Hölder spaces lecture notes

Brian Krummel

January 26, 2016

1 Motivation

Over the next few lectures we want to establish an "regularity and compactness theory" for solutions to elliptic equations. By a regularity theory I mean theorem(s) stating that the regularity of a solution follows from the regularity of the coefficients, inhomogeneous term f, and other data. By a compactness theory I mean theorem(s) stating that given a sequence of solutions to elliptic equations and appropriate bounds, there exists a convergent subsequence. This will correspond to estimates called the Schauder estimates.

The simplest such theorem that one might imagine is that if u is a reasonable solution to an elliptic equation $L u=f$ in the unit ball $B_{1}(0)$ and the coefficients and f are all continuous, then $u \in C^{2}\left(B_{1 / 2}(0)\right)$ and

$$
\|u\|_{C^{2}\left(B_{1 / 2}(0)\right)} \equiv \sum_{|\alpha| \leq 2} \sup _{B_{1 / 2}(0)}\left|D^{\alpha} u\right| \leq C\left(\sup _{B_{1}(0)}|u|+\sup _{B_{1}(0)}|f|\right)
$$

for some constant $C \in(0, \infty)$ depending only on n and L. Such a theorem is false!
Additionally, we know that given a sequence $\left\{u_{j}\right\}$ of C^{2} functions (say solutions to elliptic equations) with $\sup _{j}\left\|u_{j}\right\|_{C^{2}\left(B_{1 / 2}(0)\right)}<\infty$, then it is possible that $\left\{u_{j}\right\}$ converges to a function that is not in C^{2}. However, if we additionally showed that $\left\{u_{j}\right\}$ is equicontinuous, then we could apply Arzela-Ascoli to extract a subsequence of $\left\{u_{j}\right\}$ converging to a C^{2} function i uniformly, and moreover the derivatives up to order two also converge uniformly.

Thus we will introduce a subset of $C^{k}(\Omega)$ known as Hölder spaces.

$2 C^{k, \mu}$ functions

Let Ω be an open set in $\mathbb{R}^{n}, k \geq 0$ be an integer, and $\mu \in(0,1]$. Given a function $u: \Omega \rightarrow \mathbb{R}$, we let

$$
[u]_{\mu, \Omega}=\sup _{x, y \in \Omega, x \neq y} \frac{|u(x)-u(y)|}{|x-y|^{\mu}} .
$$

We can regard $[u]_{\mu, \Omega}$ as a measure of the modulus of continuity of u. In the special case that $\mu=1$ and u is Lipschitz, $[u]_{1, \Omega}$ is the Lipschitz constant of u :

$$
[u]_{1, \Omega}=\operatorname{Lip} u=\operatorname{ess} \sup _{\Omega}|D u| .
$$

Given functions $u, v: \Omega \rightarrow \mathbb{R}$,

$$
[u+v]_{\mu ; \Omega} \leq[u]_{\mu ; \Omega}+[v]_{\mu ; \Omega} \quad[u v]_{\mu ; \Omega} \leq \sup _{\Omega}|u|[v]_{\mu ; \Omega}+[u]_{\mu ; \Omega} \sup _{\Omega}|v|
$$

Recall that $C^{k}(\Omega)$ is the space of all functions $u: \Omega \rightarrow \mathbb{R}$ such that $D^{\alpha} u$ exists and are continuous on Ω whenever $|\alpha| \leq k$. We define

$$
C^{k, \mu}(\Omega)=\left\{u \in C^{k}(\Omega):\left[D^{\alpha} u\right]_{\mu, \Omega^{\prime}}<\infty \text { whenever }|\alpha| \leq k \text { and } \Omega^{\prime} \subset \subset \Omega\right\}
$$

where $\Omega^{\prime} \subset \subset \Omega$ means that Ω^{\prime} is an open subset of Ω whose closure $\overline{\Omega^{\prime}}$ is compact. Note that in this definition of $C^{k, \mu}(\Omega)$ we do not say anything about the behavior of $u \in C^{k, \mu}(\Omega)$ at the boundary of Ω or at infinity, we only control the local modulus of continuity of $D^{\alpha} u$ in Ω for $|\alpha| \leq k$.

We let $C_{c}^{k}(\Omega)$ denote the set of $u \in C^{k}(\Omega)$ such that for some compact set $K \subset \Omega, u=0$ on $\Omega \backslash K$. Similarly, we let $C_{c}^{k, \mu}(\Omega)$ denote the set of $u \in C^{k, \mu}(\Omega)$ such that for some compact set $K \subset \Omega, u=0$ on $\Omega \backslash K$.

We define $C^{k}(\bar{\Omega})$ to be the set of $u \in C^{k}(\Omega)$ such that $D^{\alpha} u$ extends to continuous functions on $\bar{\Omega}$ whenever $|\alpha| \leq k$. As a slight abuse of notation, we will let $D^{\alpha} u$ denote the extension of $D^{\alpha} u$ to $\bar{\Omega}$. Note that if $u \in C^{k, \mu}(\bar{\Omega})$ and Ω is a C^{1} domain, then for every $x \in \partial \Omega, \alpha$ with $|\alpha| \leq k-1$, and $\varepsilon>0$ we can choose $\delta>0$ such that the following holds true. There exists a C^{1} diffeomorphism $\Psi: B_{\rho}(x) \rightarrow \mathbb{R}^{n}$ such that

$$
\Psi(x)=0, \quad D \Psi(x)=I_{n}, \quad\left|D \Psi(x)-I_{n}\right| \leq 1 / 2, \quad \Psi\left(B_{\rho}(x) \cap \Omega\right) \subseteq\left\{x \in B_{1}(0): x_{n}>0\right\}
$$

(where I_{m} denotes the $m \times m$ identity matrix); for example, translate x to the origin and rotate so that

$$
B_{\rho}(0) \cap \Omega=B_{\rho}(0) \cap\left\{\left(x^{\prime}, x_{n}\right) \in \mathbb{R}^{n-1} \times \mathbb{R}: x_{n}>\psi\left(x^{\prime}\right)\right\}
$$

for some C^{1} function $\psi: \mathbb{R}^{n-1} \rightarrow \mathbb{R}$ with $\psi(0)=0, D \psi(0)=0,|D \psi|$ is small and let $\Psi\left(x^{\prime}, x_{n}\right)=$ $\left(x^{\prime}, x_{n}-\psi\left(x^{\prime}\right)\right)$. Given $h \in B_{\rho}(0)$ with $x+h \in \bar{\Omega}$, let $\gamma(t)=\Psi^{-1}(t \Psi(x+h))$. By the fundamental theorem of calculus,

$$
\begin{aligned}
\left|D^{\alpha} u(x+h)-D^{\alpha} u(x)-D D^{\alpha} u(x) \cdot h\right| & =\left|\int_{0}^{1} D D^{\alpha} u(\gamma(t)) \cdot \gamma^{\prime}(t) d t-\int_{0}^{1} D D^{\alpha} u(x) \cdot \gamma^{\prime}(t) d t\right| \\
& \leq \int_{0}^{1}\left|D D^{\alpha} u(x+t h)-D D^{\alpha} u(x)\right|\left|\gamma^{\prime}(t)\right| d t \\
& \leq 4\left|D D^{\alpha} u(x+t h)-D D^{\alpha} u(x)\right||h|<\varepsilon|h|
\end{aligned}
$$

where we use the fact that

$$
\left|\gamma^{\prime}(t)\right|=\left|D \Psi^{-1}(t \Psi(x+h)) \cdot \Psi(x+h)\right| \leq\left|D \Psi^{-1}(t \Psi(x+h))\right||\Psi(x+h)-\Psi(x)| \leq 4|h|
$$

so $D D^{\alpha} u(x)$ is the derivative of $D^{\alpha} u$ at every $x \in \bar{\Omega}$ even when $x \in \partial \Omega$.
We let

$$
C^{k, \mu}(\bar{\Omega})=\left\{u \in C^{k}(\bar{\Omega}):\left[D^{\alpha} u\right]_{\mu, \Omega}<\infty\right\} .
$$

Given any open set Ω in \mathbb{R}^{n} and integer $k \geq 0$, we can let

$$
\|u\|_{C^{k}(\Omega)}=|u|_{k ; \Omega}=\sum_{|\alpha| \leq k} \sup _{\Omega}\left|D^{\alpha} u\right|
$$

for all $u \in C^{k}(\Omega)$. Additionally given $\mu \in(0,1]$, we can let

$$
\|u\|_{C^{k, \mu}(\Omega)}=|u|_{k, \mu ; \Omega}=\sum_{|\alpha| \leq k}\left|D^{\alpha} u\right|_{0 ; \Omega}+\sum_{|\alpha|=k}\left[D^{\alpha} u\right]_{\mu, \Omega}
$$

for all $u \in C^{k}(\Omega)$. (Note that at the moment this is just notation and I say nothing about whether $\|u\|_{C^{k}(\Omega)}$ or $\|u\|_{C^{k, \mu}(\Omega)}$ are finite.) It is convenient to define a scale invariant "norms" by

$$
\begin{aligned}
\|u\|_{C^{k}(\Omega)}^{\prime} & =|u|_{k ; \Omega}^{\prime}=\sum_{|\alpha| \leq k}(d / 2)^{|\alpha|}\left|D^{\alpha} u\right|_{0 ; \Omega}, \\
\|u\|_{C^{k, \mu}(\Omega)}^{\prime} & =|u|_{k, \mu ; \Omega}^{\prime}=\sum_{|\alpha| \leq k}(d / 2)^{|\alpha|}\left|D^{\alpha} u\right|_{0 ; \Omega}+\sum_{|\alpha|=k}(d / 2)^{k+\mu}\left[D^{\alpha} u\right]_{\mu, \Omega},
\end{aligned}
$$

where $d=\operatorname{diam} \Omega$ (for example, if $\Omega=B_{R}\left(x_{0}\right)$ is a ball then $d / 2=R$ is the radius of the ball). It is easily checked that if $u \in C^{k}\left(B_{R}\left(x_{0}\right)\right)$ and $\tilde{u}(x)=u\left(x_{0}+R x\right)$, then

$$
|u|_{k, \mu ; B_{R}\left(x_{0}\right)}^{\prime}=|\tilde{u}|_{k, \mu ; B_{1}(0)} .
$$

We say for $u_{j}, u \in C^{k}(\Omega)$ that $u_{j} \rightarrow u$ in $C^{k}(\Omega)$ if $D^{\alpha} u_{j} \rightarrow D^{\alpha} u$ uniformly in Ω^{\prime} whenever $|\alpha| \leq k$ and $\Omega^{\prime} \subset \subset \Omega$. Similarly we say for $u_{j}, u \in C^{k}(\bar{\Omega})$ that $u_{j} \rightarrow u$ in $C^{k}(\bar{\Omega})$ if $D^{\alpha} u_{j} \rightarrow D^{\alpha} u$ uniformly in Ω whenever $|\alpha| \leq k$.

Note that the spaces $C^{k, \mu}(\Omega)$ are nested in the sense that if $0<\mu<\tau \leq 1$ then $C^{k, \tau}(\Omega) \subset$ $C^{k, \mu}(\Omega)$ since if $u \in C^{k, \tau}(\Omega)$ and $\Omega^{\prime} \subset \subset \Omega$ then

$$
\begin{aligned}
{\left[D^{\alpha} u\right]_{\mu, \Omega^{\prime}} } & =\sup _{x, y \in \Omega^{\prime}, x \neq y} \frac{\left|D^{\alpha} u(x)-D^{\alpha} u(y)\right|}{|x-y|^{\mu}} \\
& =\sup _{x, y \in \Omega^{\prime}, x \neq y} \frac{\left|D^{\alpha} u(x)-D^{\alpha} u(y)\right|}{|x-y|^{\tau}} \cdot|x-y|^{\tau-\mu} \\
& \leq \operatorname{diam}\left(\Omega^{\prime}\right)^{\tau-\mu}\left[D^{\alpha} u\right]_{\tau, \Omega^{\prime}}<\infty .
\end{aligned}
$$

Similarly, if Ω is a bounded $C^{k, \tau}$ domain and $0<\mu<\tau \leq 1$ then $C^{k, \mu}(\bar{\Omega}) \subset C^{k, \tau}(\bar{\Omega})$.

3 Compactness theorems

As was claimed previously, Arzela-Ascoli yields compactness theorems for Hölder spaces:
Theorem 1. Let Ω be an open set in $\mathbb{R}^{n}, k \geq 0$, and $\mu \in(0,1]$. Given a sequence of $u_{j} \in C^{k, \mu}(\Omega)$ such that

$$
\sup _{j}\left|u_{j}\right|_{k, \mu ; \Omega^{\prime}}<\infty \text { for all } \Omega^{\prime} \subset \subset \Omega
$$

there exists a subsequence $\left\{u_{j^{\prime}}\right\}$ of $\left\{u_{j}\right\}$ and a function $u \in C^{k, \mu}(\Omega)$ such that $u_{j} \rightarrow u$ in $C^{k}(\Omega)$. (Note that we do not claim that $u_{j} \rightarrow u$ in $C^{k, \mu}(\Omega)$, i.e. $\left|u_{j}-u\right|_{k, \mu ; \Omega^{\prime}} \rightarrow 0$ for all $\Omega \subset \subset \Omega$.)
Theorem 2. Let Ω be a bounded, open, C^{1} domain in $\mathbb{R}^{n}, k \geq 0$, and $\mu \in(0,1]$. Given a sequence of $u_{j} \in C^{k, \mu}(\bar{\Omega})$ such that

$$
\begin{equation*}
\sup _{j}\left|u_{j}\right|_{k, \mu ; \Omega}<\infty \tag{1}
\end{equation*}
$$

there exists a subsequence $\left\{u_{j^{\prime}}\right\}$ of $\left\{u_{j}\right\}$ and a function $u \in C^{k, \mu}(\bar{\Omega})$ such that $u_{j} \rightarrow u$ in $C^{k}(\bar{\Omega})$. (Note that we do not claim that $u_{j} \rightarrow u$ in $C^{k, \mu}(\bar{\Omega})$, i.e. $\left|u_{j}-u\right|_{k, \mu ; \Omega} \rightarrow 0$.)

The proofs are similar so let's prove Theorem 2.
Proof of Theorem 2. Let

$$
\Lambda=\sup _{j}\left|u_{j}\right|_{k, \mu ; \Omega}
$$

By (1), for $|\alpha| \leq k$, the sequence $\left\{D^{\alpha} u_{j}\right\}$ is pointwise uniformly bounded on $\bar{\Omega}$ as $\sup _{\Omega}\left|D^{\alpha} u_{j}\right| \leq$ $\Lambda<\infty$. For $|\alpha|<k,\left\{D^{\alpha} u_{j}\right\}$ is also equicontinuous on $\bar{\Omega}$ since $\left[D^{\alpha} u_{j}\right]_{1 ; \Omega}=\sup _{\Omega}\left|D D^{\alpha} u_{j}\right| \leq \Lambda<$ ∞. To see this, observe that since Ω is a C^{1} domain, for every $y \in \partial \Omega$ there exists a $\rho_{y}>0$ and C^{1} diffeomorphism $\Psi_{y}: B_{\rho_{y}}(y) \rightarrow \mathbb{R}^{n}$ such that

$$
\Psi_{y}(y)=0, \quad D \Psi_{y}(y)=I_{n}, \quad\left|D \Psi_{y}(x)-I_{n}\right| \leq 1 / 2, \quad \Psi\left(B_{\rho_{y}}(y) \cap \Omega\right) \subseteq\left\{x \in B_{1}(0): x_{n}>0\right\}
$$

$\left\{D^{\alpha} u_{j} \circ \Psi_{y}^{-1}\right\}$ is equicontinuous on $B_{\rho_{y} / 2}(y) \cap\left\{x \in B_{1}(0): x_{n}>0\right\}$ since given $\varepsilon>0$ there exists $\delta=\delta(y)>0$ independent of j such that

$$
\left|\left(D^{\alpha} u_{j} \circ \Psi_{y}^{-1}\right)(z)-\left(D^{\alpha} u_{j} \circ \Psi_{y}^{-1}\right)\left(z^{\prime}\right)\right| \leq \sup \left|D D^{\alpha} u_{j}\right| \sup \left|D \Psi_{y}^{-1} \| z-z^{\prime}\right| \leq 2 \Lambda \delta<\varepsilon
$$

for all $z, z^{\prime} \in B_{\rho_{y} / 2}(y) \cap\left\{x \in B_{1}(0): x_{n}>0\right\}$ with $\left|z-z^{\prime}\right|<\delta$ and for all j. Hence $\left\{D^{\alpha} u_{j}\right\}$ is equicontinuous on $B_{\rho_{y} / 4}(y) \cap \Omega$. Cover $\partial \Omega$ by a finite collection of balls $\left\{B_{\rho_{y_{k}} / 8}\left(y_{k}\right)\right\}$ where $y_{k} \in \partial \Omega$ and let $\rho=\min _{k} \rho_{y_{k}}$. For every $\varepsilon>0$ there exists $\delta \in(0, \rho / 16)$ independent of j such that

$$
\left|D^{\alpha} u_{j}(z)-D^{\alpha} u_{j}\left(z^{\prime}\right)\right| \leq \sup \left|D D^{\alpha} u_{j}\right|\left|z-z^{\prime}\right| \leq \Lambda \delta<\varepsilon
$$

for all $z, z^{\prime} \in \Omega$ with $\operatorname{dist}(z, \partial \Omega)>\rho / 16$ with $\left|z-z^{\prime}\right|<\delta$ and for all j. Combining this with $\left\{D^{\alpha} u_{j}\right\}$ being equicontinuous on each $B_{\rho_{y_{k} / 4}}\left(y_{k}\right) \cap \Omega,\left\{D^{\alpha} u_{j}\right\}$ is equicontinuous on Ω. For $|\alpha|=k$, the sequence $\left\{D^{\alpha} u_{j}\right\}$ is equicontinuous since $\left[D^{\alpha} u_{j}\right]_{\mu ; \Omega} \leq \Lambda<\infty$ and thus given $\varepsilon>0$ we can choose $\delta>0$ independent of j that

$$
\left|D^{\alpha} u_{j}(z)-D^{\alpha} u_{j}\left(z^{\prime}\right)\right| \leq \Lambda \delta^{\mu}<\varepsilon
$$

for all $z, z^{\prime} \in \Omega$ with $\left|z-z^{\prime}\right|<\delta$ and j. Therefore, for $|\alpha| \leq k$, by Arzela-Ascoli we can pass to a subsequence of $\left\{D^{\alpha} u_{j}\right\}$ that converges uniformly to some continuous function $v_{\alpha}: \Omega \rightarrow \mathbb{R}$.

For $k \geq 1$ we need to check that $v_{\alpha}=D^{\alpha} u$ for all α. By the fundamental theorem of calculus and (1), for every α with $|\alpha|=k-1, x \in \Omega$, and $\varepsilon>0$ we can choose $\delta>0$ independent of j such that $B_{\delta}(x) \subset \subset \Omega$ and

$$
\begin{aligned}
\left|D^{\alpha} u_{j}(x+h)-D^{\alpha} u_{j}(x)-\sum_{i=1}^{n} D_{i} D^{\alpha} u_{j}(x) h_{i}\right| & =\left|\int_{0}^{1} D D^{\alpha} u_{j}(x+t h) \cdot h d t-D D^{\alpha} u_{j}(x) \cdot h\right| \\
& \leq \int_{0}^{1}\left|D D^{\alpha} u_{j}(x+t h)-D D^{\alpha} u_{j}(x)\right||h| d t \\
& \leq\left[D D^{\alpha} u_{j}\right]_{\mu ; \Omega}|h|^{1+\mu} \\
& \leq \Lambda|h|^{1+\mu}<\varepsilon|h|
\end{aligned}
$$

for all h with $|h|<\delta$ and j. Similarly when α with $|\alpha| \leq k-2, x \in \Omega$, and $\varepsilon>0$ we can choose $\delta>0$ independent of j such that $B_{\delta}(x) \subset \subset \Omega$ and

$$
\left|D^{\alpha} u_{j}(x+h)-D^{\alpha} u_{j}(x)-\sum_{i=1}^{n} D_{i} D^{\alpha} u_{j}(x) h_{i}\right| \leq \sup _{\Omega}\left|D^{2} D^{\alpha} u_{j} \| h\right|^{2} \leq \Lambda|h|^{2}<\varepsilon|h|
$$

for all h with $|h|<\delta$ and j. Letting $j \rightarrow \infty$,

$$
\left|v_{\alpha}(x+h)-v_{\alpha}(x)-\sum_{i=1}^{n} v_{\alpha+e_{i}}(x) h_{i}\right|<\varepsilon|h|,
$$

where $e_{1}, e_{2}, \ldots, e_{n}$ is the standard basis for \mathbb{R}^{n} and thus $\alpha+e_{i}$ denotes the multi-index in which we replace α_{i} by $\alpha_{i}+1$. Therefore $D_{i} v_{\alpha}=v_{\alpha+e_{i}}$ for all α with $|\alpha| \leq k-1$ and $i=1,2, \ldots, n$.

Finally we need to check that $\left[D^{\alpha} u\right]_{\mu ; \Omega}<\infty$ for $|\alpha|=k$. By (1),

$$
\left|D^{\alpha} u_{j}(x)-D^{\alpha} u_{j}(y)\right| \leq \Lambda|x-y|^{\mu}
$$

for all $x, y \in \Omega$ and j. Letting $j \rightarrow \infty$, using merely the fact that $D^{\alpha} u_{j} \rightarrow D^{\alpha} u$ uniformly in Ω,

$$
\left|D^{\alpha} u(x)-D^{\alpha} u(y)\right| \leq \Lambda|x-y|^{\mu}
$$

for all $x, y \in \Omega$.

4 Interpolation

Theorem 3. Let k and l be integers such that $1 \leq k \leq l$ and $\mu \in(0,1]$. For every $\varepsilon>0$, for every $u \in C^{l, \mu}\left(\overline{B_{R}(0)}\right)$,

$$
\begin{equation*}
R^{k}\left|D^{k} u\right|_{0 ; B_{R}(0)} \leq C|u|_{0 ; B_{R}(0)}+\varepsilon R^{l+\mu}\left[D^{l} u\right]_{\mu ; B_{R}(0)} \tag{2}
\end{equation*}
$$

for some constant $C=C(\varepsilon, k, l, \mu) \in(0, \infty)$.
Proof. Obviously we may rescale as to assume that $R=1$. The rest of the proof will be an exercise.

5 Extension theorems

Define $\mathbb{R}_{+}^{n}=\left\{x: x_{n}>0\right\}$ and $\mathbb{R}_{-}^{n}=\left\{x: x_{n}<0\right\}$. For $R>0$, let $B_{R}^{+}=B_{R}(0) \cap \mathbb{R}_{+}^{n}$ and $B_{R}^{-}=B_{R}(0) \cap \mathbb{R}_{-}^{n}$.

Theorem 4 (Extension Lemma). Let $k \geq 1$ be an integer and $\mu \in(0,1]$. Let Ω be a bounded $C^{k, \mu}$ domain and let Ω^{\prime} be an open set containing $\bar{\Omega}$. Then every function $u \in C^{k, \mu}(\Omega)$ has an extension $\bar{u} \in C_{c}^{k, \mu}\left(\Omega^{\prime}\right)$ such that $\bar{u}=u$ on Ω and $|\bar{u}|_{k, \mu, \Omega^{\prime}} \leq C|u|_{k, \mu, \Omega}$ for some constant $C=C\left(n, k, \mu, \Omega, \Omega^{\prime}\right) \in(0, \infty)$ independent of u.

Proof. Since Ω is a $C^{k, \mu}$ domain, for every $\xi \in \partial \Omega$, there is a $\delta_{\xi}>0$ and C^{k} diffeomorphism $\Psi_{\xi}: B_{\delta_{\xi}}(\xi) \rightarrow \Psi_{\xi}\left(B_{\delta_{\xi}}(\xi)\right) \subseteq \mathbb{R}^{n}$ such that

$$
\begin{aligned}
\Psi_{\xi}\left(\Omega \cap B_{\delta_{\xi}}(\xi)\right) & \subseteq \mathbb{R}_{+}^{n} \\
\Psi_{\xi}\left(\partial \Omega \cap B_{\delta_{\xi}}(\xi)\right) & \subseteq\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}^{n}: x_{n}=0\right\}
\end{aligned}
$$

We may assume $B_{\delta(\xi)}(\xi) \subset \subset \Omega^{\prime}, \Psi_{\xi}(\xi)=0$, and $B_{1}^{+}(0) \subseteq \Psi_{\xi}\left(B_{\delta_{\xi}}(\xi)\right.$.

Let $\tilde{u}_{\xi}=u \circ \Psi_{\xi}^{-1}$ on $B_{1}^{+}(0)$. We extend \tilde{u}_{ξ} to all of $B_{1}(0)$ by letting

$$
\tilde{u}_{\xi}\left(x^{\prime}, x_{n}\right)=\sum_{j=1}^{k+1} c_{j} \tilde{u}_{\xi}\left(x^{\prime},-x_{n} / j\right)
$$

for $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in B_{1}(0)$ with $x_{n}<0$, where $x^{\prime}=\left(x_{1}, x_{2}, \ldots, x_{n-1}\right)$ and

$$
\sum_{j=1}^{k+1} c_{j}(-1 / j)^{m}=1 \text { for } m=0, \ldots, k
$$

The c_{j} are the unique solution to a linear system with a Vandermonde matrix. We compute for all α with $|\alpha| \leq k$ and all $x=\left(x^{\prime}, x_{n}\right) \in B_{1}(0)$ with $x_{n} \leq 0$ that

$$
D^{\alpha} \tilde{u}_{\xi}\left(x^{\prime}, x_{n}\right)=\sum_{j=1}^{k+1} c_{j}(-1 / j)^{\alpha_{n}} D^{\alpha} \tilde{u}_{\xi}\left(x^{\prime},-x_{n} / j\right)
$$

and in particular when $x_{n}=0$,

$$
D^{\alpha} \tilde{u}_{\xi}\left(x^{\prime}, 0\right)=\sum_{j=1}^{k+1} c_{j}(-1 / j)^{\alpha_{n}} D^{\alpha} \tilde{u}_{\xi}\left(x^{\prime}, 0\right)=D^{\alpha} \tilde{u}_{\xi}\left(x^{\prime}, 0\right)
$$

so $\tilde{u}_{\xi} \in C^{k}\left(B_{1}(0)\right)$. (Note that all this really shows is that $D^{\alpha} \tilde{u}_{\xi}$ is continuous across $B_{1}(0) \cap\left\{x_{n}=\right.$ $0\}$, not quite that \tilde{u}_{ξ} is continuously differentiable up to order k at points in $B_{1}(0)$. However, $\tilde{u}_{\xi} \in C^{k, \mu}\left(B_{1}^{+}(0)\right)$ and the reflection of \tilde{u}_{ξ} across $\left\{x_{n}=0\right\}$ is consequently in $C^{k, \mu}\left(B_{1}^{-}(0)\right)$, so it follows from our discussion in Section 2 above that \tilde{u}_{ξ} is continuously differentiable up to order k on $B_{1}(0)$.) Also, for every α with $|\alpha|=k$ and every $x=\left(x^{\prime}, x_{n}\right)$ and $y=\left(y^{\prime}, y_{n}\right)$ in $B_{1}^{-}(0)$,

$$
\begin{aligned}
\left|D^{\alpha} u\left(x^{\prime}, x_{n}\right)-D^{\alpha} u\left(y^{\prime}, y_{n}\right)\right| & \leq \sum_{j=1}^{k+1} c_{j}(1 / j)^{\alpha_{n}}\left|D^{\alpha} \tilde{u}_{\xi}\left(x^{\prime},-x_{n} / j\right)-D^{\alpha} \tilde{u}_{\xi}\left(y^{\prime},-y_{n} / j\right)\right| \\
& \leq \sum_{j=1}^{k+1} c_{j}(1 / j)^{\alpha_{n}}\left[D^{\alpha} \tilde{u}_{\xi}\right]_{\mu ; B_{1}^{+}(0)}\left(\left|x^{\prime}-y^{\prime}\right|^{\mu}+\left|x_{n}-y_{n}\right|^{\mu} / j\right) \\
& \leq \sum_{j=1}^{k+1} c_{j}\left[D^{\alpha} \tilde{u}_{\xi}\right]_{\mu ; B_{1}^{+}(0)}|x-y|^{\mu},
\end{aligned}
$$

so $\left[D^{\alpha} \tilde{u}_{\xi}\right]_{k, \mu, B_{1}^{-}(0)} \leq C\left[D^{\alpha} \tilde{u}_{\xi}\right]_{k, \mu, B_{1}^{+}(0)}$ for $C=C(n, k, \mu) \in(0, \infty)$. It readily follows that $\tilde{u}_{\xi} \in$ $C^{k, \mu}\left(B_{1}(0)\right)$ and $\left|\tilde{u}_{\xi}\right|_{k, \mu ; B_{1}(0)} \leq C\left|\tilde{u}_{\xi}\right|_{k, \mu, B_{1}^{+}(0)}$ for $C=C(n, k, \mu) \in(0, \infty)$. Therefore, $\tilde{u}_{\xi} \circ \Psi_{\xi}$ is an extension of u to $\Psi_{\xi}^{-1}\left(B_{1}(0)\right)$ with $\left|\tilde{u}_{\xi} \circ \Psi_{\xi}\right|_{k, \mu ; \Psi_{\xi}^{-1}\left(B_{1}(0)\right)} \leq C|u|_{k, \mu ; \Omega}$.

Find a finite subcover $\left\{V_{i}=\Psi_{\xi_{i}}^{-1}\left(B_{1}(0)\right): i=1, \ldots, N\right\}$ of $\partial \Omega$, where $\xi_{1}, \ldots, \xi_{N} \in \partial \Omega$. Then $\left\{V_{i}: i=1,2, \ldots, N\right\} \cup\{\Omega\}$ covers $\bar{\Omega}$. Find a partition of unity χ_{i} subordinate to $\left\{V_{i}\right\} \cup\{\Omega\}$; that is, find $\chi_{i} \in C_{c}^{\infty}\left(\Omega^{\prime}\right)$ such that $\chi_{0}=0$ on $\Omega^{\prime} \backslash \Omega, \chi_{i}=0$ on $\Omega \backslash V_{i}$ for $i=1,2, \ldots, N$, and

$$
\sum_{i=1}^{\infty} \chi_{i}=1 \text { on } \bar{\Omega}
$$

Let \bar{u}_{i} denote the extension of u to V_{i} constructed in the preview paragraph. Define

$$
\bar{u}=\chi_{0} u+\sum_{i=1}^{\infty} \chi_{i} \bar{u}_{i} \text { on } \Omega^{\prime} .
$$

Obviously,

$$
\bar{u}=\sum_{i=0}^{\infty} \chi_{i} u=u \text { on } \Omega
$$

and $|\bar{u}|_{k, \mu, \Omega^{\prime}} \leq C|u|_{k, \mu, \Omega}$ for $C=C\left(n, k, \mu, \Omega, \Omega^{\prime}\right)>0$.
Note that what the proof of the Extension Theorem shows is that there exists a bounded linear extension operator

$$
E: C^{k, \mu}(\bar{\Omega}) \rightarrow C_{c}^{k, \mu}\left(\Omega^{\prime}\right)
$$

with $E u=u$ on $\bar{\Omega}$ for every integer $k \geq 1, \mu \in(0,1]$, bounded $C^{k, \mu}$ domain Ω, and open set Ω^{\prime} containing $\bar{\Omega}$. Thus if $R: C_{c}^{k, \mu}\left(\Omega^{\prime}\right) \rightarrow C^{k, \mu}(\bar{\Omega})$ is the restriction operator $R u=\left.u\right|_{\Omega}$, then $R \circ E$ is the identity map.

We also have the following extension theorem for $\varphi \in C^{k, \mu}(\partial \Omega)$ in the case that Ω is a $C^{k, \mu}$ domain. Recall that since Ω is a $C^{k, \mu}$ domain, $\partial \Omega$ is a $C^{k, \mu},(n-1)$-dimensional submanifold since for every $\xi \in \partial \Omega$, there is a $\delta_{\xi}>0$ and C^{k} diffeomorphism $\Psi_{\xi}: B_{\delta_{\xi}}(\xi) \rightarrow \Psi_{\xi}\left(B_{\delta_{\xi}}(\xi)\right) \subseteq \mathbb{R}^{n}$ such that

$$
\Psi_{\xi}\left(\partial \Omega \cap B_{\delta_{\xi}}(\xi)\right) \subseteq \mathbb{R}^{n-1} \times\{0\}
$$

Thus by $\varphi \in C^{k, \mu}(\partial \Omega)$ we mean that $\varphi \circ\left(\left.\Psi_{\xi}\right|_{\mathbb{R}^{n-1} \times\{0\}}\right)^{-1}$ is in $C^{k, \mu}$ for all $\xi \in \partial \Omega$ (note that the choice of Ψ_{ξ} is irrelevant by the chain rule).

Theorem 5. Let $k \geq 1$ be an integer and $\mu \in(0,1]$. Let Ω be a bounded $C^{k, \mu}$ domain and let Ω^{\prime} be an open set containing $\bar{\Omega}$. Then every function $\varphi \in C^{k, \mu}(\partial \Omega)$ has an extension $\bar{\varphi} \in C_{c}^{k, \mu}\left(\Omega^{\prime}\right)$ such that $\bar{\varphi}=\varphi$ on $\partial \Omega$ and $|\bar{\varphi}|_{k, \mu, \Omega^{\prime}} \leq C|\varphi|_{k, \mu, \partial \Omega}$ for some constant $C=C\left(n, k, \mu, \Omega, \Omega^{\prime}\right) \in(0, \infty)$ independent of φ.

Proof. The proof is similar to the proof of the Extension Theorem. Let $\xi \in \partial \Omega$ and Ψ_{ξ} be as in the proof of the Extension Theorem. We want to extend $\tilde{\varphi}_{\xi}=\varphi \circ \Psi_{\xi}^{-1}$ from $B_{1}^{n-1}(0) \times\{0\}$ to $B_{1}^{n-1}(0) \times \mathbb{R}$. We do so by letting

$$
\tilde{\varphi}_{\xi}\left(x^{\prime}, x_{n}\right)=\tilde{\varphi}_{\xi}\left(x^{\prime}, 0\right)
$$

for all $x^{\prime} \in B_{1}^{n-1}(0)$ and $x_{n} \in \mathbb{R}$. It is easily checked that $\tilde{\varphi}_{\xi} \in C^{k, \mu}\left(B_{1}^{n-1}(0) \times \mathbb{R}\right)$ and $\left|\tilde{\varphi}_{\xi}\right|_{k, \mu, B_{1}^{n-1}(0) \times \mathbb{R}} \leq C\left|\tilde{\varphi}_{\xi}\right|_{k, \mu, B_{1}^{n-1}(0) \times\{0\}}$ for $C=C(n, k, \mu) \in(0, \infty)$. Thus $\tilde{\varphi}_{\xi} \circ \Psi_{\xi}$ is an extension of φ to $\Psi_{\xi}^{-1}\left(B_{1}(0)\right)$ with $\left|\tilde{\varphi}_{\xi} \circ \Psi_{\xi}^{-1}\right|_{k, \mu ; \Psi_{\xi}^{-1}\left(B_{1}(0)\right)} \leq C|\varphi|_{k, \mu ; \partial \Omega}$. Let $\left\{V_{i}=\Psi_{\xi_{i}}^{-1}\left(B_{1}(0)\right): i=1, \ldots, N\right\}$ be a finite cover of $\partial \Omega$, where $\xi_{1}, \ldots, \xi_{N} \in \partial \Omega$. Let χ_{i} be the partition of unity subordinate to $\left\{V_{i}\right\} \cup\{\Omega\}$. Define

$$
\bar{\varphi}=\chi_{0} \varphi+\sum_{i=1}^{\infty} \chi_{i} \bar{\varphi}_{i} \text { on } \Omega^{\prime}
$$

Obviously, $\bar{\varphi}=\varphi$ on $\partial \Omega$ and $|\bar{\varphi}|_{k, \mu, \Omega^{\prime}} \leq C|\varphi|_{k, \mu, \partial \Omega}$ for $C=C\left(n, k, \mu, \Omega, \Omega^{\prime}\right)>0$.
References: Gilbarg and Trudinger, Section 4.1.

