pi : E \rightarrow M, \ \hat{\pi} : \hat{E} \rightarrow M \) circle bundles on \(M \)

\(h \in H^3(E, \mathbb{Z}), \ \hat{h} \in H^3(\hat{E}, \mathbb{Z}) \) flux on \(E, \hat{E} \)
Topological T-duality (rank 1 case)

\[\pi : E \to M, \quad \hat{\pi} : \hat{E} \to M \] circle bundles on \(M \)

\[h \in H^3(E, \mathbb{Z}), \quad \hat{h} \in H^3(\hat{E}, \mathbb{Z}) \] flux on \(E, \hat{E} \)

\[\text{GL}(1, \mathbb{Z}) = \mathbb{Z}_2 \]

\[\rho, \hat{\rho} \in H^1(M, \mathbb{Z}_2) \] monodromy
Topological T-duality (rank 1 case)

\[\pi : E \to M, \quad \hat{\pi} : \hat{E} \to M \quad \text{circle bundles on } M \]

\[h \in H^3(E, \mathbb{Z}), \quad \hat{h} \in H^3(\hat{E}, \mathbb{Z}) \quad \text{flux on } E, \hat{E} \]

\[\text{GL}(1, \mathbb{Z}) = \mathbb{Z}_2 \]

\[\rho, \hat{\rho} \in H^1(M, \mathbb{Z}_2) \quad \text{monodromy} \]

Diagram:

\[\begin{array}{c}
E \\
\downarrow \pi \\
\hat{E} \\
\downarrow \hat{\pi} \\
M
\end{array} \]

\[\begin{array}{c}
\hat{E} \\
\downarrow \hat{\pi} \\
E \\
\downarrow \pi \\
M
\end{array} \]

\[\begin{array}{c}
P \\
\downarrow p \\
E \times_M \hat{E}
\end{array} \]

\[\begin{array}{c}
\hat{E} \\
\downarrow \hat{\pi} \\
E \\
\downarrow \pi \\
M
\end{array} \]
Topological T-duality (rank 1 case)

Definition

$(E, h), (\hat{E}, \hat{h})$ are **T-dual** if

- $\rho = \hat{\rho}$ (dual monodromy)
- $\pi_*(h) = c_1(\hat{E}) \in H^2(M, \mathbb{Z}_{\hat{\rho}})$ (swap Chern class and flux)
- $\hat{\pi}_*(\hat{h}) = c_1(E) \in H^2(M, \mathbb{Z}_{\rho})$
- $p^*h = \hat{p}^*\hat{h}$ (flux coincides on correspondence space)
Topological T-duality (rank 1 case)

Definition

\((E, h), (\hat{E}, \hat{h})\) are **T-dual** if

- \(\rho = \hat{\rho}\) (dual monodromy)
- \(\pi_*(h) = c_1(\hat{E}) \in H^2(M, \mathbb{Z}_\rho)\) (swap Chern class and flux)
- \(\hat{\pi}_*(\hat{h}) = c_1(E) \in H^2(M, \mathbb{Z}_\rho)\)
- \(p^*h = \hat{p}^*\hat{h}\) (flux coincides on correspondence space)

Theorem

For any \((E, h)\) there exists a T-dual \((\hat{E}, \hat{h})\) unique up to isomorphism (fibre bundle isomorphisms)
Topological T-duality (general case)

\[\pi : E \to M, \quad \hat{\pi} : \hat{E} \to M \] affine \(T^n \)-bundles on \(M \)

\[h \in H^3(E, \mathbb{Z}), \quad \hat{h} \in H^3(\hat{E}, \mathbb{Z}) \] flux on \(E, \hat{E} \)

\[\rho, \hat{\rho} : \pi_1(M) \to GL(n, \mathbb{Z}) \] monodromy
Topological T-duality (general case)

\[\pi : E \to M, \quad \hat{\pi} : \hat{E} \to M \quad \text{affine } T^n\text{-bundles on } M \]

\[h \in H^3(E, \mathbb{Z}), \quad \hat{h} \in H^3(\hat{E}, \mathbb{Z}) \quad \text{flux on } E, \hat{E} \]

\[\rho, \hat{\rho} : \pi_1(M) \to \text{GL}(n, \mathbb{Z}) \quad \text{monodromy} \]

We require a constraint on the flux \(h \) (sim for \(\hat{h} \))
Topological T-duality (general case)

\[\pi : E \to M, \quad \hat{\pi} : \hat{E} \to M \] affine \(T^n \)-bundles on \(M \)

\[h \in H^3(E, \mathbb{Z}), \quad \hat{h} \in H^3(\hat{E}, \mathbb{Z}) \] flux on \(E, \hat{E} \)

\[\rho, \hat{\rho} : \pi_1(M) \to GL(n, \mathbb{Z}) \] monodromy

We require a constraint on the flux \(h \) (sim for \(\hat{h} \))

Leray-Serre spec seq for \(\pi : E \to M \) yields filtration

\[0 \subseteq F^{3,3}(\pi) \subseteq F^{2,3}(\pi) \subseteq F^{1,3}(\pi) \subseteq F^{0,3}(\pi) = H^3(E, \mathbb{Z}) \]
Topological T-duality (general case)

\[\pi : E \to M, \ \hat{\pi} : \hat{E} \to M \] affine \(T^n \)-bundles on \(M \)

\[h \in H^3(E, \mathbb{Z}), \ \hat{h} \in H^3(\hat{E}, \mathbb{Z}) \] flux on \(E, \hat{E} \)

\[\rho, \hat{\rho} : \pi_1(M) \to \text{GL}(n, \mathbb{Z}) \] monodromy

We require a constraint on the flux \(h \) (sim for \(\hat{h} \))

Leray-Serre spec seq for \(\pi : E \to M \) yields filtration

\[0 \subseteq F^{3,3}(\pi) \subseteq F^{2,3}(\pi) \subseteq F^{1,3}(\pi) \subseteq F^{0,3}(\pi) = H^3(E, \mathbb{Z}) \]

we demand \(h \in F^{2,3}(\pi) \) (\(h \) has “one leg on the fiber”)

\[F^{2,3}(\pi) \ni h \mapsto [h] \in F^{2,3}(\pi)/F^{3,3}(\pi) = E^{2,1}_{\infty}(\pi) \]

\(E^{2,1}_{\infty}(\pi) \) is a subquotient of \(E^{2,1}_2(\pi) = H^2(M, \Lambda^*_\rho) \)
Topological T-duality (general case)

Definition

\((E, h), (\hat{E}, \hat{h})\) are T-dual if

1. \(\rho\) and \(\hat{\rho}\) are dual representations
2. \(c_1(\hat{E})\) represents \([h]\) in \(E_2^{2,1}(\hat{\pi}) = H^2(M, \Lambda^*_{\hat{\rho}})\) (swap Chern class and flux)
3. \(c_1(E)\) represents \([\hat{h}]\) in \(E_2^{2,1}(\pi) = H^2(M, \Lambda_{\rho})\)
4. \(p^* h = \hat{p}^* \hat{h}\) (flux coincides on correspondence space)
Topological T-duality (general case)

Definition

\((E, h), (\hat{E}, \hat{h})\) are T-dual if

- \(\rho\) and \(\hat{\rho}\) are dual representations
- \(c_1(\hat{E})\) represents \([h]\) in \(E_2^{2,1}(\hat{\pi}) = H^2(M, \Lambda^*_{\hat{\rho}})\) (swap Chern class and flux)
- \(c_1(E)\) represents \([\hat{h}]\) in \(E_2^{2,1}(\pi) = H^2(M, \Lambda_{\rho})\)
- \(p^* h = \hat{p}^* \hat{h}\) (flux coincides on correspondence space)

Theorem

For any \((E, h)\) there exists a T-dual \((\hat{E}, \hat{h})\). The Chern class of \(\hat{E}\) is determined up to a map \(H^0(M, \Lambda^2_{\rho}) \rightarrow H^2(M, \Lambda^*_{\rho})\) given by contraction with \(c_1(E)\).
Main Step in Proof

Can find \((\hat{E}, h')\) where \(c_1(\hat{E})\) represents \([h]\) and \(c_1(E)\) represents \([h']\)
Main Step in Proof

Can find (\hat{E}, h') where $c_1(\hat{E})$ represents $[h]$ and $c_1(E)$ represents $[h']$

Leray-Serre spec seq for $E \times_M \hat{E} \to M$

\[E_2^{p,q} = H^p(M, \wedge^q(\Lambda \rho \oplus \Lambda \hat{\rho})) \]
Main Step in Proof

Can find (\hat{E}, h') where $c_1(\hat{E})$ represents $[h]$ and $c_1(E)$ represents $[h']$

Leray-Serre spec seq for $E \times_M \hat{E} \to M$

\[E_2^{p,q} = H^p(M, \wedge^q(\Lambda \rho \oplus \Lambda \hat{\rho})) \]

Duality pairing of $\Lambda \rho$ and $\Lambda \hat{\rho}$ determines a symplectic form

\[\omega \in H^0(M, \wedge^2(\Lambda \rho \oplus \Lambda \hat{\rho})) \]
Main Step in Proof

Can find \((\hat{E}, h')\) where \(c_1(\hat{E})\) represents \([h]\) and \(c_1(E)\) represents \([h']\)

Leray-Serre spec seq for \(E \times_M \hat{E} \to M\)

\[
E_2^{p,q} = H^p(M, \wedge^q(\Lambda_\rho \oplus \Lambda_{\hat{\rho}}))
\]

Duality pairing of \(\Lambda_\rho\) and \(\Lambda_{\hat{\rho}}\) determines a symplectic form

\[
\omega \in H^0(M, \wedge^2(\Lambda_\rho \oplus \Lambda_{\hat{\rho}}))
\]

\(p^*h - \hat{p}^*h'\) is represented by

\((c_1(E), -c_1(\hat{E}))\)

so \(p^*h - \hat{p}^*h' = \hat{p}^*\hat{\pi}^*(a)\)

we then set \(\hat{h} = h' + \hat{\pi}^*a\)
Twisted Cohomology

Let \((E, h), (\hat{E}, \hat{h})\) be T-dual

Assume \(E, \hat{E}\) smooth, \(H, \hat{H}\) closed 3-forms representing \(h, \hat{h}\).
Twisted Cohomology

Let \((E, h), \(E', \hat{h}\)\) be T-dual

Assume \(E, E\) smooth, \(H, \hat{H}\) closed 3-forms representing \(h, \hat{h}\).

\(H^* (E, H)\) defined as the \(\mathbb{Z}_2\)-graded cohomology of \((\Omega^* (E), d_H)\) where

\[
d_H \alpha = d \alpha + H \wedge \alpha
\]

Theorem

If \(\rho\) is \(\text{SL}(n, \mathbb{Z})\)-valued then we have an isomorphism

\[T: H^k (E, H) \cong H^{k-n} (\hat{E}, \hat{H}) \]

\[T \alpha = \int_{\hat{T} n} e^B \pi^* (\alpha) \]

where \(B\) is a certain 2-form on \(E \times \hat{E}\) which restricted to the fibers \(T n \times \hat{T} n\) is the natural symplectic form \(\omega\).
Twisted Cohomology

Let \((E, h), (\hat{E}, \hat{h})\) be T-dual

Assume \(E, \hat{E}\) smooth, \(H, \hat{H}\) closed 3-forms representing \(h, \hat{h}\).

\(H^*(E, H)\) defined as the \(\mathbb{Z}_2\)-graded cohomology of \((\Omega^*(E), d_H)\) where

\[d_H \alpha = d\alpha + H \wedge \alpha \]

Theorem

If \(\rho\) is \(\text{SL}(n, \mathbb{Z})\)-valued then we have an isomorphism

\[T : H^k(E, H) \cong H^{k-n}(\hat{E}, \hat{H}) \]

\[T\alpha = \int_{\hat{T}^n} e^B \pi^*(\alpha) \]

where \(B\) is a certain 2-form on \(E \times_M \hat{E}\) which restricted to the fibers \(T^n \times \hat{T}^n\) is the natural symplectic form \(\omega\).
Non-oriented case

What if ρ is not $\text{SL}(n, \mathbb{Z})$-valued?
Non-oriented case

What if ρ is not $\text{SL}(n, \mathbb{Z})$-valued?

Let $w_1 \in H^1(M, \mathbb{Z}_2)$ be the determinant of ρ

$(\mathbb{R}w_1, \nabla)$ corresponding flat real line bundle
What if ρ is not $\text{SL}(n, \mathbb{Z})$-valued?

Let $w_1 \in H^1(M, \mathbb{Z}_2)$ be the determinant of ρ

$(\mathbb{R}w_1, \nabla)$ corresponding flat real line bundle

$H^*(E, (w_1, H))$ defined as cohomology of $(\Omega^*(E, \mathbb{R}w_1), d_{\nabla,H})$

$$d_{\nabla,H}\alpha = d_{\nabla}\alpha + H \wedge \alpha$$
Non-oriented case

What if ρ is not $\text{SL}(n, \mathbb{Z})$-valued?

Let $w_1 \in H^1(M, \mathbb{Z}_2)$ be the determinant of ρ

$(\mathbb{R} w_1, \nabla)$ corresponding flat real line bundle

$H^*(E, (w_1, H))$ defined as cohomology of $(\Omega^*(E, \mathbb{R} w_1), d_{\nabla, H})$

\[d_{\nabla, H} \alpha = d_{\nabla} \alpha + H \wedge \alpha \]

Theorem

We have isomorphisms

\[H^k(E, H) \cong H^{k-n}(\hat{E}, (w_1, \hat{H})) \]

\[H^k(E, (w_1, H)) \cong H^{k-n}(\hat{E}, \hat{H}) \]
Twisted K-theory

ρ determines a flat vector bundle $V_\rho = \Lambda_\rho \otimes \mathbb{R}$

set $w_1 = w_1(V_\rho), \ W_3 = W_3(V_\rho)$
\(\rho \) determines a flat vector bundle \(V_\rho = \Lambda_\rho \otimes \mathbb{R} \)

set \(w_1 = w_1(V_\rho) \), \(W_3 = W_3(V_\rho) \)

We use \(K \)-theory with isomorphism classes of twists \(H^1(_ , \mathbb{Z}_2) \times H^3(_ , \mathbb{Z}) \) (e.g. using graded bundle gerbes)
Twisted K-theory

ρ determines a flat vector bundle $V_\rho = \Lambda_\rho \otimes \mathbb{R}$

set $w_1 = w_1(V_\rho), W_3 = W_3(V_\rho)$

We use K-theory with isomorphism classes of twists

$H^1(_ , \mathbb{Z}_2) \times H^3(_ , \mathbb{Z})$ (e.g. using graded bundle gerbes)

Theorem

We have isomorphisms

\[
K^k(E, h) \cong K^{k-n}(\hat{E}, (w_1, \hat{h} + W_3)) \\
K^k(E, (w_1, h + W_3)) \cong K^{k-n}(\hat{E}, \hat{h})
\]
Twisted K-theory

ρ determines a flat vector bundle $V_\rho = \wedge_\rho \otimes \mathbb{R}$
set $w_1 = w_1(V_\rho)$, $W_3 = W_3(V_\rho)$

We use K-theory with isomorphism classes of twists
$H^1(_ , \mathbb{Z}_2) \times H^3(_ , \mathbb{Z})$ (e.g. using graded bundle gerbes)

Theorem

We have isomorphisms

$$K^k(E, h) \cong K^{k-n}(\hat{E}, (w_1, \hat{h} + W_3))$$
$$K^k(E, (w_1, h + W_3)) \cong K^{k-n}(\hat{E}, \hat{h})$$

In the special case $(w_1, W_3) = (0, 0)$ this reduces to

$$K^k(E, h) \cong K^{k-n}(\hat{E}, \hat{h})$$
Proof (following Bunke Rumpf Schick)

Represent h, \hat{h} as bundle gerbes
Proof (following Bunke Rumpf Schick)

Represent h, \hat{h} as bundle gerbes

Exists an isomorphism $u : p^* h \rightarrow \hat{p}^* \hat{h}$ s.t. on the fibers $T_m \times \hat{T}_m u$ looks like the Poincaré line bundle
Proof (following Bunke Rumpf Schick)

Represent h, \hat{h} as bundle gerbes

Exists an isomorphism $u : p^*h \to \hat{p}^*\hat{h}$ s.t. on the fibers $T_m \times \hat{T}_m$ u looks like the Poincaré line bundle

Choose trivializations

$$\tau : 0 \to h|_{T_m}$$
$$\hat{\tau} : 0 \to \hat{h}|_{\hat{T}_m}$$
Proof (following Bunke Rumpf Schick)

Represent h, \hat{h} as bundle gerbes

 Exists an isomorphism $u : p^*h \to \hat{p}^*\hat{h}$ s.t. on the fibers $T_m \times \hat{T}_m$ u looks like the Poincaré line bundle

Choose trivializations

$$
\tau : 0 \to h|_{T_m}
\hat{\tau} : 0 \to \hat{h}|_{\hat{T}_m}
$$

$$
p^*(h)|_{T_m \times \hat{T}_m} \overset{p^*\tau^{-1}}{\longrightarrow} 0 \overset{\hat{p}^*\hat{\tau}}{\longrightarrow} \hat{p}^*(\hat{h})|_{T_m \times \hat{T}_m}
$$

differs from $u|_{T_m \times \hat{T}_m}$ by an element of $H^2(T_m \times \hat{T}_m, \mathbb{Z})$
Proof (following Bunke Rumpf Schick)

Represent \(h, \hat{h} \) as bundle gerbes

Exists an isomorphism \(u : p^* h \rightarrow \hat{p}^* \hat{h} \) s.t. on the fibers \(T_m \times \hat{T}_m \) \(u \) looks like the Poincaré line bundle

Choose trivializations

\[
\tau : 0 \rightarrow h|_{T_m} \\
\hat{\tau} : 0 \rightarrow \hat{h}|_{\hat{T}_m}
\]

\[
p^*(h)|_{T_m \times \hat{T}_m} \xrightarrow{p^*\tau^{-1}} 0 \xrightarrow{\hat{p}^*\hat{\tau}} \hat{p}^*(\hat{h})|_{T_m \times \hat{T}_m}
\]

differs from \(u|_{T_m \times \hat{T}_m} \) by an element of \(H^2(T_m \times \hat{T}_m, \mathbb{Z}) \)

Modulo \(p^* H^2(T_m, \mathbb{Z}) + \hat{p}^* H^2(\hat{T}_m, \mathbb{Z}) \) required to be the Poincaré line bundle
Proof (following Bunke Rumpf Schick)

Fourier-Mukai type transformation

\[T : K^i(E, h) \to K^{i-n}(\hat{E}, (w_1, \hat{h} + W_3)) \]
Proof (following Bunke Rumpf Schick)

Fourier-Mukai type transformation

\[T : K^i(E, h) \rightarrow K^{i-n}(\hat{E}, (w_1, \hat{h} + W_3)) \]

\[K^i(E \times_M \hat{E}, p^* h) \xrightarrow{u} K^i(E \times_M \hat{E}, \hat{p}^* \hat{h}) \]

\[\begin{array}{ccc}
K^i(E, h) & \xrightarrow{p^*} & K^i(E \times_M \hat{E}, \hat{p}^* \hat{h}) \\
\downarrow \hat{p}_* & & \downarrow \hat{p}_* \\
K^{i-n}(\hat{E}, (w_1, \hat{h} + W_3)) & & K^{i-n}(\hat{E}, (w_1, \hat{h} + W_3))
\end{array} \]
Fourier-Mukai type transformation

\[T : K^i(E, h) \to K^{-n}(\hat{E}, (w_1, \hat{h} + W_3)) \]

\[K^i(E \times_M \hat{E}, p^* h) \xrightarrow{u} K^i(E \times_M \hat{E}, \hat{p}^* \hat{h}) \]

Locally \(T \) looks like K-theoretic Fourier-Mukai

use Mayer-Vietoris
Monodromy can be incorporated into topological T-duality using local coefficients
Conclusions

- Monodromy can be incorporated into topological T-duality using local coefficients.
- Higher rank T-duality presents the same existence and uniqueness challenges (although monodromy tends to make the T-dual less ambiguous).
Conclusions

- Monodromy can be incorporated into topological T-duality using local coefficients.
- Higher rank T-duality presents the same existence and uniqueness challenges (although monodromy tends to make the T-dual less ambiguous).
- One should consider de Rham cohomology twisted by $H^1(_ , \mathbb{Z}_2) \times H^3(_ , \mathbb{R})$ and K-theory by $H^1(_ , \mathbb{Z}_2) \times H^3(_ , \mathbb{Z})$.
Monodromy can be incorporated into topological T-duality using local coefficients.

Higher rank T-duality presents the same existence and uniqueness challenges (although monodromy tends to make the T-dual less ambiguous).

One should consider de Rham cohomology twisted by $H^1(_ , \mathbb{Z}_2) \times H^3(_ , \mathbb{R})$ and K-theory by $H^1(_ , \mathbb{Z}_2) \times H^3(_ , \mathbb{Z})$.

THANK YOU