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In 1968, Alan Weinstein invented the concept of a fat bundle (named unflat in [Wei68] and
renamed fat in [Wei80]), in order to understand when the total space of a fiber bundle with
totally geodesic fibers admits a metric with positive sectional curvature. Just the positivity
of the vertizontal curvatures (curvature of a 2–plane spanned by a vertical and a horizontal
vector) is already a strong condition, which Weinstein named fatness of the bundle.

The present notes grew out of several lectures I gave at the University of Pennsylvania in
the spring of 2000 in order to summarize known results about fat bundles, and to understand
its significance for attempting to construct metrics with non–negative or positive sectional
curvature on principal bundles and their associated bundles.

After [Wei68], the subject was first picked up again by L. Berard Bergery in [BB75],
where he classifies homogeneous fat bundles of the form K/H → G/H → G/K and found
many beautiful examples, which include in particular most of the homogeneous metrics with
positive sectional curvature. Surprisingly, since then, no new examples of fat bundles were
discovered (except in the special case where the fiber is one dimensional). The fact that fat
bundles are rare is also illustrated by one of the main theorems in the subject [DR81], where
they proved that every fat S3 bundle over S4 must be a Hopf bundle. The theory of fat
bundles over 4–manifolds is well developed, due to [DR81], and we summarize the results in
these notes. Little is known about fat bundles over a higher dimensional base.

We then turn our attention to using information about fat bundles to constructing a
metric on the total space which has sectional curvatures positive, or simply non–negative.
The case of S1 bundles over a base B deserves special attention. In this case, fatness just
means that the curvature form of the principal connection is a symplectic 2–form on the
base B and the positivity of the sectional curvatures on the total space turns into a simple
first order differential equation on the symplectic 2–form. The last subject we discuss is the
fact that fatness can also be useful for constructing metrics of nonnegative curvature not
only on sphere bundles, but also on the associated vector bundle. This summarizes work by
Strake–Walschap, [SW90], Yang [Yan95], and Tapp [Tap00].

Although there are no new results in these notes, our main purpose is to throw some new
light on old results by putting everything into a common framework and to encourage others
to work on this beautiful subject by posing a list of 10 open problems which seem to be
important to us.

We would like to thank Luis Guijarro and Sukhendu Mehrotra for their help in putting
these notes into their present form. It has not been completed yet in some parts to the authors
satisfaction and needs to be updated to account for more recent developments. Nevertheless
it may be useful to post them even in this somewhat unpolished form.

The author was supported in part by by a grant from the National Science Foundation and by the Francis
J. Carey Term Chair.
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1. Riemannian Submersions

In this section, we collect basic results about Riemannian submersions, which will be used
throughout these notes. We start with some terminology and notation.

Let M and B be (connected) complete Riemannian manifolds and π : M → B a smooth
submersion. For x ∈ M , with b = π(x), denote by Vx the kernel of the linear map π∗ : TxM →
TbB andHx be the orthogonal complement to Vx. The submersion π is said to be Riemannian
if π∗ : Hx → TbB is an isometry.

For b ∈ B, the submanifolds π−1(b) = Fb of M are called fibers (which do not have to be
connected), M is called the total space and B the base. A vector field on M is said to be
vertical if it is always tangent to the fibers, horizontal if it is always orthogonal to the fibers.
Thus, a submersion is Riemannian if and only if π∗ preserves lengths of horizontal vectors.

The vertical subspace Vx of TxM above is identified with the tangent space to Fb at x.
By V and H we denote, respectively, the vertical and horizontal distributions and also the
orthogonal projections onto them. Throughout, the letters U, V,W denote vertical vector
fields and X, Y, Z horizontal vector fields.

A vector field X on M is said to be basic if it horizontal and there exists a vector field X̌
on B such that π∗(Xx) = X̌π(x). For every vector field X̌ on B, there exists a unique basic

vector field X, the horizontal lift of X̌, on M which is π-related to X̌. Its value at x ∈ M is
by definition the vector in Hx ⊂ TxM such that π∗(Xx) = X̌π(x).

A smooth path γ in M is said to be horizontal if γ̇ is horizontal. A horizontal lift of a path
β̌ in B is a horizontal path β in M such that β̌ = π ◦ β. For any initial value β(0) ∈ Fβ̌(0)

these horizontal lifts exist since β can be viewed as the integral curve of the horizontal lift
X of the velocity vector field of β̌ on the submanifold π−1(β̌), if β̌ is regular. The integral
curves exists for all t since M is complete and |X| is bounded. If β̌ is not regular, we can
view the lift as a composition of lifts of the regular parts.

Each fiber Fb, being a closed submanifold of M , admits a second fundamental form; all
these forms can together be organized into a tensor field T on M given by

TEF = H∇VE(VF ) + V∇VE(HF ),

where E,F are arbitrary vector fields and ∇ is the Levi-Cevita connection on M . Note that
TUV is the second fundamental form of each fiber. Further, as

〈TUV, X〉 = −〈TUX,V 〉,
T vanishes identically if and only if the fibers are totally geodesic.

Another tensorial invariant of a Riemannnian submersion is the O’Niell tensor A on M ,
defined by:

AEF = H∇HEVF + V∇HEHF.

A basic property of this tensor field is that it is skew-symmetric on H: For any vertical U ,
and basic X,

〈U,AXX〉 = 〈U,∇XX〉 = −〈∇XU,X〉.
As [X,U ] is π-related to 0, it is vertical; so 〈∇XU,X〉 = 〈∇UX, X〉, and hence, 〈U,AXX〉 =
1
2
U(〈X, X〉) = 0 since 〈X, X〉 is constant along the fibers.
Together with the observation

V [X,Y ] = V∇XY − V∇Y X = AXY − AY X,
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this yields:

AXY =
1

2
V [X,Y ].

Furthermore, since
〈AXY, U〉 = −〈AXU, Y 〉,

the tensor A vanishes iff AXY = 0. The skew symmetry of A implies that the horizontal
lift of a geodesic in B is a geodesic in M since the horizontal lift of ∇X̌ Y̌ is H∇XY and
V∇XY = AXY .

For any path γ̌ : [0, l] → B, and any x ∈ Fγ̌(0), let τγ̌(x) be the endpoint of the horizontal
lift γ of γ̌ starting from x. Since τ−1

γ̌ = τγ̌−1 , we see that τγ̌ is a diffeomorphism from Fγ̌(0)

to Fγ̌(l), and hence we can speak of a typical fiber F of a Riemannian submersion.
The holonomy group Hb of a Riemannian submersion M → B , b ∈ B, is the group of

all diffeomorphisms τα of Fb corresponding to closed paths α in B starting at b. Observe
that for any path γ, we have Hγ(1) = τγ ◦ Hγ(0) ◦ τ−1

γ , and hence the holonomy group is
well defined up to isomorphism. We will therefore often simply use (F,H) = (Fb0 , Hb0) for
some fixed b0. We also have the holonomy bundle P = {τγ | γ(0) = b0} with projection
σ : P → B , σ(τγ) = γ(1). As we will see shortly, σ is an H principle bundle, where H acts
freely on P via the right action τα · τγ = τγ ◦ τα. Also notice that the holonomy group is an
invariance group of the horizontal distribution and does not depend on the metrics involved.
But in order to define it, one needs to assume that horizontal lifts exist for all time (so called
completeness of the horizontal distribution), which in our case follows from the completeness
of M . AXY also depends only on the horizontal distribution and measures the obstruction
to integrability.

An important special case for us is when the fibers are totally geodesic:

Proposition 1.1. Let π : M → B be a Riemannian submersion. Its fibers are totally
geodesic if and only if τγ is an isometry from Fγ(0) to Fγ(1) for each path γ in B. In this case
one has:

(a) The holonomy group Hb is a subgroup of the isometry group of Fb and is itself a Lie
group.

(b) π : M → B is a locally trivial fiber bundle with fiber F and structure group H.
(c) σ : P → B is a principle H bundle and M is the associated fiber bundle M = P×H F .

Proof: Denote by g the metric on M , and assume that the fibers of π are totally geodesic,
i.e. T ≡ 0. Then, if X is basic, we have

(LXg)(U, V ) = (∇UX, V ) + (∇V X,U) = −(X,TUV )− (X, TV U) = 0.

Thus, g is parallel for basic vector fields. Since the τγ are diffeomorphisms associated to the
flows of basic vector fields, they preserve g, that is, are isometries.

Conversely, if (LXg)(U, V ) = 0 for every basic field X, we must have TUV + TV U =
2TUV = 0, or in other words, the fibers must be totally geodesic.

This also shows that H = Hb a subgroup of the isometry group Iso of Fb. To see that
H is a Lie group, we use the fact that Iso is a Lie group and that a connected subgroup of
a Lie group is a Lie group as well. First define H0 to be the subgroup of H corresponding
to isometries τα with α null homotopic. Since null homotopies can be approximated by
differentiable null homotopies, H0 is a connected subgroup of Iso and hence a Lie group. H0
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is also a normal subgroup of H and the natural homomorphism π1(B) → H/H0 is onto by
definition. Since the fundamental group of a manifold is countable, H/H0 is countable as
well which shows that H is a Lie group with H0 as its identity component.

To prove (b), let F = Fb0 for some fixed b0 with H = Hb0 acting on F . For every normal
neighborhood Br(b) in B, we obtain a trivialization Br(b)×F → π−1(Br(b)) by sending c×F
to π−1(c) = Fc via τγ̌, where γ̌ is a fixed path from b0 to b composed with the unique minimal
geodesic from b to c. The coordinate interchanges are then of the form (c, p) → (c, f(c)p)
for some f : Br(b1) ∩ Br(b2) → H. Thus π is a locally trivial fiber bundle with fiber F and
structure group H.

To prove (c), we observe that one similarly has trivializations Br(b)×H → σ−1(Br(b)) by
sending c×H to σ−1(c) via (c, τα̌) → τγ̌ ◦ τα̌, τγ̌ as aove. H acts on B×H on the right in the
second coordinate and on P as above, and the trivialization is clearly H equivariant. Hence
σ is an H principle bundle. The associated bundle P×H F is defined as the quotient of P×F
under the H action h · (p, f) = (ph−1, hf). One easily sees that the map [τγ, f ] → τγ(f) is a
diffeomorphism from P ×H F to M . ¤

The same proof shows that a general Riemannian submersion (with M complete) is a
locally trivial fiber bundle with structure group H, but H may be an infinite dimensional
Lie group.

The following result about Riemannian submersions with totally geodesic fibers will also
be useful:

Proposition 1.2. Let π : M → B be a Riemannian submersion. If the fibers of π are
totally geodesic, then for any basic X,Y , the vertical fields AXY are Killing vector fields
along each fiber, and in fact lie in the Lie algebra of the holonomy group H.

Proof: Fix a fiber Fb and X, Y ∈ TbB. Since A is a tensor, we may extend X, Y to be
horizontal lifts of coordinate vector fields X̌ and Y̌ on a coordinate neighborhood of B.
Then, as [X, Y ] is π-related to [X̌, Y̌ ] = 0, we have AXY = 1

2
V [X, Y ] = 1

2
[X, Y ],

and, so,
(L2AXY g)(U, V ) = (L[X,Y ]g)(U, V ) = ([LX ,LY ]g)(U, V ) = 0

which implies that AXY is Killing. Furthermore, [X, Y ]p = d
dt |t=0

φ∗t ψ
∗
t φ

∗
−tψ

∗
−t(p), where φt, ψt

are the flows of X and Y , which consists of diffeomorphism τγ for some γ ⊂ B. Since X̌, Y̌
are coordinate flows, this is a derivative of a closed curve in B and hence AXY lies in the
Lie algebra of the holonomy group H. ¤

In order to construct metrics on the total space so that the projection is a Riemannian
submersion with totally geodesic fibers, we will treat the case of principal bundles first.

Recall that for a principal G–bundle σ : P→B, a principal connection is a differentiable
map θ : TP → g with θ(g∗(X)) = Ad(g−1)θ(X) for all g ∈ G, or simply g∗θ = Ad(g−1)θ.
Furthermore, θ(V ∗) = V for all V ∈ g where V ∗ are the action fields on P : V ∗(x) =
d
dt |t=0

(x·exp(tV )). The principle connection defines a horizontal distributionH = ker θ, which

is right invariant, i.e., Hxg = g∗(Hx). Equivalently, one can define a principal connection in
terms of a right invariant distribution H, which is complementary to the tangent space of
the fibers, by setting θ(V ∗) = V and θ(H) = 0. The equation θ(g∗X) = Ad(g−1)θ(X) then
follows from the fact that g∗(V ∗) = (Ad(g−1)V )∗.
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For a principal G-bundle the map φx(g) = xg defines a natural identification of G with
the fiber Fb for each choice of x ∈ Fb. Since φxg = φx ◦ Lg, these identifications are well
defined up to left translations.

Given a complete metric gB on B, a left invariant metric gG on G, and a connection form
θ, we can define a connection metric gP on P by requiring that:

(a) The tangent spaces of the fibers are orthogonal to the horizontal space H = ker θ.
(b) σ∗ : (Hx, gP ) → (Tσ(x)B, gB) is an isometry for every x ∈ P .
(c) φx : (G, gG) → (Fb, gB) is an isometry for every x ∈ Fb.

The metric on Fb is well defined since gG is left invariant. The metric can also alternatively
be described as:

(1.3) gP (X, Y ) = gG(θ(X), θ(Y )) + gB(σ∗(X), σ∗(Y )).

To see that φx is an isometry in this metric, one observes that (φx)∗(V ) = V ∗ since the flow
of a left invariant vector field V on G is given by right translations.

Proposition 1.4. The metric gP on P defined by (1.3) is complete and defines a Rie-
mannian submersion σ : P→B with totally geodesic fibers and with holonomy group H a
subgroup of G acting on G from the left.

Proof: σ is a Riemannian submersion by definition. Since we do not yet know that the metric
on P is complete, we first need to show that the horizontal distribution H has horizontal
lifts that exist for all t. To see this, one first takes any lift γ(t) of a curve on the base,
which exist since the bundle is locally trivial, and then uses the right action in each fiber
to choose a(t) ∈ G such that γ(t)a(t) becomes horizontal. Since θ((γa)′) = θ(γ′a + γa′) =
Ad(a−1)θ(γ′) + a−1a′, this amounts to solving a′a−1 = −θ(γ′) , a(0) = e. If we denote
X = a′a−1 ⊂ g, then a solution is an integral curve of the time dependent vector field
T (g, t) = (X(t)g, d/dt) on G × R, which has solutions for all t since it is a vector field of
bounded length in a (complete) biinvariant metric on G× R

Now we observe that for every horizontal lift γ and every g ∈ G, γg defines another
horizontal lift of σ(γ) since H is right invariant. Hence, if we use the isometries φγ(0) and
φγ(1) to identify the respective fibers with G, the diffeomorphism τσ(γ) is the identity, and
hence an isometry as well. Thus Proposition 1.1 implies that the fibers are totally geodesic.
Similarly, if γ is the horizontal lift of a closed path starting at b0 and x0 ∈ σ−1(b0) fixed,
then τσ(γ)(x) = xg0 for g0 ∈ G implies that τσ(γ)(xg) = xg0g for all g. Thus, under the
identification φx0 , the isometry τσ(γ) becomes left multiplication by g0. Hence the holonomy
group is a subgroup of G acting on G from the left.

In order to see that gP is complete, choose a Cauchy sequence xi ∈ P . Since σ is distance
non-increasing, σ(xi) is a Cauchy sequence in B and we choose a subsequence such that
σ(xi) → y. Let γ̌i be a minimal geodesic from xi to y (for i sufficiently large) with horizontal
lift γi. Since τγ̌i

are isometries, one easily sees that τγ̌i
(xi) is a Cauchy sequence in Fy which

has a convergent subsequence since gG is complete. Finally, if z is its limit, one easily shows
that xi → z. ¤

Notice that in this construction, the right action of G on P is by isometries iff the metric
gG is biinvariant. Also observe that the holonomy principle bundle P ′ can be considered as a
reduction of the structure group of the principle G-bundle to its holonomy group H. Indeed,
if we fix x0 ∈ σ−1(b0), the embedding P ′ → P given by τγ → τγ(x0) is H-equivariant.
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We now define a connection metric on an arbitrary fiber bundle. Assume that in addition
to a principal G-bundle σ : P → B we have a (complete) Riemannian manifold F with an
isometric left action of G. The associated bundle π : M = P ×G F → B is then a fiber
bundle with fiber F and structure group G. Notice that an identification of F with a fiber
Fb = π−1(b) = σ−1(b)×G F , is defined for every fixed x ∈ σ−1(b) by ψx(p) = ([(x, p)]) since
every point in σ−1(b) is equivalent to x by a unique element of G. Since ψxg = ψx ◦Lg, these
identifications are well defined up to isometric left translations Lg : F → F .

A principal connection θ on P defines a horizontal distribution for π by H̃ := ν∗(H, 0),
where H = ker θ and ν : P ×F → P ×G F is the natural projection. Then for every complete
metric gB on B and G-invariant complete metric gF on F we define a metric gM on M such
that:

(a) The tangent spaces of the fibers are orthogonal to the horizontal space H̃.
(b) π∗ : (H̃x, gP ) → (Tπ(x)B, gB) is an isometry for every x ∈ M .
(c) ψx : (F, gF ) → (Fb, gP ) is an isometry for every x ∈ σ−1(b).

The metric on Fb is again well defined since G acts on F by isometries. Notice that in
order to define gM , we do not choose a metric on G. We only use a principle connection in
the principal bundle to define a horizontal distribution H̃ on M .

Proposition 1.5. The connection metric gM on M defined by gB, gF and θ is complete
and defines a Riemannian submersion π : M→B with totally geodesic fibers F and with
holonomy group a subgroup of G. Conversely, every Riemannian submersion π : M → B
with totally geodesic fibers arises in this fashion.

Proof: π is again a Riemannian submersion by definition. If γ is a horizontal lift of γ̌ under
σ : P → B, then [(γ, x)] ⊂ P ×G F = M is a horizontal lift of γ̌ under π with initial value
ψγ(0)(x). If we use the identifications ψγ(0) and ψγ(1) at the endpoints, the diffeomorphism
τγ̌ is the identity and hence an isometry. Thus the fibers are totally geodesic and the
holonomy group is a subgroup of G. The proof that gM is complete, can be carried out as
in Proposition 1.4.

Conversely, let π : M → B is a Riemannian submersion with totally geodesic fibers F and
horizonal distribution H̃. By Proposition 1.1 it is a locally trivial fibre bundle with structure
group the holonomy group H acting on F . Recall that we can then write M = P×H F where
σ : P → B is the associated holonomy H-principle bundle. To define a principal connection
H on P , we define Hx, x ∈ σ−1(b) as follows. x = τγ for some path γ with γ(0) = b0 and
γ(1) = b. For each geodesic δ starting at b we obtain a path x(t) = τδ|[0,t]

◦ τγ in P with

x(0) = x. Define Hx to be the set of all tangent vector x′(0). Since clearly Hxg = g∗(Hx),
this defines a principle connection on P . Furthermore, the induced connection ν∗(Hx, 0)
agrees with H̃ under the diffeomorphism P ×H F → M : [τγ, f ] → τγ(f). ¤

It is natural to also consider metrics on M defined as follows. If we choose a biinvariant
metric Q on G, then Proposition 1.4 defines a metric gP on P where the right action of
G is by isometries. We can then consider the product metric gP + gF on P × F on which
G now acts by isometries and the metric g̃M on M which is the submersion metric under
ν : P × F → P ×G F = M . We now describe the relationship between these two metrics. If
X∗ are the action fields on F for the action of G, then Tp = {X∗(p) | X ∈ g} is the tangent
space to the orbit and we denote by T⊥

p its orthogonal complement.
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Proposition 1.6. On M → B there are two submersion metrics with totally geodesic
fibers. The metric gM defined in (1.3) and the metric g̃M described above. Both have the
same horizontal distribution, g̃M = gM on Hp and T⊥

p , and g̃M(X∗, Y ∗) = Q(L(I+L)−1X, Y )
on Tp, where gF (X∗, Y ∗) = Q(LX, Y ) for all X, Y ∈ g.

Proof: The first two claims are clear from the definitions. To see how the metric on F
changes under the submersion ν, let {(−X∗, X∗) | X ∈ g} be its vertical space. The orthog-
onal complement with respect to Q + gF is the sum of {(0, Y ) | gF (Y, g∗) = 0} on which
g̃M = gF and {(Y ∗, Z∗) | Q(−X, Y ) + gF (X∗, Z∗) = Q(X,−Y + LZ) = 0 for all X ∈ g} =
{((LZ)∗, Z∗) | Z ∈ g}. Since ν∗(X∗, Y ∗) = X∗ + Y ∗, the vertical lift of X∗ under ν is
([L(I + L)−1X]

∗
, [(I + L)−1X]∗) and hence g̃M(X∗, Y ∗) = Q(L(I + L)−1X, (I + L)−1Y ) +

Q(L(I + L)−1X, L(I + L)−1Y ) = Q(L(I + L)−1X,Y ) which proves the claim. ¤
This change of metric on F = G ×G F was first considered by Cheeger. Proposition 1.6

shows that it shortens the metric in the direction of the G orbits. Since Riemannian sub-
mersions are curvature non-decreasing, this is often used to create more positive curvature
on non-negatively curved manifolds. Notice that for the new metric on F the action by
G is still by isometries, but other isometries may have been lost. If we replace Q by any
right invariant metric on G the formula in Proposition 1.6 still holds, but G will not act by
isometries any more.

2. Fat Bundles

For a Riemannian submersion π : M → B, the most useful curvature identity is

secM(x, y) = secB(π∗(x), π∗(y))− 3|AXY |2
where x, y ∈ Hp is orthonormal and X, Y are horizontal extensions of x, y. It implies in
particular that the projection is curvature non-decreasing. For us, the following formula,
which only holds if the fibers are totally geodesic, will be important. For the convenience of
the reader, we give a proof from scratch.

Proposition 2.1. Assume that π : M → B is a Riemannian submersion with totally
geodesic fibers. Then, the “vertizontal” sectional curvatures sec(X,U) of M are given by:

sec(X,U) = ‖AXU‖2,

where ‖X‖ = ‖U‖ = 1.

Proof: By definition,

sec(X, U) = 〈R(X, U)X, U〉
= 〈∇U∇XX −∇X∇UX +∇[X,U ]X,U〉 (†)

for ‖X‖ = ‖U‖ = 1.
Since R is a tensor, we may assume that X is basic. Then, [X, U ] is vertical as π∗[X,U ] =

[π∗X, π∗U ] = 0. Thus,
〈∇[X,U ]X,U〉 = 〈T[X,U ]X,U〉 = 0

by assumption. Now,

∇XX = AXY +H∇XX =
1

2
V [X,X] +H∇XX = H∇XX,
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and so,
〈∇U∇XX, U〉 = 〈TU∇XX,U〉 = 0.

The equation (†), thus, reduces to K(X, U) = −〈∇X∇UX,U〉. Finally,

∇UX = H∇UX + TUX = H∇UX,

so that
∇X∇UX = H∇X∇UX + AX∇UX

and
sec(X, U) = −〈AX∇UX, U〉 = 〈AXU,∇UX〉 = ‖AXU‖2

¤
In particular, sec(X, U) ≥ 0 and sec(X, U) > 0 iff AXU 6= 0. This motivates the following

definition:

Definition 2.2. A Riemannian submersion π : M → B with totally geodesic fibers is called
fat if AXU 6= 0 for all X ∧ U 6= 0, or equivalently all its vertizontal curvatures are positive.

Remark 2.3. Notice that this condition actually only depends on a choice of horizontal
distribution since AXY = 1

2
V [X, Y ] is defined without any choice of metrics. But then it does

not easily translate into a curvature condition since the general formula for the vertizontal
curvatures (see e.g [Bes87], p. 241) is:

sec(X, U) = 〈(∇XT )UU,X〉 − |TUX|2 + |AXU |2

Proposition 2.4. The following conditions are equivalent to fatness:

(a) AX : V → H is injective for all X 6= 0, or AX : H → V is onto for all X 6= 0.
(b) For each U ∈ Vp, (X,Y ) →< AXY, U > is a non–degenerate 2–form on Hp.
(c) dimV ≤ dimH − 1, and if dimV = dimH − 1, then AX : H ∩ X⊥ → V is an

isomorphism.

Proof: (a) and (b) follow from the definition and 〈AXU, Y 〉 = −〈AXY, U〉 . For (c), note
that AX is onto, and AXX = 0 by skew-symmetry. ¤

In the following two propositions, we collect some consequences of the fatness condition.

Proposition 2.5. Let π : M → B be a fat submersion. Then, one has the following
dimensional restrictions:

(a) dim B = dimH is even.
(b) dimV = dimH− 1 implies that dim B = 2, 4 or 8.
(c) If dimV ≥ 2, then dim B = 4k, while if dimV ≥ 4, then dim B = 8k.

Proof: (a) follows from the fact that H admits a non-degenerate two-form. To prove (b),
observe that for a fixed u ∈ Vp , as Axx = 0, we can regard 〈Ax·, u〉 as a non-vanishing
vector field on the unit sphere Sn−1 ⊂ Hp. In fact, if u1, . . . , ur are linearly independent,
the corresponding vector fields on Sn−1 are also linearly independent. Hence, one gets
dimV linearly independent vector fields on S(dim B−1). This implies severe restrictions (see
e.g. [H75], Theorem 8.2). If dimV = dimH − 1, then S(dim B−1) is parallelizable and hence
dimV = 1, 3, 7, which means that dim B = 2, 4 or 8. (c) follows since if Sn−1 admits 2 linearly
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independent vector fields, then n = 4k (and then it admits 3, given by multiplication with
imaginary unit quaternions) and if Sn−1 admits 4 linearly independent vector fields, n = 8k
(and then it admits 7, given by multiplication with imaginary unit Caley numbers) ¤

Proposition 2.6. The fiber F of a fat submersion π : M → B is a homogeneous mani-
fold, in fact the holonomy group H acts transitively on F , i.e., F = H/K. Consequently, the
total space M is diffeomorphic to P ×H H/K ∼= P/K, where P is the associated holonomy
principal bundle.

Proof: It is enough to prove that every point x ∈ F has a homogeneous neighborhood. Define
φ : H → F via φ(h) = hx. For a fat submersion, AX : H → V is onto and by Proposition 1.2,
AXY are Killing vector fields on F . This implies that φ is a submersion at the identity
element, and hence the image of φ contains a neighborhood of x. ¤

In light of the previous proposition, we shall concentrate on two special classes of examples:
principal bundles, and associated bundles with homogeneous fiber. We will also assume in
the remainder that G is a compact Lie group, although some of the following results will
hold in general.

2.1. Principal bundles. We shall fix a bi-invariant metric Q on g, which exists by com-
pactness of G, although it will play only an auxiliary role in the discussion below.

Let σ : P → B be a G-principal bundle, θ a principal connection, and H = ker θ. The
curvature of θ is the 2-form Ω : TP×TP → g defined by Ω(A,B) = dθ(HA,HB). It satisfies
g∗Ω = Ad(g−1)Ω and the following structure equation:

dθ = Ω +
1

2
[θ, θ]

Proposition 2.7. If a metric gP on P is given as in (1.3) and X,Y ∈ H then the O’Neill
tensor A satisfies θ(AXY ) = −Ω(X, Y )

Proof: From the general formula

2dθ(A, B) = Aθ(B)−Bθ(A)− θ([A,B])

it follows that 2dθ(X, Y ) = −θ([X, Y ]) = −θ(V [X,Y ]) for X,Y ∈ H, which proves our
claim. ¤

This gives rise to the following definition, which does not depend on any choice of metrics:

Definition 2.8. Given a principal connection θ on a G-principal bundle P → B, we say
that:

(a) a vector u ∈ g is called fat if (X,Y )p → Q(Ωp(X,Y ), u) is nondegenerate on Hp =
ker θ for all p ∈ P .

(b) θ is called fat if all vectors u ∈ g are fat.

Notice that if u is fat then so is Ad(g)u since

Q(Ω(X,Y ), Ad(g)u) = Q(Ω(gX, gY ), u).

Hence, fat vectors always occur in adjoint orbits.
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Theorem 2.9. If there exists some fat vector u ∈ g, then some characteristic number of
the principal bundle is not zero.

Proof: By assumption we know that Q(Ω(X,Y ), Ad(g)u) is non-degenerate for every g ∈ G.
Let

p(w) =

∫

G

Q(w, Ad(g)u)n d volg

Then p is a polynomial of degree at most n on g, which is Ad invariant. Hence by Chern–Weil
theory

p(Ω) =

∫

G

Q(Ω, Ad(g)u)nd volg

(where powers now represent wedge products), is the pullback of a closed 2n–form on B,
whose DeRham cohomology class represents a characteristic class. Now if dim B = 2n,
fatness implies that 〈Ω, Ad(g)u〉n is a volume form and hence its integral is not zero. ¤

Corollary 2.10. A fat principal bundle cannot have a flat connection

We separate the remaining discussion of principle bundles into two cases, dim G = 1 and
dim G = 3.

Circle bundles

The case of G = S1 is special since G is abelian with g = R. Hence θ and Ω are ordinary
forms on P with dθ = Ω. Since Ω(g∗(A), g∗(B)) = Ω(A,B), there exists a 2 form ω on B
with Ω = σ∗(ω). Chern Weil theory then implies that the 2 form ω is closed with cohomology
class [ω] = 2πe(P ), where e(P ) ∈ H2(B,Z) is the Euler class of the S1 bundle. Hence we
obtain:

Corollary 2.11. For G = S1, θ is fat iff dθ = σ∗(ω) and ω is a symplectic 2–form on
B. Hence ωn 6= 0, where dim B = 2n.

Conversely, given a symplectic manifold (B2n, ω), such that 1
2π

[ω] is an integral class, one

can consider the S1 bundle P over B with Euler class e(P ) = 1
2π

[ω]. Then there exists a
connection form θ on P with dθ = σ∗(ω). Indeed let θ′ be any connection form. Then
dθ′ = σ∗(ω′) with [ω] = [ω′]. Hence ω − ω′ = dη and we can set θ = θ′ + σ∗(η). The
connection form θ is then a fat connection by definition. It is determined, up to a change
θ2 = θ1 + d(σ ◦ f), where f : B → R. In fact since θ2 − θ1 is closed, θ2 − θ1 = dg for some
g : P → R which we can average over the G action on P to obtain g = σ ◦ f .

Hence fat S1 principal bundles are essentially in one to one correspondence to symplectic
manifolds, and thus are plentiful. Notice also that the one form θ on P is by definition a
contact form, since θ ∧ dθn 6= 0.

To come back to metrics associated to fat circle bundles, let us first make a digression
about Killing vector fields of constant length. This is relevant in our context since for a
connection metric (1.3) an action field V ∗, for any V ∈ g, has constant length. Since S1 is
also abelian, the right action is by isometries and hence V ∗ Killing as well.

Let g be a metric on M and ξ a Killing vector field. ξ has constant length iff all integral
curves of ξ are geodesics since X(g(ξ, ξ)) = g(∇Xξ, ξ) = −g(∇ξ ξ, X). Notice also that if
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ξ is a non-vanishing Killing vector field, then in the metric |ξ|−2g, the vector field ξ is still
Killing, and now has unit length. We will use the following general properties of Killing
vector fields:

Lemma 2.12. If ξ is a Killing vector field and J(X) = ∇Xξ, then

(a) ||J(X)||2 = g(R(X, ξ)ξ, X)
(b) g((∇XJ)(Y ), Z) = g(R(ξ, X)Y, Z)

Proof. For (a) we observe that g(∇Xξ, X) = 0 and hence

g(R(X, ξ)ξ, X) = g(∇X∇ξ ξ −∇ξ∇Xξ −∇[X,ξ] ξ, X)

= −g(∇ξ∇Xξ, X)− g(∇[X,ξ] ξ,X)

= g(∇Xξ,∇ξX) + g(∇Xξ, [X, ξ]) = g(∇Xξ,∇Xξ) = |J(X)|2
Part b) follows from the general fact that any Jacobi field ξ satisfies:

∇A(∇ξ)(B) + R(ξ, A)B = 0 for all A,B ∈ TpM

where ∇A(∇ξ)(B) = ∇A∇Bξ − ∇∇ABξ. Indeed, if L(A,B) is the left hand sinde, then
L(A,A) = 0 since ξ is a Jacobi field. Furthermore,

L(A,B)ξ − L(B, A)ξ = R(A,B)ξ + R(ξ, A)B + R(xi, B)A = 0.

¤
Let us recall a few definitions. A metric on M is called K-contact if it admits a unit Killing

field ξ with sec(ξ, X) = 1 for all ξ ∧X 6= 0. It is called regular if the integral curves define a
free circle action and quasi regular if they define an almost free circle action. By a Theoreom
of Wadsley, the latter condition is equivalent to requiring that all integral curves of ξ are
closed. If it is regular, M → M/S1 = B is a Riemannian submersion with totally geodesic
fibers, i.e. a connection metric which is clearly fat. Although the condition sec(ξ, X) = 1
is seemingly much stronger than the fatness condition sec(ξ, X) > 0, we will see that a fat
bundle always admits a K-contact structure.

A metric is called Sasakian if it admits a unit Killing vectorfield ξ with R̂(ξ ∧X) = ξ ∧X

for all ξ ∧ X 6= 0, where R̂ is the curvature operator. This is equivalent to requiring
R(ξ, X)Y = g(ξ, Y )X − g(X, Y )ξ, for all X, Y ⊥ ξ. In particular sec(ξ,X) = 1, i.e., the
metric is K-contact. As before, the Sasakian structure is called regular if the integral curves
of ξ define a free circle action and quasi regular if they define an almost free circle action.

We are interested in the case where the K-contact or Sasakian structure is quasi-regular
since we can then consider the orbifold fibration M → M/S1 = B which is a Riemannian
submersion with totally geodesic fibers. For simplicity we will call such structures simply
K-contact resp. Sasakian.

Recall also that a Riemannian manifold M2n is called almost hermitian, if there exists
an orthogonal almost complex structure, i.e., an endomorphism J : TpM → TpM for each
p ∈ M , with J2 = − Id and g(JX, JY ) = g(X,Y ). It is called hermitian if the complex
structure is integrable. An almost hermitan structure is called almost Kähler if in addition
the two form ω(X,Y ) = g(JX, Y ) is closed. This implies that ωn 6= 0, i.e., the manifold is
symplectic. It is called Kähler if ∇ω = 0 or equivalently ∇J = 0. This implies in particular
that the almost complex structure is integrable. Finally, the metric is called Kähler Einstein
if it is Kähler and the Ricci curvature is constant.
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We now have the following beautiful relationship between these concepts:

Proposition 2.13. Let σ : (P, gP ) → (B, gB) be a Riemannian submersion with totally
geodesic one dimensional fibers of length 2π.

(a) gP is K-contact iff gB is almost Kähler.
(b) gP is Sasakian iff gB is Kähler.
(c) gP is Sasakian Einstein iff gB is Kähler Einstein.

Proof: Since S1 is abelian, it acts by isometries on P . Hence the action field ξ is a Killing
field and we normalize it to have length 1. The principle connection is then given by θ(X) =
g(ξ, X) with horizontal distribution H = ker θ. As in Lemma 2.12 we let J(X) = ∇Xξ.
Clearly g(JX, ξ) = X(g(ξ, ξ)) = 0 and thus J : H → H. Since ξ is Killing, J is skew
symmetric and since g is K-contact, Lemma 2.12 implies that J ia an isometry and thus
J2 = − Id, i.e. J is a complex structure on H. We can now define a complex structure J̃ on
B in terms of J . Let X be tangent to B and X̄ a horizontal lift and set J̃X = JX̄. This is
independent of the lift X̄, since g∗(J) = J , which follows from the fact that g∗(ξ) = ξ and
that g ∈ S1 acts by isometries. Thus J̃ is an orthogonal complex structure and hence gB is
almost hermitian. To see that it is almost Kähler, observe that 2dθ(X, Y ) = −θ([X, Y ]) =
g(−∇XY + ∇Y X, ξ) = g(Y,∇Xξ) − g(X,∇Y ξ) = 2g(∇Xξ, Y ) for all X, Y ∈ H and thus
dθ(X,Y ) = g(JX, Y ). Since Ω = dθ = σ∗(ω) for some closed 2-form ω on B, it follows that
ω(X, Y ) = gB(J̃X, Y ). If in addition, gP is Sasakian, Lemma 2.12 implies that ∇XJ = 0 for
X ∈ H. Since gp(∇X̄ Ȳ , Z̄) = gB(∇XY, Z), this implies that ∇X J̃ = 0 as well and thus gB is
Kähler .

Finally, we compare the Ricci tensor of gP and gB. If gP is K-contact, RicP (ξ) = 2n,
where dim B = 2n. To compute RicP (X) for X ∈ H, observe that the O’Neill tensor A
of the submersion σ satisfies gP (AXY, ξ) = gP (∇XY, ξ) = gp(JX, Y ) and thus |AXY |2 =
gP (JX, Y )2. For a given unit vector X ∈ H, choose an orthonormal basis ei, i = 1, . . . 2n
of H with e1 = X and e2 = JX. Using O’Neill’s formula, we obtain RicP (X) = 1 +∑i=2n

i=2 secP (X, ei) = 1 +
∑i=2n

i=3 secB(σ∗(X), ei)− 3 = RicB(σ∗(X))− 2. If gP is Einstein, we
have RicP = 2ngP , and thus RicB = (2n + 2)gB.

Conversely, if gB is almost Kähler with almost complex structure J̃ and closed two form
ω(X, Y ) = gB(J̃X, Y ), we choose the connection form θ such that dθ = σ∗(ω) and define
JX̄ = J̃X. Thus dθ(X̄, Ȳ ) = gP (JX̄, Ȳ ). Since, as above, we also have dθ(X,Y ) =
gP (∇Xξ, Y ), it follows thatJX = ∇Xξ. Since J and hence J̃ is an isometry, Lemma 2.12
implies that sec(ξ,X) = 1. Similarly, if gB is Kähler , gP is Sasakian and if gB is Einstein,
with Einstein constant normalized to be 2n + 2, gP is Einstein as well. ¤

The following result shows that a fat bundle, i.e., metrics with sec(ξ, X) > 0 implies the
existence of another metric with sec(ξ, X) = 1.

Proposition 2.14. For a circle bundle σ : P → B with B symplectic, there exist metrics
gP and gB such that σ is a Riemannian submersion with gP K-contact and gB almost Kähler
.

Proof. Let ω be the symplectic form on B. By Proposition 2.13, it is sufficient to find a
metric gB which is almost Kähler , i.e., a metric gB and an almost complex structure J with
ω(X, Y ) = gB(JX, Y ). Let gB be any metric on B and define an endomorphism L by setting
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ω(X, Y ) = gB(LX, Y ). Since ω is symplectic, L is skew symmetric and non-singular. If we
set L = JS = SJ with J orthogonal and S symmetric and positive definite, the uniqueness of
this decomposition implies that J is skew symmetric as well, and thus J2 = − Id. We can now
define a new metric by setting g̃B(X,Y ) = gB(SX, Y ) and thus ω(X,Y ) = g̃B(JX, Y ) ¤

On the other hand, there are obstructions to the existence of Sasakian metrics. E.g.,
Sasakian implies that the Betti numbers satisfy b2i+1 odd for i ≤?. Similarly, there are
obstructions to the existence of Kähler metrics since one has b2i ≤ b2i+2 for i ≤?.

There are of course many examples of Kähler metrics and Kähler Einstein metrics. Notice
also that (2.13) still holds if the structure on P is only quasi-regular, i.e. the action of S1 is
only almost free, as long as one allows an orbifold structure on the quotient. The proof is
the same since the computations were local. This gives rise to many further examples, e.g.
Sasakian Einstein metrics on every exotic 7-sphere.

SU(2) and SO(3) principle bundles

The case of G principal bundles with dim G = 3 is also special. Proposition 2.5 implies
that dim B = 4n and we have the following analogue of Corollary 2.11:

Proposition 2.15. If an G = SU(2) or SO(3) principle bundle admits a fat principle
connection, then there exists a closed 4 form α on B, such that 1

8π2 [α] represents the first
Pontryagin class, and αn 6= 0, where dim B = 4n.

Proof. If ei, i = 1, 2, 3 is an orthonormal basis of R3, then Ω =
∑

Ωiei where Ωi are ordinary
3 forms on P , which must be symplectic forms if θ is fat. The expression

∑
Ωi ∧ Ωi is then

independent of the choice of basis and is Ad(G) invariant. Hence it is of the form σ∗(α) for
some 4 form α on B. Chern Weil theory then implies that α is closed with [α] = 8π2p1(P )
where p1(P ) is the first Pontrjagin class of the bundle. Since Ωi are symplectic 2 forms, one
easily shows that αn 6= 0, where dim B = 4n. ¤

The only known examples of such fat principle bundles are when (P, gP ) is 3-Sasakian.
Recall that a manifold P is called 3-Sasakian if it admits an almost free isometric action
by SU(2) or SO(3) whose orbits are totally geodesic of curvature 1, and such that R̂(ξ∗ ∧
X) = ξ∗ ∧ X for all ξ ∈ g and any X. This is equivalent to requiring R(ξ∗, X)Y =
g(ξ∗, Y )X − g(X,Y )ξ∗ and hence all vertizontal curvatures are equal to 1. The projection
P → P/G = B is then by definition a fat G orbifold principal bundle. Furthermore, recall
that a manifold (B, gB) is called quaternionic Kähler if there exists a 3 dimensional subbundle
E of the bundle O(TB) of isometric linear maps of TB, which is invariant under parallel
translation and for each p ∈ B is spanned by orthogonal almost complex structures Ji whith
J1 ◦ J2 = −J2 ◦ J1 = J3. We then have:

Proposition 2.16. If the metric gP is 3-Sasakian, then the induced metric gB is quater-
nionic Kähler with positive scalar curvature.

Proof: In addition to Lemma 2.12, we also need the following:
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Lemma 2.17. If ξi be two Killing vector fields of constant length, Jξi
(X) = ∇Xξi and

X,Y orthogonal to ξi, then

g(Jξ1 ◦ Jξ2(X), Y ) = g(J[ξ1 , ξ2](X), Y )− g(R(ξ1, Y )X, ξ2)

Proof. Proof to be added. ¤

Let ξi, i = 1, 2, 3, be the Killing vector fields which are action fields corresponding to an
orthonormal basis ei of g, and such that [ξ1, ξ2] = ξ3. As in Lemma 2.12, set Ji(X) = ∇Xξi. If
gP is 3-Sasakian, Lemma 2.12 and Lemma 2.17 imply that Ji are orthogonal almost complex
structures on H = ker θ with J1 ◦ J2 = −J2 ◦ J1 = J3. These do not descend to almost
complex structures on B since g∗(ξ) = ξ ◦ Ad(g−1) for ξ ∈ g and g ∈ G. On the other
hand, the subspace of orthogonal linear maps on H spanned by Ji descends to a well defined
subspace of such linear maps on B. Since also ∇Ji = 0 on H, this subspace on B is invariant
under parallel translation, and thus gB is quaternionic Kähler . ¤

The converse is somewhat more complicated than in the case of circle bundles.

Proposition 2.18. Let (B, gB) be a quaternionic Kähler orbifold with positive scalar
curvature and P the SO(3)-principal bundle of the 3 dimensional parallel vector bundle E.
Then P admits a 3-Sasakian orbifold metric with respect to the almost free action by SO(3).

Proof. Proof to be added..... ¤

The simplest example is the Hopf fibration S3 → S4n+3 → H P n where the constant
curvature one metric is 3-Sasakian and H P n quaternionic Kähler. As is well known, in
contrast to (2.13), both a quaternionic Kähler and a 3-Sasakian metric is automatically
Einstein.

It is somewhat surprising that in all known examples of S3 fat principal bundles the
vertizontal curvatures are not only positive, but in fact equal to 1. This motivates the
question whether there is an analogue to Proposition 2.14:

Problem 1. Given a fat G-principle bundle with dim G = 3, can one change the metric
on B such that all vertizontal curvatures are equal to 1?

It is conjectured that the only quaternionic Kähler manifolds with positive scalar curvature
are quaternionic symmetric spaces. They are classified and will be described in the next
section.

It is also important to notice that the same proof works if one only requires that the G ac-
tion is almost free. The quotient is then a quaternionic Kähler orbifold. This seemingly small
change allows many more examples, e.g. a 3-Sasakian structure on many of the positively
curved Eschenburg spaces.

Surprisingly, no other fat principal bundles are known, which suggests the following prob-
lem:

Problem 2. Are there any fat G-principle bundles with dim G > 3? The answer would
be no, if one could for example show that not only the vertizontal sectional curvatures are
positive, but the vertical one’s also.
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2.2. Associated bundles. Let σ : P → M be a G principal bundle and π : M = P ×G F →
B the associated fiber bundle with fiber F . Lemma (2.6) says that if π is fat, we can assume
that F = G/H and that G is the holonomy group of π.

Proposition 2.19. The Riemannian submersion π : P ×G F → B with totally geodesic
fibers G/H is fat iff Q(Ω(X, Y ), u) is non-degenerate in X, Y for all u with Q(u, h) = 0.

Proof: This see this we claim that

AXY = −1

2
prh⊥(Ω(X,Y ))

where we identify a fiber with G/H and its tangent space with h⊥ ⊂ g. Recall that by
(2.7) we have AXY = 1

2
V [X, Y ] = −1

2
Ω(X, Y ) in the principal bundle P → B, where we

identify the tangent space of the fiber with g via θ. In the fiber bundle π we also have
AXY = 1

2
V [X, Y ] where now the vertical space is identified with h⊥ ⊂ g. This proves the

claim. ¤

We will therefore make the following definition for a principal connection:

Definition 2.20. A connection θ in a G-principal bundle P → B is called H-fat for some
H ⊂ G if all vectors u ∈ h⊥ are fat, i.e. Q(Ω(X, Y ), u) is non-degenerate for all u ∈ h⊥.

Although M = P ×G G/H = P/H as manifolds, this equality means that we can consider
two metrics on M . We can start with a metric gG/H on the fiber G/H where we need
to know that the left translations by G are isometries. Such metrics can be viewed as a
submersed metric gG/H under G → G/H for a metric gG on G which is left invariant under
G and right invariant under H. If H is a horizontal distribution induced by a principal
connection on P → B, then (1.5) describes a metric gM on M where the fibers are isometric
to (G/H, gG/H). This metric can also be described as follows: Choose a metric on P as
in (1.4) where the metric on the fiber is gG. Then the right action of G on P is not by
isometries, but the right action of H is, and the submersed metric on P/H under P → P/H
is the same as gM . A second metric can be defined by choosing a biinvariant metric Q on
G and use it to define a metric gP on P as in (1.4). This metric is now right invariant
under G and defines a submersed metric g̃M under (P ×G, gP + gG/H) → P ×G G/H = M .
The relationship between gM and g̃M was described in (1.6). In particular the horizontal
distribution is the same in both cases, as is gB, but the metric on the fibers is gG/H for gM

and g̃M(X∗, Y ∗) = Q(L(I + L)−1X,Y ) for X,Y ∈ h⊥, where gG(X,Y ) = Q(LX, Y ). One
often has L = λI which implies that g̃M = λ

λ+1
gM on the fibers. Since λ

λ+1
< 1 it shortens

the metric on the fibers, but as λ →∞ the metric g̃M converges to gM .

We will discuss in some detail the case of a sphere bundle, which we will come back to in
section ?.

Consider a sphere bundle Sk → M → B with structure group O(k + 1), principal bundle
O(k + 1) → P → B, and associated vector bundle Rk+1 → E = P ×O(k+1) Rk+1 → B. A
principal connection θ in P is in one–to–one correspondence with a metric connection ∇ in
E by declaring a horizontal lift of a curve γ in B to be a parallel frame along γ. This defines
a horizontal distribution on Sk → M → B which is fat iff θ is O(k)-fat for O(k) ⊂ O(k + 1).
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Proposition 2.21. A sphere bundle Sk → M → B is fat iff the curvature R of the
associated metric connection has the property that < R(X, Y )v, w > is non degenerate in
X,Y for all v ∧ w 6= 0.

Proof: The curvature Ω of θ has values in so(k+1). For each p ∈ P , which is an orthonormal
frame in Eπ(p), we can identify Λ2Eπ(p) with Λ2Rk+1 and hence with so(k + 1). Hence
Ωp(X,Y ) lies in Λ2Eπ(p). We claim that under this identification Ωp(X,Y ) = −1

2
R(X, Y ).

We already know that Ω(X, Y ) = −1
2
AXY and in the proof of Lemma (1.2) we saw that

AXY = [X,Y ]p = d
dt t=0

φ∗t ψ
∗
t φ

∗
−tψ

∗
−t, where φt, ψt are the flows of X, Y , which are horizontal

lifts of coordinate vector fields in B. Furthermore, φt, ψt are diffeomorphisms τγ for some γ
in B, which in our case consist of parallel translation along γ. Hence Ωp(X,Y ) = −1

2
R(X, Y )

follows from the well known interpretation of R(X, Y ) in terms of parallel translation.
Now consider E12 ∈ so(k)⊥ ⊂ so(k + 1), where E12 = e1 ∧ e2 is decomposable. Then the

adjoint orbit of E12 is the set of all decomposable vectors in Rk+1. Since all vectors in so(k)⊥

are linear combinations of e1 ∧ ei, i = 2 · · · k + 1, they are all decomposable. Furthermore,
we know that the adjoint orbit of a fat vector is also fat, and hence all decomposable vectors
are fat. Thus θ is O(k)–fat if and only if (X, Y ) →< Ω(X,Y ), v ∧w >=< R(X, Y )v, w > is
non degenerate for all v ∧ w 6= 0. ¤

In the case of k = 2 we have the following special property:

Proposition 2.22. A sphere bundle S2 → M → B is fat iff the corresponding principal
bundle SO(3) → P → B is fat.

Proof: This follows from the fact that the adjoint orbit of any vector u ∈ so(2)⊥ ⊂ so(3) is the
whole sphere of radius |u| since the Adjoint action of SO(3) is its tautological representation
on R3. ¤

3. Examples of fat bundles

As we explained in the last section, fat circle bundles are defined in terms of symplectic
manifolds and are hence plentiful. Surprisingly all other known fat bundles are homogeneous
bundles. This means one has inclusions H ⊂ K ⊂ G, which defines the homogeneous
fibration K/H → G/H → G/K which can be viewed as the fibration associated to the
principal bundle K → G → G/K with fiber K/H, since G×K K/H = G/H.

An Ad(K) invariant splitting g = k ⊕ m induces a principal connection θ on G → G/K
with G-invariant horizontal space given by He = m, and an induced horizontal homogeneous
distribution H̃ for the fibration G/H → G/K with H̃(H) = m . An Ad(H)–invariant splitting
K = h⊕ p with a choice of an Ad(H) invariant metric on p and an Ad(K) invariant metric
on m induce homogeneous metrics on K/H and G/K via the identifications T(H)K/H ' p
and T(K)G/K ' m. We can now define a metric on G/H, such that on T[H]G/H ' p⊕m, p
and m are orthogonal and the metric on p and m are as given before.

Proposition 3.1. The fibration K/H → G/H → G/K with the homogeneous metrics
described above, is a Riemannian submersion with totally geodesic fibers and with AXU =
[X,U ] for X ∈ m horizontal, and U ∈ p vertical. Hence the fibration is fat iff [X,U ] 6= 0 for
all 0 6= X ∈ m, 0 6= U ∈ p.
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Proof: The map K/H → G/H → G/K is clearly a Riemannian submersion. By construc-
tion, the holonomy group of H and H̃ are the left translations by K on G and on K/H
respectively. Hence the fibers K/H are totally geodesic. Since AXY = 1

2
V [X, Y ] = 1

2
[X,Y ]p

we have Q(AXU, Y ) = −Q(AXY, U) = −Q([X,Y ], U) = Q([X, U ], Y ) and since [X, U ] ∈ m
by Ad(K) invariance, it follows that AXU = [X, U ]. ¤

Berard–Bergery classified all such homogeneous H–fat connections, and first proves the
following general theorem:

Proposition 3.2. If K/H → G/H → G/K is fat bundle with dim(K/H) > 1, then
G/K is a symmetric space, rk K = rk G, and a normal metric on K/H has sec > 0.

Proof: To be added. ¤

The case where dim(K/H) = 1 are the well known Boothby–Wang fibrations:

Proposition 3.3. Let S1 ⊂ G, Z(S1) the centralizer of S1 in G, and K = exp(k) with
k the orthogonal complement of of the Lie algebra of S1 inside the Lie algebra of Z(S1).
Then Z(S1) = S1 · K and S1 → G/K → G/Z(S1) is a principal circle fibration which is
fat. Furthermore, G/Z(S1) is a symplectic manifold (in fact a Kähler manifold) and G/K
a contact manifold.

Proof: The claim that these bundles are always fat is due to the fact that in the isotropy rep-
resentation of G/Z(S1) on m, the circle S1 has no fixed vector, since otherwise the centralizer
of S1 would be larger. ¤

The base G/Z(S1) can also be described as the adjoint orbits of G on g with their canonical
Kähler-Einstein metric. This includes for example, many circle bundles over G/T with T a
maximal torus (although not all of them work!) as one extreme case, and the circle bundle
over the hermitian symmetric spaces G/K ·S1, S1 → G/K → G/K ·S1 as the other extreme
(corresponding to the case where Z(S1) is a maximal subgroup of G).

A homogeneous fat principal bundle corresponds to the case where H is normal in K, and
if K/H 6= S1, the only possibilities are K/H = S3 or SO(3), since K/H must have sec > 0.

The later case can be described uniformly in terms of homogeneous quaternionic symmetric
space G/(K ·Sp(1)) (so called Wolf spaces). correspond precisely to those symmetric spaces
G/H with H locally of the form K · Sp(1) and such that the restriction of the isotropy
representation of K · Sp(1) on G/K · Sp(1) to the subgroup Sp(1) is equivalent to the usual
Hopf action of Sp(1) on R4n = Hn.

Proposition 3.4. If G/K · Sp(1) is a quaternionic symmetric space, then the principal
bundle fibration K ·Sp(1)/K → G/K → G/K ·Sp(1) is fat. Furthermore, K ·Sp(1)/K = S3

or SO(3) and Sp(1)/K is 3-Sasakian.

Proof: This principal bundle is fat (and they all arise in this fashion) since the action of
Sp(1) on m = T[K·Sp(1)]G/(K · Sp(1)) ' Hn is given by the Hopf action, which is free on
m− {0}. ¤

One gets the following examples, and in most cases, the condition [X, U ] 6= 0 is trivial to
verify:
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(E.1) The simplest examples are, of course, the Hopf fibrations:

a) S1 → S2n+1 → CPn for SU(n) ⊂ U(n) ⊂ SU(n + 1),
b) S3 → S4n+3 → HPn for Sp(n) ⊂ Sp(n)Sp(1) ⊂ Sp(n + 1),
c) S2 → CP2n+1 → HPn for Sp(n)U(1) ⊂ Sp(n)Sp(1) ⊂ Sp(n + 1),
d) S7 → S15 → S8 for Spin(7) ⊂ Spin(8) ⊂ Spin(9),

which must be fat because the fibers are totally geodesic and the total space has positive
curvature.

(E.2) We already mentined the fact circle bundles with their Boothby-Wang fibrations.

(E.3) The only other fat S3 or SO(3) principal bundles correspond to quaternioc symmetric
spaces. There is precisely one such space for every simple Lie group. In the case where G is
a classical simple Lie group, one gets the following examples:

(a) SO(3) → T1CPn → Gr2(Cn+1), n ≥ 2 coming from the groups S(U(n−1)×Z(U(2))) ⊂
S(U(n− 1)× U(2)) ⊂ SU(n + 1). The fiber is SO(3) since U(2)/Z(U(2)) = SO(3) and the
total space SU(n+1)/S(U(n−1)×Z(U(2))) = T1CPn since CPn = SU(n+1)/S(U(n)U(1))
with U(n) ' S(U(n)U(1)), and embedding

A ∈ U(n) →
(

A 0
0 det A

)
⊂ SU(n + 1)

and isotropy representation

v =

(
0 v
−vt 0

)
→ (det A) · A(v)

and hence the isotropy group of v = (0, . . . , 0, 1) ∈ T1CPn is equal to




B
z

z


 with

(det B)z2 = 1, i.e, S(U(n− 1)Z(U(2)))

(b) SO(3) → SO(n)/S3 × SO(n− 4) → Λo
4,n, n ≥ 5, (the oriented 4 planes in Rn), coming

from the groups S3 × SO(n− 4) ⊂ SO(4)× SO(n− 4) ⊂ SO(n), where S3 ⊂ SO(4) is one
of the normal subgroups, and SO(4)/S3 = SO(3).

(c) S3 → Sp(n + 1)/Sp(n) → HPn, i.e, E.1(b).

For the exceptional simple Lie groups (there exists exactly one quaternionic symmetric
space G/(K · Sp(1)) for each simple Lie group G!), the following examples are particularly
interesting:

SO(3) → G2/S
3
− → G2/SO(4) SO(3) → G2/S

3
+ → G2/SO(4)

where S3
± ⊂ SO(4) are the two simple factors. Also notice that G2/S

3
− = V2R7, the 2– frames

in R7.

(E.4) The fat homogeneous S2 bundles, i.e. K/H = S2, all arise as the associated S2

bundles to the principal SO(3) or S3 bundles in (E.2). This follows from one of our earlier
observations that an S2 bundle is fat iff the corresponding SO(3) principal bundle is fat.

(E.5) The fat bundles, where K/H is a higher dimensional symmetric space of sec > 0 are
all of the following type:
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(a) RP5 → SU(n + 1)/S(U(n − 3)Sp(2)) → G4(Cn+1), n ≥ 4, coming from the inclusions
S(U(n − 3)Sp(2)) ⊂ S(U(n − 3)U(4)) ⊂ SU(n + 1) with fiber U(4)/(Sp(2) · Z(U(4))) =
SU(4)/(Sp(2)

⋃
iSp(2)) = SO(6)/O(5) = RP5 The case n = 4 corresponds to the Berger

space B13 → CP4 (see later).

(b) RP7 → SO(n)/SO(n − 8)Spin(7) → G0
8(Rn), n ≥ 9, coming from the inclusions

SO(n− 8)Spin(7) ⊂ SO(n− 8)SO(8) ⊂ SO(n), with fiber SO(8)/Spin(7) = RP7. The case
n = 9 is the Z2 quotient of the Hopf fibration (E.1(d))

(c) S4 → Sp(n)/Sp(n − 2)Sp(1)Sp(1) → G2(H
n), n ≥ 3, coming from the inclusions

Sp(n− 2)× Sp(1)× Sp(1) ⊂ Sp(n− 2)Sp(2) ⊂ Sp(n). The case n = 3 is the flag mani-
fold F 12 = Sp(3)/Sp(1)3 (see later).

(d) S8 → F4/Spin(9) = F 24 → CaP2, coming from the inclusion Spin(8) ⊂ Spin(9) ⊂ F4

(e) If we start with two principal fibrations Li → Gi/Ki → Gi/Ki ·Sp(1), i = 1, 2 as in E.3,
and Li = S3 or SO(3), one gets the associated fat fibration

L = L× L/4L → (G1/K1)× (G2/K2)/4L → (G1/K1 · Sp(1))× (G2/K2 · Sp(1))

(E.6) A fat lens space fibration:

S3/Zp,q → U(2)/S1
p,q → SU(n + 1)/S(U(n− 1) · S1

p,q) → G2(Cn+1), n > 2

with S1
p,q = diag(zp, zq) coming from the inclusion

S(U(n− 1) · S1
p,q) ⊂ S(U(n− 1)U(2)) ⊂ SU(n + 1)

with fiber U(2)/S1
p,q = SU(2)/ diag(zp, zq) = S3/Zp+q, zp+q = 1, since SU(2) ⊂ U(2) clearly

acts transitively. This bundle is fat iff p · q > 0 (see ?? for a discussion of the case n = 2
where the total space is the Allof–Wallach space Wp,q).

(E.7) A fat lens space fibration

S3/Zq → S3 × S1/S1
p,q → G× S1/(K · S1

p,q) → G/(K · Sp(1))

where G/(K ·Sp(1)) is a quaternionic symmetric space as in E.3, and K ·S1
p,q ⊂ K ·Sp(1)·S1 ⊂

G×S1 with S1
p,q ⊂ Sp(1)×S1 of the form diag(zp, zq). This bundle is fat iff p 6= 0 and q 6= 0.

Notice that as a manifold, we can regard this as a Zp quotient of the examples in E.3,
since G× S1/K · S1

p,q = (G/K)/Zq, where Zq ⊂ L = S3 or SO(3) of the form zp ⊂ L, with
zq = 1 (and L acts freely on G/K).

This finishes the complete description of all possible homogeneous fat bundles. Surpris-
ingly, so far one does not know any examples of fat bundles which are not homogeneous!

Of particular importance are of course the homogeneous fat bundles where the total space
also admits a connection metric with sec > 0. The homogeneous spaces with sec > 0
were classified by Berger–Wallach–Berard Bergery, and surprisingly they all fit into this
framework, except for the Berger example B7 = SO(5)/SO(3), with SO(3) maximal in
SO(5). One has the following beautiful theorem:

Theorem 3.5 (Wallach). Let H ⊂ K ⊂ G and let Q be a biinvariant metric on g.
Assume that the following three conditions are satisfied:

a) G/K is a rank 1 symmetric space, i.e. [m,m] ⊂ k, where m = k⊥
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b) The normal metric induced by Q on K/H has sec > 0, i.e. for p = h⊥
⋂

k, [X, Y ] 6= 0
for X,Y ∈ p, X ∧ Y 6= 0.

c) Fatness, i.e. [X, U ] = 0 for X ∈ m, U ∈ p not 0.

Then the homogeneous metric on G/H given by Qt = tQ|p + Q|m has sec > 0 for any
0 < t < 1.

Wallach’s original proof was complicated, but Eschenburg [?] gave a beautiful simple proof
which requires almost no computations: one starts by regarding the metric Qt as the base
space of the Riemannian submersion G×K → G, (g, k) → gk−1 where the metric on G×K
is the biinvariant metric Q|g×0 + t

1−t
Q|0×k. This immediately implies that the metric Qt on G

(and hence also the induced metric on G/H) has sec ≥ 0, and one easily shows using O’Neill’s
formula, that the only 2–planes (X, Y ) ∈ g with zero curvature in Qt are the ones where
[Xk, Yk] = 0 and [Xm + tXk, Ym + tYk] = 0. Since [m,m] ⊂ k by assumption (a), and [k, m] ⊂ m,
this reduces to [Xk, Yk] = 0 (we have reduced the set of 2 planes with zero curvature in Q,
which only consists of those with [X, Y ] = 0). Now if (X, Y ) ∈ p⊕m ' T[H]G/H is a 2-plane
with zero curvature, we get [Xp, Yp] = 0 and [Xm, Ym] = 0, and (a) and (b) together imply
that Xp, Yp and Xm, Ym must be linearly dependent. Hence we can assume that X ∈ m and
Y ∈ p, and (c) guarantees that (X,Y ) has sec > 0.

Remark 3.6. If one assumes in addition that K/H is a symmetric space, one also gets
that Qt with 1 < t < 4

3
has sec > 0, but this is less obvious.

¿From Berard-Bergery’s classification of fat bundles, one now easily gets the following list
of examples:

P.1: T 2 ⊂ U(2) ⊂ SU(3) gives rise to the S2 bundle

S2 = U(2)/T 2 → F 6 = SU(3)/T 2 → CP2

P.2: Sp(1)3 ⊂ Sp(2)Sp(1) ⊂ Sp(3) gives rise to the S4 bundle

S4 = Sp(2)Sp(1)/Sp(1)3 → F 12 = Sp(3)/Sp(1)3 → HP2

P.3: Spin(8) ⊂ Spin(9) ⊂ F4 gives rise to the S8 bundle

S8 → F 24 = F4/Spin(8) → CaP2

We can regard these as flag manifolds over C, H and Ca.

P.4: Sp(2) · U(1) ⊂ S(U(4) · U(1)) ⊂ SU(5) gives rise to the fat RP5 bundle (see ??)

RP5 = S(U(4)U(1))/Sp(2)U(1) → B13 = SU(5)/Sp(2)U(1) → SU(5)/S(U(4)U(1)) = CP4

P1-P4 are precisely the examples where K/H is also a rank one symmetric space.

P.5: S1
p,q ⊂ U(2) ⊂ SU(3), where S1

p,q = diag(zp, zq, zp+q) with |z| = 1 and (p, q) = 1, gives
rise to the fat bundle (see ??)

U(2)/S1
p,q → W 7

p,q = SU(3)/S1
p,q → SU(3)/U(2) = CP2

with fiber a lens space U(2)/S1
p,q = SU(2)/ diag(zp, zq) = S3/Zp,q, with zp+q = 1 if p+ q 6= 0,

and fiber U(2)/S1
1,−1 = S2 × S1/(x, y) ∼ (−x,−y) if p + q = 0. But in this case, the
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connection is fat iff pq > 0; in fact, p = (S1)⊥ are the

X =




i(2q + p)x1 x2 0
−x2 −i(q + 2p)x1 0
0 0 i(q − p)x1


 where x1 ∈ R, x2 ∈ C

and m are the

Y =

(
0 y
−y⊥ 0

)

and finally

[X,Y ] =

(
i(2q + p)x1 −x2

−x2 −i(q + 2p)x1

)
· Y − i(p− q)x1 · Y = 0

iff i(p − q)y1 is an eigenvalue of that matrix A, and since tr(A) = i(q − p)y1, the other
eigenvalue would be 2i(q − p)y1 and hence det A = (2q + p)(q + 2p)y2

1 + |y2|2 would be
2(p− q)2y2

1. The difference is pqy2
1 + |y2|2, which is positive if p, q > 0. This shows that this

bundle is fat iff p · q > 0. But by choosing a different embedding of U(2) in SU(3) we can
achieve p · q > 0 iff p · q(p + q) 6= 0.

Notice that we can also fiber W 7
p,q → CP2 with fiber SU(2)/Zp or SU(2)/Zq by choosing

these different embeddings of U(2), but those bundles will not be fat! We can normalize
S1

p,q by interchanging coordinates, and changing z to z so that p ≥ q ≥ 0 to get a unique
representative parametrized by 0 ≤ q

p
≤ 1 with the extreme cases W1,0 and W1,1. W1,0 fibers

over CP2 with fiber S3, but as such is not a fat bundle.
In fact, it has no homogeneous metric of positive curvature since the fixed point set of

diag(−1, 1,−1) ∈ S1
1,0 is equal to S2×S1/Z2 which is totally geodesic and admits no metric

of positive curvature. S2 × S1/Z2 is also the fiber of one of the fibrations W1,0 → CP2. In
this normalization Wp,q, p ≥ q > 0, becomes a fat bundle over CP2 with fiber S3/Zp+q.

W1,1 is special in that it is a principal SO(3) bundle over CP2, as was first observed by
Chaves and rediscovered later by Shankar. In fact, all bundles over CP2 can be viewed as
bundles associated to the principal bundle U(2) → SU(3) → SU(3)/U(2) = CP2 with fiber
U(2)/ diag(zp, zq):

SU(3)/S1
p,q = SU(3)×U(2) U(2)/ diag(zp, zq)

and

W1,1 = SU(3)×U(2) U(2)/Z(U(2)) = SU(3)×U(2) SO(3) = SU(3)/Z(U(2))×SO(3) SO(3)

becomes a principal SO(3) bundle over CP2.
Another way of looking at this fact is that in general, N(H)/H acts freely on G/H

on the right, and N(S1
p,q)/Sp,q = S1 if (p, q) 6= (1, 1), but N(Sq1,1)/S

1
1,1 = U(2)/S1

1,1 =
U(2)/Z(U(2)) = SO(3). Since Z2×Z2 ⊂ SO(3), one gets the counterexamples to the Chern
conjecture due to Shankar. We will also use the fact that H4(Wp,q,Z) = Zp2+q2+pq and hence
get infinitely many distinct bundles over CP2.

The SO(3) principal bundle SO(3) → W1,1 → CP2 has w2 6= 0 (since otherwise, W1,1

would have a 2–fold spin cover, although the Wp,q are simply connected) and p1[P ] = −3
since in general, for SO(3) → P → B4 one can show that H4(P,Z) = Z(p1(P )[B]) and
p1(P )[B] = 1 mod 4 in our case. The Allof–Wallach metric on W1,1 is clearly a connection
metric for the principal bundle, and hence it is a fat bundle. Also notice that the metric on
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the fiber is a biinvariant metric, since Qt|U(2) is biinvariant and S1
1,1 = Z(U(2)). As observed

before, W 1
1,1 is also T1CP2 where the S3 fibration is given by the other embedding of U(2)

and is not fat.
In general, the metric on the fiber U(2)/ diag(zp, zq) induced by the Allof-Wallach metric

Qt, Q(A,B) = −1
2
tr AB on su(3) is given by the normal homogeneous metric induced by

Qt|U(2)(A, B) = − t
2
tr AB − t

2
(tr A)(tr B), for A,B ∈ u(2) ⊂ su(3), since the embedding is

of the form (
A 0
0 − tr A

)
∈ su(3)

The induced metric on U(2)/ diag(zp, zq) = S3/Zp+q can be described as a Berger type metric
in general. A computation shows that it is given by

p2 + q2 − pq

(p2 + q2)2
· t · g0|V + tg0|H

where S1 → S3 → S2 is the Hopf fibration with g0 = S3(1). In particular, the metric on
S3/Zp+q is the round sphere metric iff p + 1, q = 0, i.e. for the fibration S3 → W1,0 → CP2

which is not fat. In the case of the SO(3) bundle W1,1 the metric 1
4
g0|V+g0|H is the biinvariant

metric on SO(3). But in all other cases, the metric is a Berger type metric.
Let us present the argument in the case of the S3 bundles, i.e. if p+q = 1. In that case, as

explained later, the action of U(2) on S3 = U(2)/ diag(zp, zq) extends to the linear action of
U(2) on C2 : v → (det A)−pA(v). If we start with the biinvariant metric Q(AB) = −1

2
tr AB

on su(3), then it induces the following metric on U(2) ⊂ SU(3):

Q(A,B) = −1

2
tr AB − 1

2
(tr A)(tr B) for A,B ∈ u(2)

The orthogonal complement of h, where H = S1
p,q, with respect to this metric is spanned by

A = diag(−iq, ip)) and W =

(
0 w
−w 0

)
, where w ∈ C. We have Q(W,W ) = |w|, Q(W,A) =

0, Q(A, A) = p2 + q2− pq. The corresponding action fields on S3 have value at 1 ∈ S3 equal
to W ∗(1) = (0, w) ∈ T1S

3 = {(ia, w) : a ∈ R, w ∈ C} and A∗(1) = (−i(p2 − pq + q), 0).
Hence for the induced action on S3, the W direction has the usual length, but (i, 0) has

length squared equal to p2+q2−pq
(p2−pq+q)2

= 3p(p−1)+1
(2p(p−1)+1)2

since p + q = 1. Notice that this length is 1

iff p = 0, 1 (the fiber is the round sphere), and is < 1 for p > 1 (a Berger type metric).

4. Fat Bundles over 4–manifolds

Fat bundles over 2–manifolds are not very interesting, since they consist only of circle
bundles over B2 and a circle bundle is fat iff the curvature is a symplectic 2–form on the
base, i.e. a volume form in this case. Hence every nontrivial circle bundle over B2 is fat.

But flat bundles over 4–manifolds B4 are already quite interesting. For simplicity, we
assume that B is simply connected. Due to the dimension restriction in the first section, we
only need to look at principal S1 and S3 or SO(3) bundles over B4, or at principal SO(4)
bundles which are SO(3) fat, or at principal U(2) bundles which are U(1) fat. We first
review the classification of principal SO(4) bundles over B4 which will be essential for later
on. The basic result is
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Theorem 4.1. (Dold–Whitney)

(a) Principal SO(4) bundles SO(4) → P → B4 are classified by w2(P ) ∈ H2(B,Z2) =
H2(B,Z)

⊗
Z2, p1(P ) ∈ H4(B,Z), and e(P ) ∈ H4(B,Z), and the latter two we

often identify with integers by evaluating on an orientation class [B] (not all values
are allowed).

(b) SO(3) → P → B are classified by w2(P ) ∈ H2(B,Z2) and p1(P ) ∈ H4(B,Z),
where the allowed values for w2 are arbitrary and p1(P )[B] = e2[B] mod 4, where
e = w2 mod 2.

If we start with a principal bundle SO(4) → P → B, we get two associated SO(3)
principal bundles: Let S3

± ⊂ SO(4) be the two simple subgroups of SO(4) coming from
left multiplication (S3

−) and right multiplication (S3
+) with S3 = Sp(1) on H = R4. Then

SO(4)/S3
± ' SO(3) and hence we get that SO(3) → P± = P/S3

± → B are principal SO(3)
bundles. Now one easily shows that:

a) p1(P±) = p1(P )± 2e(P ), and w2(P ) = w2(P±).

b) P is uniquely determined by P+ and P−, and conversely, given two principal SO(3)
bundles P+ and P− with w2(P+) = w2(P−), there exists a unique SO(4) principal
bundle P associated to P− and P+ as above. This also determines the allowed values
for w2, p1 and e for SO(4) principal bundles.

c) The structure group of the SO(4) bundle P → B reduces to U(2) ⊂ SO(4) iff the
structure group of one of the bundles P+ or P− reduces to SO(2) ⊂ SO(3). Indeed,
if P reduces to U(2) → P ∗ → B, then P = P ∗ ×U(2) SO(4), and hence if S3

− ⊂
U(2) ⊂ SO(4) (or S3

+ for the other embedding), then P− = P ∗ ×U(2) (SO(4)/S3
−) =

P ∗×U(2) SO(3) with U(2) ⊂ SO(3) given by U(2) → U(2)/SU(2) = SO(2) ⊂ SO(3)
and hence P− = P ∗ ×U(2) SO(3) = P ∗/SU(2) ×SO(2) SO(3), or P− is the SO(3)
extension of S1 → P ∗/SU(2) → B.

d) Similarly, the structure group of SO(4) → P → B reduces to SU(2) = S3
± ⊂ SO(4)

iff one of P+ or P− is trivial as an SO(3) principal bundle.

Another way of looking at P± is as follows: let E = P ×SO(4) R4 → B be the associated
vector bundle, which comes with an inner product. Using the ∗ operator on 2–forms (where
∗2 = 1), we get the descomposition Λ2E = Λ2

+E ⊕ Λ2
−E into ±1 eigenspaces of ∗. Λ2

±E are
now 2–three dimensional vector bundles over B and it is not hard to see that the principal
frame bundle of Λ2

±E is precisely P±. We can apply these construction in particular to
the tangent bundle τ of B and get two SO(3) bundles P±(τ) = P (τ)±. In this case the
Hirzebruch signature theorem implies that the signature s(B) = 1

3
p1(P (τ))[B], and also

e(P (τ))[B] = χ(B). Hence p1(P±(τ))[B] = 3s(B) ± 2χ(B). The main theorem of the
subject is

Theorem 4.2 (Derdzinski–Rigas). If SO(3) → P → B4 with principal connection θ is
SO(3) fat, then there exists a conformal structure on B4 and an orientation on B4 such that
the curvature Ω is self–dual, i.e. Q(Ω, u) ∈ Λ2

+τ for any u ∈ so(3)

Corollary 4.3. A fat SO(3) principal bundle P → B is isomorphic to P+(τ) or P−(τ)
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Proof: Fix a basis ui of so(3). Then Q(Ωp, ui) is a basis of Λ2
+τ and hence an element of

P+(τ). This gives an SO(3) equivariant isomorphism P → P+(τ).

Corollary 4.4. If S3 → P → B4 is a fat bundle, then B4 is spin, and P is isomorphic
to the 2–fold spin cover of P+(τ) or P−(τ).

Theorem 4.5. If SO(4) → P → B is a principal bundle with connection θ that is SO(3)
fat (SO(3) ⊂ SO(4)) then

(a) [Wei80]? There exists an orientation on B4 and an orientation on E = P ×SO(4) R4

such that P+ is isomorphic to P+(τ).
(b) [DR81] With these orientations,

|p1(P−)[B]| < p1(P+)[B] = p1(P+(τ)[B] = 3s(B) + 2χ(B)

Proof of (a): Corresponding to Λ2R4 = Λ2
+R4 ⊕ Λ2

−R4 one has (under the natural SO(4)
equivariant isomorphism Λ2R4 ' so(4)) that so(4) = so(3) ⊕ so(3), a direct sum of simple
ideals, and the natural embedding SO(3) ⊂ SO(4) corresponds to 4so(3) ⊂ so(3) ⊕ so(3).
Ω : TP → so(4) = so(3) ⊕ so(3) splits up into Ω = (Ω−, Ω+), Ω± : TP → so(3). Also
θ = (θ−, θ+) and θ± can be regarded as connections on the principal bundles P± with
curvature Ω±. θ is SO(3) fat iff Q(Ω(X, Y ), u) is nondegenerate for all u ∈ so(3)⊥ or
equivalently prso(3)⊥(Ω(X, Y )) 6= 0 for all X ∧ Y 6= 0, or Ω−(X, Y ) 6= Ω+(X, Y ). Under
the Ad(SO(4)) orbit, this corresponds to AΩ−(X, Y ) 6= BΩ+(X, Y ) for A,B ∈ SO(3),
or equivalently |Ω−(X,Y )| 6= |Ω+(X, Y )|. A change of orientation in E = P ×SO(4) R4

interchanges P+ and P− and hence we can assume |Ω−(X, Y )|2 < |Ω+(X,Y )|2. In particular
Ω+(X, Y ) 6= 0, which means that P+ is SO(3) fat and by Theorem 4.1 isomorphic to P+(τ)
for appropriate orientation on B4.
Proof of (b): For any SO(3) principal bundle P with connection θ and curvature Ω we have
by Chern–Weyl theory

p1(P )[B] =
1

4π2

∫

B

Ω ∧ Ω =
1

4π2

∫

B

< Ω, ∗Ω >

. If Ω is self–dual, p1(P ) = 1
4π2

∫
B
|Ω|2 and in general |p1(P )[B]| ≤ 1

4π2

∫
B
|Ω|2 by Cauchy–

Schwartz. In ?? can ?? know that Ω+ on P+ is self dual and hence

|p1(P−)[B]| ≤ 1

4π2

∫

B

|Ω−|2 <
1

4π2

∫

B

|Ω+|2 = p1(P+)[B] = p1(P+(τ))[B] = 3s(B) + 2χ(B)

¤

Corollary 4.6. [DR81] The only SO(4) principal bundle over S4 that is SO(3) fat is
the SO(4) bundle associated to the Hopf bundle S3 → S7 → S4.

Proof: The frame bundle of τ = τ(S4) is SO(4) → SO(5) → SO(5)/SO(4) = S4 and hence
P± = SO(5)/S3

±, with S3
± ⊂ SO(4).

Under the 2–fold cover Sp(2) → SO(5) one has Sp(1) × Sp(1) → SO(4) (since S4 =

HP1 = Sp(2)/Sp(1) × Sp(1)) and hence the spin cover is P̃±(τ) = Sp(2)/Sp(1) × {1} or
Sp(2)/{1} × Sp(1) = S7 with induced Sp(1) action given by left or right multiplication on
S7 ⊂ H2. Hence P±(τ) are the two induced Hopf bundles SO(3) → RP7 → S4 of the left and
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right Hopf bundles. Notice that w2(P±(τ)) = w2(P (τ)) = 0 and p1(P±(τ))[B4] = p1(P (τ))±
2e(P (τ))[B4] = ±4. Now if P is an SO(4) bundle over S4 that is SO(3) fat, we have that for
appropriate orientations that P+ ' P+(τ) is the Hopf bundle, |p+(P−)[S4] < p1(P+(τ)) = 4
and since w2(P−) = 0 we need p1(P−)[S4] = 0 mod 4, and hence P− is trivial, which implies
that P is the SO(4) bundle associated to the Hopf bundle. ¤

We now apply Theorems 4 and 5 to the case of B4 = CP2, but before we do this, let us
shortly disgress and look at the bundles

S3/Zp+q = U(2)/S1
p,q → Wp,q = SU(3)/S1

p,q → CP2

discussed in Example (P.5). If p+q = 1, there are S3 bundles over CP2 and hence correspond
to a certain SO(4) principal bundle SO(4) → Pp,q → CP2 (but are not fat, unless p = q = 1.
Let us determine what bundle this is by computing P± for this bundle. The transitive ac-
tion of U(2) on S3 = U(2)/ diag(zp, zq) extends to the linear action of U(2) on C2 given by

v
φ→ (det A)−p ·A(v) and hence E = SU(3)×U(2)C2 and P = SU(3)×U(2) SO(4) with homo-

morphism φ : U(2) → SO(4). Hence, if φ(SU(2)) = S3
− ⊂ SO(4), we get P− = SU(3)×U(2)

(SO(4)/S3
−) = SU(3)×U(2)SO(3) with homomorphism U(2) → SO(3) given by the composi-

tion U(2)
det→ U(2)/SU(2) = U(1) → SO(3), eiθ → R((−2p + 1)θ). Indeed, det diag(eiθ, 1) =

eiθ and φ(diag(eiθ, 1)) = diag(eiθ(−p+1), e−ipθ) ⊂ SO(4), and S3
− × S3

+ → SO(4) is send-

ing (eiθ, eiψ) → (ei(θ−ψ), ei(θ+ψ)). Hence P− is the SO(3) extension of the SO(2) bun-
dle with Euler class e = −2p + 1 (and hence w2(P±) = w2(P ) = 1). Indeed P− =
SU(3)/SU(2) ×U(1) SO(3) = S5

U(1)SO(3) where U(1) acts via the Hopf action on S5 and
U(1) → SO(3) sends eiθ → R((−2p + 1)θ).

Similarly, P+ = SO(3)U(2)SO(4)/S3
+ = SU(3)U(2)SO(3) with homomorphsim U(2) →

U(2)/Z(U(2)) = SO(3). Hence P+ = SU(3)/Z(U(2))SO(3)SO(3) = W1,1 is our fat SO(3)

principal bundle over CP2.
Notice that the tangent bundle τ of CP2 corresponds to p = −1 and hence P+(τ) = W1,1,

P−(τ) = S5
U(1)SO(3) which is the SO(3) extension of the SO(2) bundle with Euler class 3.

It follows that p1(P+(τ))[CP2] = −3 or better p1(P+(τ))[CP2] = 3 and p1(P−(τ))[CP2] =
e2 = 9, which agrees with p1(P±(τ)) = 3s(B)± 2χ(B).

Theorem 4.2 now implies that P+(τ) and P−(τ) can be the only possible SO(3) fat bundles
over CP2. Hence, if we apply Theorem 4.5, we get the following two possibilities for principal
SO(4) bundles P over CP2 which are SO(3) fat: P+ ' P+(τ) = W1,1 and |p1(P−)| <

p1(P+(τ))[CP2] = 3 and hence p1(P−)[CP2] = 1 which means that P− is the SO(3) extension
of the Hopf bundle S1 → S5 → CP2. This means that P is the SO(4) extension of the U(2)
bundle U(2) → SU(3) → CP2 under the homomorphism U(2) ↪→ SO(4), v → A(v). This
bundle probably does not have a fat SO(3) extension, since the associated sphere bundle
is SU(3)U(2)S

3 = SU(3)U(2)U(2)/ diag(z,1) = SU(3)/ diag(z, 1, z̄) = W1,0 which does not have
a homogeneous connection metric with positive curvature. The other possibility is that
P+ ' P−(τ) which is the SO(3) extension of the S1 bundle S3/Z3 → CP2 with Euler class
3α and since p1(P−(τ)) = 9, we get |p1(P−)| < 9 or p1(P−)[CP2] = 1,−3, 5,−7. At last we
get

Corollary 4.7 (Chaves). There are at most 5 principal SO(4) bundles over CP2 which
are SO(3) fat.
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Actually, we believe that the following is true:

Problem 3. (a) Show that for a fat SO(3) principal bundle SO(3) → P → B4 one
cannot reduce the structure group to SO(2) (or more generally if G → P → B is a fat
principal bundle, the structure group does not reduce!)
(b) Show that the principal SO(4) bundle SU(3)U(2) SO(4) with usual embedding U(2) ⊂
SO(4) does not have an SO(3) fat connection (since its structure group reduces, this is also
related to (a))

If both are true, it would follow that CP2 has no SO(4) principal bundles which are SO(3)
fat, and that the only SO(3) principal bundle which is fat is W1,1 → CP2. It would also
follows that S2×S2 and CP2# . . . #CP2 have no SO(4) bundles that are SO(3) fat, and no
SO(3) fat bundles since one easily shows that for these two manifolds, P±(τ) both reduce to
SO(2) bundles.

But notice that nevertheless (as observed by Chaves), one has infinitely many S3/Zp+q

bundles over CP2 which are fat, given by S3 = U(2)/S1
p,q → SU(3)/S1

p,q → CP2 if p · q > 0.
The metrics are only U(2) invariant and are Berger type metrics.

One should therefore look at the more general question of whether there are U(2) principal
bundles U(2) → P → B4 which are S1

p,q fat for some p, q. If p + q = 1 this will correspond

to fat S3 bundles over B4 where the metric on the fiber is only U(2) invariant and not
necessarily a round sphere. As in the case of SO(4) bundles, we can assocaite an SO(2)
bundle P− = P/SU(2), SU(2) ⊂ U(2), U(2)/SU(2) = S1 and an SO(3) bundle P+ =
P/Z(U(2)), U(2)/Z(U(2)) = SO(3).

Theorem 4.8. If U(2) → P → B4 is S1
p,q = diag(zp, zq) fat, then (p, q) 6= (1,−1) and

if p + q 6= 0, then for some choice of orientation on B4 we have that P+ ' P+(τ) is a fat
SO(3) principal bundle. Furthermore, if p + q 6= 0, p− q 6= 0, then

|p1(P−)| <
(

p + q

p− q

)2

p1(P+(τ))[B] =

(
p + q

p− q

)2

(3s(B) + 2χ(B))

Proof: If θ is fat with curvature Ω, we have Ω : TP → u(2) = so(3) ⊕ R, θ = (θ+, θ−),
Ω = (Ω+, Ω−). h⊥, where H = S1

p,q always contains a vector u ∈ so(3), and hence Q(Ω, u) =
Q(Ω+, u) must be non–degenerate, which means that θ+ in P+ is fat. Since h is generated by
(p− q) diag(i,−i)+ (p+ q) diag(i, i) ∈ so(3)+R, the Ad(U(2)) orbit of (Ω−, Ω+) is non–zero
in h⊥ iff |p + q||Ω+(X, Y )| − |p − q||Ω−(X, Y )| 6= 0 and it must be > 0 since there always
exist X, Y with Ω(X,Y ) 6= 0.

Hence |p + q||Ω+(X, Y )| > |p − q||Ω−(X,Y )| which implies that p + q 6= 0. If p + q 6= 0
and p− q 6= 0, then the same argument in the proof of Theorem 5 implies the inequality on
P1(P ). ¤

If B = S4, then P+ is the Hopf bundle and P− is trivial, and hence P is the U(2) extension
of the Hopf bundle. But notice that example E.7 indeed shows that this bundle is S1

p,q fat
for most p, q.

For B4 = CP2, we at least get e.g. in the case q p+q = 1, i.e. S3 bundles, a contradiction,
unless (p, q) = (1, 0), and if P+ ' W1,1 (it must be if problem 1 is correct) we get p1(P−) = 1,
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which means P = SU(3) → CP2, which might be diag(z, 1) fat. Of course, again, we have
P/ diag(z, 1) = W1,0!

We end this section with the following natural problems:

Problem 4. Develop an analogue of Theorems 3 and 4 for principal G–bundles over
B8 using the recently developed analogues of self duality in dimension 8 [Joy96] [FK98] [?].
Study its application to S8: are there any SO(k) principal bundles which are SO(k − 1) fat
for k = 6, 7, 8 (classified by p2 for k = 6, 7 and p1 and e for k = 8). In particular, is the
Hopf bundle the only such bundle for k = 8? Also study B = HP2, CP4, G2/SO(4) and
G2(R6), where one has natural examples of fat bundles (Berard–Bergery). How about SO(6)
principal bundles over S6 (classified by p2) which are SO(5) fat?

5. Nonnegative curvature vector bundles and sphere bundles

We now look at the question which motivated the study of fat bundles, namely when
does the metric on the total space have positive or nonnegative sectional curvature? We will
concentrate on SO(k) principal bundles and their associated Sk−1 sphere bundles, but also
study the question of whether the associated k–dimensional vector bundle has nonnegative
curvature, which turns out to be closely related.

For vector bundles, we remark that a theorem of Walschap [GW00] implies that if a
vector bundle has nonnegative curvature (with the soul being the zero section), then the
boundary of a small tubular neighborhood, which is the sphere bundle of the vector bundle,
also has nonnegative curvature (the converse is unknown, see problem 9). Also, if the
vector bundle has nonnegative curvature, then one can change the metric outside a small
tubular neighborhood of the soul such that sec ≥ 0, and the normal exponential map is a
diffeomorphism (Guijarro, [Gui98]). This reduces the problem to one only near the soul, and
is the motivation why problem 9 might be correct.

We start with the simplest case, that of a principal S1-bundle or a 2-dimensional vec-
tor bundle (oriented for simplicity). By the above remarks, the vector bundle has non −
negativecurvature invariant under the S1 action.

Let θ be a connection on the principal S1 bundle S1 → P
π→ B which induces a connec-

tion metric gt(X, Y ) = tθ(X)θ(Y ) + gB(π∗(X), π∗(Y )) for some t > 0. This situation was
examined by D.G.Yang in [Yan95] and earlier by Chaves-Derdzinsky-Rigas in [CR92].

Let Ω be the curvature of θ, Ω = θ, and hence Ω = π∗(α) where α is a closed 2-form on
B with [α] the Euler class e(P ). Conversely, for every closed 2-form α with [α] = e(P ) ∈
H2(B,Z) there exists a connection θ with dθ = π∗(α), unique up to gauge transformations.
In the following, we will use the notation k(X, Y ) =< R(X, Y )Y,X > for the unnormalized
sectional curvature.

Theorem 5.1. (Yang?)
(a) gt on P has non− negativecurvature iff

(∇Xα)(X, Y )2 ≤ |iXα|2
(

kB(X, Y )− 3

4
t2α(X,Y )2

)
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(b) gt has sec > 0 (for sufficiently small t) iff

(∇Xα)(X,Y )2 < |iXα|2kB(X,Y )

for all X ∧ Y 6= 0

Notice that K(X, U) = t2|iXα|2 by our previous discussion and K(X, Y ) = KB(X,Y ) −
3
4
t2α(X,Y )2 by ONeill formula. The term∇Xα enters since 〈R(Y,X)X, U〉 = t

2
(∇Xα)(X, Y ).

Notice also that every 2-plane in P has the form (X, cos θY + sin θU) for X,Y horizontal
and one shows that the sectional curvature of this 2-plane is equal to

1

4
t2 cos2 θ‖iXα‖2 + sin2 θ(KB(X,Y )− 3

4
t2α(X, Y )2)− t sin θ cos θ(∇Xα)(X, Y )

from which (a) follows immediately, and for (b) we remark that KB > 0 is required and
hence KB ≥ δ ≥ 0 for some δ which means that < in (a) is equivalent to (b) for t small.
Also, notice that if (a) or (b) holds for one t0, then it holds for all t ≤ t0.

Da Gang Yang [Yan95] used (a) to prove:

Theorem 5.2 (D.G.Yang). Every circle bundle over CPn#−CPn has a connection metric
with non− negativecurvature.

Question. What about circle bundles over CPn#CPn?

Corollary 5.3 (Berard-Bergery). Ric(gt) ≥ 0 iff for X ∈ TB,

|δα(x)|2 ≤ |α|2(2 RicB(X)− t2|iXα|2)
Hence, if RicB > 0 and if we choose α harmonic and t small, then Ric(gt) ≥ 0 and is

positive at a point if |α| > 0. One can then make Ric > 0, unless α = 0 identically .
Let us know look at the case secP > 0 for a connection metric on P . Theorem 5.1(b) of

course implies secB > 0 and α symplectic, i.e. α fat.

Problem 5. Given a manifold B with secB > 0 where B is also a symplectic manifold,
choose an e ∈ H2(B,Z) which contains a symplectic 2–form and let S1 → P → B be the S1

bundle with Euler class e. Can one always find a symplectic form α with [α] = e such that
5.1(b) is satisfied (i.e, a connection metric with sec > 0 on P )? We can normalize the metric
on B such that secB ≥ 1 and hence we need (∇Xα)(X, Y )2 < |iXα|2 · |X ∧ Y |2. Notice that
this could be implied by the stronger inequality (*) |∇Xα|2 < |ixα|2 which now becomes a
problem in symplectic geometry: when can you find α in its cohomology class such that * is
satisfied? E.g, use some kind of heat flow method to change α ?

Example 5.4. The inequality is of course satisfied if ∇α = 0, i.e. on a Kahler manifold.
But the only known Kahler manifold with secB > 0 is biholomorphic to CPn and hence
P = S2n+1. Of course, the weaker condition 5.1(a) is satisfied for all of the circle bundles in
example E2.

Example 5.5. Let B = SU(3)/T 2 = W 6 be the Allof-Wallach flag manifold, and P =
SU(3)/S1

p,q. Since S1
p,q ⊂ T 2, we get the S1 bundle S1 = T 2/S1

p,q → W 7
p,q → SU(3)/T 2 and

the Allof-Wallach metric is as decribed earlier, and hence is a connection metric with sec > 0
if p ≥ q > 0 (excluding only W1,0). Although SU(3)/T 2 is also a Kahler manifold, none of
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the Allof-Wallach metrics can be Kahler metrics (although the two sets of metrics intersect
in their closure!). The cohomology ring of SU(3)/T 2 (using Borel Theory) is given by

H∗(SU(3)/T 2,Z) = Z[u, v]/ < u3 = 0, u2 + uv + v2 = 0 >

where u, v ∈ H2(B,Z) = Z + Z are the image under transgression of the description T 2 =
diag(z, w, zw) ⊂ SU(3), i.e. the z and the w are circles. Hence one gets for the Euler class
e(Wp,q) = −qu + pv. Hence every circle bundle over SU(3)/T 2 which is simply connected
(corresponding to indivisible elements in H2(B,Z) i.e. (p, q) = 1) are of the form Wp,q for
some p, q.

Notice that H4(B,Z) = Z + Z with generators u2, v2 (and relation uv = −u2 − v2), and
H6(B,Z) = Z with generator u2v (and uv2 = −u2v, v3 = 0). Hence e3 = (−qu + pv)3 =
qp(q + p)uv2.

Thus only the circle bundle with pq(p + q) = 0 (corresponding to W1,0) does not contain a
symplectic form in its cohomology class (and hence cannot have any connection metric with
sec > 0). Of course in all other cases the Alof-Wallach metric induces a symplectic form α
that satisfies 5.1b.

Example 5.6. The only other known symplectic manifold with sec > 0 is the inhomoge-
neous Eschenburg flag manifold E6 = SU(3)//T 2 where T 2 acts freely on SU(3) as




z
w

z2w2


 SU(3)




1
1

z2w2



−1

and the metric gt on SU(3) (shrank in the direction of U(2)) induces sec > 0 on E6. We
can again choose S1

p,q ⊂ T 2, (p, q) = 1, and consider the Eschenburg manifolds




zp

zq

zp+q


 SU(3)




1
1

z2p+2q



−1

Now the metric gt from SU(3) induces sec > 0 on Ep,q iff p · q > 0 (Eschenburg). This
is only half of all possibles S1 bundles over E6! Notice also that E1,−1 = W1,0. Eschenburg
showed that

H∗(E6,Z) = Z[u, v]/ < u2 + 3uv + v2 = 0, u3 = 0 >

(since u2 + 3uv + v2 is indefinite, and u2 + uv + v2 is positive definite, W 6 and E6 do have
non-isomorphic cohomology rings!)

Again H4(E6,Z) = Z+Z with generators u2, uv (and v2 = −u2−3uv) and H6(E6,Z) = Z
with generator u2v (and uv2 = −3u2v, v3 = 8u2v). One can also show that e(Wp,q) =
(−p+2q)u+ (p+ q)v and hence e3 = (p+ q)(2p2 +2q2 + pq2?)u2v. Then e3 = 0 iff p+ q = 0
and hence E1,−1 is the only circle bundle whose Euler class does not contain any symplectic
form! The challenge is now to solve problem 5 in this particular case, hopefully for all
p + q 6= 0. This would be very interesting for the following reason:

Eschenburg showed that H4(Ep,q,Z) = Zp2+q2+3pq but now p2 + q2 + 3pq is indefinite and
for each n ∈ Z there are infinitely many solutions of p2 + q2 + 3pq = n (in the Allof-Wallach
case p2 +q2 +pq = n there are only finitely many!). In the case of n = ±1, one gets infinitely
many Eschenburg spaces Ep,q with H∗(Ep,q,Z) = H∗(S2 × S5,Z)!
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But even in the case p · q > 0, the Eschenburg metrics on Ep,q are not connection metrics
since one easily shows that the length of the fibers in S1 → Ep,q → SU(3)//T 2 is not constant.
Hence the first question is

Problem 6. For what values of p, q (p + q 6= 0) does (p + 2q)u + (p + q)v ∈ H2(E6,Z)
contain a symplectic 2-form? If yes, does it satisfy 5.1b or does a heat flow change it to one
that satisfies 5.1b?

But the Eschenburg metrics belong to the following more general class of metrics on circle
bundles, described by a connection θ and a function f : B → R

gt = f · θ(x)θ(y) + gB(π∗(x), π∗(y))

i.e. the horizontal span is still given by an S1 invariant distribution, but the fiber over p ∈ B
has now length 2πf(b) and hence are not anymore totally geodesic (the metrics agree with
Riemannian submersions P → B where the S1 action still acts by isometries).

One now shows (see e.g. Tapp) that secP > 0 iff

(∇xα)(x, y)2 < (|ixα|2 + Hess(f)(x, x))kB(x, y)

for any x, y ∈ TB.
Now it does not follow any more that α must be symplectic. A good exercise would be to

compute α and f for the Eschenburg metrics and see if one can change them so that this
inequality is satisfied for all p, q (most p, q?) (another “heat flow?)

The spaces E7
p,q and E6 can also be viewed as bundles over CP2 since the free T 2 action

on SU(3) extends to a free U(2) action:

(
A 0
0 det A

)
SU(3)

(
1 0
0 (det A)2

)−1

A ∈ U(2)

and SU(3)//U(2) is again CP2 since if we first divide by SU(2) ⊂ U(2) we get SU(2)\SU(3) =
S5 and the ?? action of Z(U(2)) = diag(z, z), |z| = 1, becomes the action on S5 ⊂ C3 given
by multiplication with diag(z, z, z) which is equivalent to the Hopf action. As before we
conclude that Ep,q → CP2 is a bundle with fiber U(2)/ diag(zp, zq) = S3/Zp+q and hence a
sphere bundle if p + q = 1 (not possible if p · q > 0). Also, as was observed by Shankar,
E1,1 = SU(3)//Z(U(2)) = SU(3)U(2)SO(3) becomes an SO(3) principal bundle and since

H4(E1,1) = Z5 we have w2 = 1, p1 = 5 for this principal bundle. Notice that Theorem 4.1
implies that this principal bundle has no connection metric with sec > 0 (in the Eschenburg
metric the fibers are not totally geodesic). Also, the S3 bundles Ep,q → CP2 with p + q = 1
have P+ = E1,1, P− = SO(3)-extension of the SO(2) bundle over CP2 with e = −2p + 1
(where P is the SO(4) principal bundle corresponding to the S3 bundle).

If we look at the principal G bundle with G 6= S1, then we can find a connection metric
on the total space with sec > 0 only if G admits a left invariant metric with sec > 0, i.e.
only if G = SO(3) or S3 (Wallach). This case was examined by Chaves-Derdzinski-Rigas:

Theorem 5.7. A connection metric on G → P → B with G = SO(3) or S3 and with
biinvariant metric Q on G has sec > 0 (for t sufficiently small, t the scale in the fibers) iff
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(∇xΩu) (x, y)2 < |ixΩu|2kB(x, y)

for all x, y and u ∈ g, where Ωu = Q(Ω, u),

Notice that if this inequality holds for one u ∈ g, then it does for all u since the adjoint
orbit of u is the sphere in g of radius |u|.

The inequality in Theorem 5.7 comes again from looking at planes of the form (x, cos θy +
sin θu) and is equivalent to these planes having positive sectional curvature. Now it is
somewhat more surprising that this condition is also sufficient since there are many other
planes on P .

We now look at the case of higher dimensional vector bundles and sphere bundles.
For a vector bundle Rk → E → B the situation was examined in Strake-Walschap [SW90]

and Tapp [Tap00]. We consider connection type metrics of the following type:
Let < , > be a metric in the vector bundle and ∇ a compatible connection with curvature

R∇. ∇ defines the horizontal distribution on E which we use to define the metric on E
and the metric on the fibers Rk we choose to be rotationally symmetric: dt2 + f 2(t)dθ2 for
some function f . For this metric on Rk to have sec ≥ 0 we need −f ′′/f ≥ 0 (curvature of
∂/∂t, ∂/∂θ) and (1 − f ′2)/f 2 ≥ 0 (curvature of ∂/∂θ1, ∂/∂θ2). But it turns out that this
function is not relevant, except that it helps if we make −f ′′/f very large at t = 0 to ensure
large curvature for these 2-planes near the 0-section, e.g. if we choose f 2 = ε2t2/ε2 + t2,
−f ′′/f = 3ε2/(ε2 + t2)2 which becomes large at t = 0 if ε small.

Notice that |f | ≤ ε, i.e. the fibers becomes very narrow (this is precisely the metric
one gets on TSn = SO(n + 1)SO(n)Rn when choosing Q = −1

2
tr AB on SO(n + 1) and

the flat metric on Rn, where ε = 1). This can be explained by our earlier remark that
non − negativecurvature becomes essentially a condition near the 0-section. Here is a
necessary condition for this metric to have non− negativecurvature:

Theorem 5.8 (Strake-Walschap). If the metric on E has non−negativecurvature, then

< (∇xR
∇)(x, y)u, v >2≤ |R∇(u, v)x|2(kB(x, y)− 3

4
ε2|R∇(x, y)u|2)

for all x, y, u, v and for some fixed ε > 0.

Here we set < R(u, v)x, y >=< R(x, y)u, v >.
The choice of an arbitrary small ε > 0 corresponds to the choice of the metric on Rk above.

The condition comes from looking at 2-planes at u ∈ E spanned by (x, y + tv), where x, y
are the horizontal lifts of x, y ∈ TB.

This inequality implies that < ∇xR
∇(x, y)u, v >2≤ |R∇(u, v)x|2kB(x, y) but not necessar-

ily conversely. In [SW90] it was also shown that if kB > 0 and ∇ was radially symmetric (i.e.
∇xR

∇(x, y)u = 0) then there exists a connection metric on E with non−negativecurvature.
But in [GSW00] it was shown that e.g. a vector bundle over an irreducible symmetric space
B which admits a connection with ∇R = 0 must be a homogeneous vector bundle.

Tapp examined when this kind of connection metric in the sphere bundle has sec > 0,
where one has the choice of making the radius of the (round) sphere arbitrarily small. He
obtained the following result, which improves some previous results in [SW90].
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Theorem 5.9 (Tapp). A connection metric on the sphere bundle has sec > 0 for suffi-
ciently small radius if and only if

< (∇xR
∇)(x, y)u, v >2< |R∇(u, v)x|2kB(x, y)

for all x ∧ y 6= 0, u ∧ v 6= 0. In addition, one can then also find a metric on E with sec > 0
such that the metric on the sphere bundle (with sufficiently small radius) has sec > 0.

In particular, one has kB > 0 (clear from O’Neill) and R∇(u, v)x 6= 0 for all u ∧ v 6= 0,
x 6= 0, which is equivalent to (x, y) →< R∇(x, y)u, v > being nondegenerate for all u∧v 6= 0,
i.e. fatness, which is our old necessary condition for sec > 0 on the sphere bundle.

The condition on Theorem 5.9 again comes from looking at 2-planes of the form (x, y+ tv)
at u ∈ SE, v ⊥ u, and the extrinsic and intrinsic curvature of such 2-planes (in the vector
and sphere bundles) is the same!. But now it is even more surprising (and more difficult to
prove) that this condition is also sufficient.

Notice also that Theorem 5.7 and 5.9 say that an S2 bundle has a connection metric with
sec > 0 if and only if its SO(3) principal bundle has one with sec > 0!

We end these notes with a list of problems:

Problem 7. Is the condition in Theorem 5.8 also sufficient for a connection metric to
have non − negativecurvature on a vector bundle? (the answer is yes if the dimension of
the fiber is 2, by Theorem 5.1)

Problem 8. Is the condition in Theorem 5.8 also necessary and sufficient for a connec-
tion metric on the sphere bundle to have non−negativecurvature? Again the answer is yes
if the dimension of the fiber is 2.

Problem 9. If the sphere bundle of the vector bundle has a metric with non−negativecurvature,
does the vector bundle has a metric with non−negativecurvature (possibly inducing the given
metric on the sphere bundle)? Even for connection metrics this is unknown (but see Theorem
5.9 for a partial result). All known examples come from metrics on the principal bundle, and
hence, this is true in all examples.

Problem 10. Develop an analogue of Theorem 5.8 and Theorem 5.9 for connection met-
rics on vector bundles and sphere bundles, where the metrics on the fiber Sk is only homo-
geneous, but not SO(k + 1) invariant (e.g. U(n) invariant on S2n−1, or Sp(n) invariant on
S4n−1). It would be interesting to produce some exampels of connection metricsof this more
general type with nonnegative or positive curvature which do not admit SO(k + 1) invariant
metrics with nonnegative or positive curvature.

Problem 11. Are there connection metrics on vector bundles (and/or sphere bundles)
over S4 with non− negativecurvature? It is difficult to see any obstruction! The examples
in [GZ] are not of that type. If yes, the same question can be asked for vector bundles and
sphere bundles over S6 and S8 (for S7 bundles over S8 4095 of them are exotic 15-spheres!)
The methods in [GZ] do not seem to work well for vector bundles over S6 or S8!

Problem 12. Are there metrics on vector bundles and/or sphere bundles over S4 (maybe
connection metrics?) where the induced metric on S4 has sec > 0 or sec ≡ 1? (for the
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Gromoll-Meyer sphere, there is sec > 0 on S4!). In the [GZ] examples, every point on S4

has zero curvatures.
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