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1 Motivation

Over the next few lectures we want to establish an “regularity and compactness theory” for
solutions to elliptic equations. By a regularity theory I mean theorem(s) stating that the regularity
of a solution follows from the regularity of the coefficients, inhomogeneous term f, and other data.
By a compactness theory I mean theorem(s) stating that given a sequence of solutions to elliptic
equations and appropriate bounds, there exists a convergent subsequence. This will correspond
to estimates called the Schauder estimates.

The simplest such theorem that one might imagine is that if u is a reasonable solution to an
elliptic equation Lu = f in the unit ball B;(0) and the coefficients and f are all continuous, then
u € C?*(B1/2(0)) and

HUHCQ(BUQ(O)) = Z sup |[D%u| < C (SUP |u| + sup |f’>

|| <2 Bl/Q(O) Bl(o) B1(0)

for some constant C' € (0, 00) depending only on n and L. Such a theorem is false!

Additionally, we know that given a sequence {u;} of C* functions (say solutions to elliptic
equations) with sup; [|u;llc2(s, ,0)) < oo, then it is possible that {u;} converges to a function
that is not in C?. However, if we additionally showed that {u;} is equicontinuous, then we could
apply Arzela-Ascoli to extract a subsequence of {u;} converging to a C? function ¢ uniformly, and
moreover the derivatives up to order two also converge uniformly.

Thus we will introduce a subset of C*(Q2) known as Hélder spaces.

2 (CFr functions

Let € be an open set in R", & > 0 be an integer, and px € (0, 1]. Given a function u : Q — R, we

let
[u] Q= sup |U(l’) B u(y)| )
o z,yeN, xF#y |'T - y|,u

We can regard [u], o as a measure of the modulus of continuity of u. In the special case that y =1
and w is Lipschitz, [u]; q is the Lipschitz constant of u:

[u]1.o = Lipu = ess supgq | Dul.



Given functions u,v : Q — R,

[u + U]u;ﬂ < [U]MQ + [U]u;ﬂ [uv]u;ﬂ < Slglzp |ul [U]u;Q + [u]u;ﬂ Slgllp |v].

Recall that C*(Q) is the space of all functions u : © — R such that D%u exists and are
continuous on € whenever |a| < k. We define

CH(Q) = {u € C*(Q) : [D*u],.q < 0o whenever|a| < k and Q' CC Q},

where ' CC Q means that {0’ is an open subset of Q whose closure € is compact. Note that
in this definition of C**(Q) we do not say anything about the behavior of u € C*#(Q) at the
boundary of €2 or at infinity, we only control the local modulus of continuity of D%u in €2 for
af < k.

We let C*(€2) denote the set of u € C*(2) such that for some compact set K C 2, u = 0 on
Q\ K. Similarly, we let C*#(€2) denote the set of u € C**(Q) such that for some compact set
KCcQu=0o0n\K.

We define C*(€2) to be the set of u € C*() such that D*u extends to continuous functions on
Q whenever |a| < k. As a slight abuse of notation, we will let D% denote the extension of D®u to
Q. Note that if u € C**(Q) and Q is a C'' domain, then for every € 9, a with |a| < k— 1, and
e > 0 we can choose § > 0 such that the following holds true. There exists a C! diffeomorphism
U : B,(z) = R™ such that

U(z) =0, DU(x)=1I,, |DU(z)—1I|<1/2, W(B,(x)NQ)C {x€Bi0):a, >0}

(where I,,, denotes the m x m identity matrix); for example, translate x to the origin and rotate
so that
B,(0)NnQ = B,0)n{(z,x,) e R" ' xR :x, > ()}

for some C' function ¢ : R*' — R with ¢(0) = 0, Dy(0) = 0, |[D¢| is small and let ¥(z', x,) =
(2', zn, —Y(2')). Given h € B,(0) with z 4+ h € Q, let v(¢t) = U~ (t¥(z + h)). By the fundamental
theorem of calculus,

Du(z + ) — Du(x) — DDu(x) - h| = /O DD u(y()) - 7 ()t — /0 DD u(x) - /(1) dt

< /1 |DD%u(x + th) — DDu(z)||~'(t)|dt
< 4|ODDau(x +th) — DD%u(x)||h| < |h|,
where we use the fact that
V(O = DT (tW(x + k) - Uz + h)| < [DITH (0 (2 + )| [ V(2 + h) — V()] < 4]h],

so DD“u(x) is the derivative of D®u at every = € Q even when z € 0%).
We let B B
CH(Q) = {u € C*(Q) : [D*u],.0 < 00}

Given any open set {2 in R” and integer k > 0, we can let

uller) = Uk = Z sup |D%u|

laf<k



for all u € C*(Q2). Additionally given u € (0, 1], we can let

[wllewn) = ulkmo = Z |D%ulo0 + Z [D%ul0

la|<k |a|=E

for all u € C*(€2). (Note that at the moment this is just notation and I say nothing about whether
|ullery or [Jullcknq) are finite.) It is convenient to define a scale invariant “norms” by

lullongy = lulia = Y (d/2)*|D*ulog,

lof <k
lallengy = luliwa = D (@/2)D%loq + Y (d/2) D0,
la|<k |al=F

where d = diam Q (for example, if Q = Bg(xg) is a ball then d/2 = R is the radius of the ball). It
is easily checked that if u € C*(Bg(x¢)) and @(x) = u(xg + Rx), then

Uk Br(eo) = [TlkpB:(0)-

We say for uj,u € C*(Q) that u; — u in C*(Q) if D*u; — D*u uniformly in ' whenever
la| < k and @' cC Q. Similarly we say for u;,u € C*(Q) that u; — u in C*(Q) if D%; — D%
uniformly in 2 whenever |a| < k.

Note that the spaces C**(Q) are nested in the sense that if 0 < u < 7 < 1 then C*(Q) C
CE1(Q) since if u € C*T(Q) and ' cC Q then

D%u), o = sup
| 2 z,ye, aty |z —yl*
D« — D«
L D@Dt
szJGQ/:m?ﬁy |LL‘ - y|7—

< diam(Q’)T_“[Do‘u]T,Q/ < Q0.

Similarly, if © is a bounded C*™ domain and 0 < < 7 < 1 then C**(Q) C C*7(Q).

3 Compactness theorems

As was claimed previously, Arzela-Ascoli yields compactness theorems for Holder spaces:

Theorem 1. Let Q2 be an open set in R™, k >0, and pu € (0,1]. Given a sequence of u; € C**(Q)
such that
sup |w; |k < 00 for all Q' CC Q
J

there exists a subsequence {u;} of {u;} and a function uw € C**(Q) such that u; — u in C*(Q).
(Note that we do not claim that u; — u in C**(Q), i.e. |uj — ulp o — 0 for all Q@ CC Q.)

Theorem 2. Let € be a bounded, open, C! domain in R"™, k >0, and pu € (0,1]. Given a sequence
of u; € CH*(Q) such that

SUp [k 0 < 00 (1)
j

there exists a subsequence {uj} of {u;} and a function u € C**(Q) such that u; — u in C*(Q).
(Note that we do not claim that u; — u in C**(Q), i.e. |u; — ulpo — 0.)
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The proofs are similar so let’s prove Theorem 2.

Proof of Theorem 2. Let
A = sup |u;] 0.
j
By (1), for |a| < k, the sequence {D%u;} is pointwise uniformly bounded on Q as supg | D%u;| <
A < oo. For |a| < k, {Du;} is also equicontinuous on (2 since [D%u],.q = supg |[DD%u;| < A <
00. To see this, observe that since 2 is a C' domain, for every y € 9 there exists a p, > 0 and
C" diffeomorphism ¥, : B, (y) — R™ such that

U,(y) =0, DU,(y) =L [DU,(2)-L|<1/2, W(B,(y) Q) C {xeBy(0):, > 0}.

{Du; 0 W1} is equicontinuous on B, j2(y) N {z € By(0) : ,, > 0} since given € > 0 there exists
d = 0(y) > 0 independent of j such that

[(D%uj 0 W, h)(2) — (Du; 0 U, 1) (2")| < sup |[DD%uy|sup [DY, |z — 2] <2A0 < e

for all z,2" € B, ;o(y) N {x € By(0) : x, > 0} with |z — 2’| < § and for all j. Hence {D%u;}
is equicontinuous on B, s4(y) N 2. Cover 9N by a finite collection of balls {B,, /s(yx)} where
yr € 02 and let p = ming p,,. For every ¢ > 0 there exists § € (0, p/16) independent of j such
that

|D%;(2) — D%;(2")| < sup |DD%u,||z — 2'| < Ad < e

for all z,2" € Q with dist(z,09Q) > p/16 with |z — 2’| < ¢ and for all j. Combining this with
{D%u;} being equicontinuous on each B, /4(yr) N€2, {D%;} is equicontinuous on 2. For |af =k,
the sequence {D%u;} is equicontinuous since [D%u;],.0 < A < oo and thus given ¢ > 0 we can
choose 9 > 0 independent of j that

|D%uj(z) — D%u;(2')] < Ad* < e

for all z, 2" € Q with |z — 2/| < § and j. Therefore, for |a| < k, by Arzela-Ascoli we can pass to a
subsequence of {D%u;} that converges uniformly to some continuous function v, : @ — R.

For k > 1 we need to check that v, = D“u for all a. By the fundamental theorem of calculus
and (1), for every o with |a] = k-1, z € Q, and € > 0 we can choose § > 0 independent of j
such that Bs(x) CC Q and

n 1
D%uj(x + h) — D%uj(z) — Z D;D%uj(x)h;| = /0 DD%u;(z 4 th) - hdt — DD%uj(x) - h
i=1

1
< / |DD%u;(x + th) — DD%u;(z)||h|dt
0

< [DDuy]alh|
< AR < |k

for all h with |h| < 0 and j. Similarly when a with |o| < k —2, z € , and € > 0 we can choose
d > 0 independent of j such that Bs(z) CC 2 and

D%uj(x + h) — D%uj(x) — Z D;D%u;(z)h;
i=1

< sup |D*D%u;||h|* < Alh]? < |h]
Q
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for all A with |h| < § and j. Letting j — oo,

Va(z + h) —va(x Zvoﬂrel i| < elhl,
where ey, e, ..., €, is the standard basis for R” and thus a + e; denotes the multi-index in which
we replace a; by a; + 1. Therefore D;v, = vy, for all a with |o| <k —1andi=1,2,...,n

Finally we need to check that [D%u,.q < oo for || = k. By (1),
| D%u;(x) — D;(y)| < Al —yl|*
for all z,y € 2 and j. Letting j — 0o, using merely the fact that D*u; — D“u uniformly in 2,
| D%u(x) — Du(y)| < Alz —yl*

for all x,y € . m

4 Interpolation

Theorem 3. Let k and [ be integers such that 1 < k <1 and p € (0,1]. For every e > 0, for
every u € C*(Bg(0)),

RE D o) < Clulo:sgo) + B [D'u]pg) (2)
for some constant C = C(e, k, 1, u) € (0,00).

Proof. Obviously we may rescale as to assume that R = 1. The rest of the proof will be an
exercise. [

5 Extension theorems

Define R? = {z : z, > 0} and R"” = {z : x, < 0}. For R > 0, let B}, = Br(0) NR" and
By, = Br(0) N R".

Theorem 4 (Extension Lemma). Let k > 1 be an integer and p € (0,1]. Let Q be a bounded
Ck+ domain and let Q' be an open set containing Q). Then every function u € C**(Q) has
an extension u € C*(Q) such that © = uw on Q and |ulg .o < Clu|kq for some constant

C=C(n,k,puQ Q) € (0,00) independent of .

Proof. Since Q is a C** domain, for every £ € 99, there is a §¢ > 0 and C* diffeomorphism
We s Bs, (€) — We(Bs.(§)) € R" such that

We(2N By (€))
V(092N By (€))

R?

-
C {(:Ul,xg,...,:vn) e R": z, = 0}.

We may assume Bje)(§) CC ', We(§) =0, and B/ (0) C We(Bs, (€).



Let G =uo \Ifgl on Bf (0). We extend i to all of By(0) by letting

k+1

(2, z,) Zc]ug —Zn/J)

for x = (21,29, ...,2,) € B1(0) with z,, < 0, where o’ = (21, x2,...,2,_1) and

k+1

cj(=1/7)" =1form=0,....k.
1

+

J
The ¢; are the unique solution to a linear system with a Vandermonde matrix. We compute for
all o with || <k and all x = (2, z,,) € B1(0) with x,, <0 that

k+1
Daﬁ,g(l’/’l‘n) = Cj(_l/j)anDaaﬁ(xlv _xn/])
j=1
and in particular when x,, = 0,
k+1
Dtig(a’,0) = Y ¢;(—=1/§)* D*Gig(a',0) = D*tig(a’, 0),
j=1

so g € C*(B;(0)). (Note that all this really shows is that D@ is continuous across By (0)N{z, =
0}, not quite that 1, is continuously differentiable up to order k at points in B;(0). However,
g € C**(Bf(0)) and the reflection of @ across {z, = 0} is consequently in C*#(B; (0)), so it
follows from our discussion in Section 2 above that i, is continuously differentiable up to order k£
on By(0).) Also, for every o with |a| = k and every x = (2, z,,) and y = (v/,y,) in By (0),

k+1
|Du(a!,20) = D*uly',yn)| < Y ¢;(1/5)*" | Dag(a’, =0/ §) — Da(y', —yn/3)]

Jj=1

1
<D (/) D gy oy (17 = Y 1 + e — yal* /)

1
< ZCJ’[DQ{%]MB;(O)W —yl*,
j=1

so [D%e]y , p-0) < ClD"Ugly, gty for C = C(n,k,p) € (0,00). It readily follows that ¢ €
CF1(By(0)) and |“§|k,u7B1(0) < Cligly, ..+ (o) for € = C(n, k, p) € (0,00). Therefore, ¢ o Ve is an
extension of u to \Ifgl(Bl(O)) with | o \I'£|k,#;\pgl(31(o)) < Clulk, -

Find a finite subcover {V; = \I/gil(Bl(O)) ci=1,...,N} of 09, where &,...,{y € 02. Then
{Viii=1,2,...,N}U{Q} covers Q. Find a partition of unity y; subordinate to {V;} U{Q}; that
is, find x; € C°(€') such that xo =00on '\ Q, x;=00n Q\V; fori =1,2,..., N, and

i)@ =1on Q.
i=1



Let u; denote the extension of u to V; constructed in the preview paragraph. Define

U= XolU + szﬂz on Q/.

i=1
Obviously,
ﬂ:ZXiu:uonQ.
i=0
and |t .0 < Clulg o for C = C(n, k, 1, 2,Q) > 0. O

Note that what the proof of the Extension Theorem shows is that there exists a bounded linear

extension operator

E: C"(Q) — Ch#(QY)
with Fu = u on Q for every integer & > 1, u € (0, 1], bounded C*# domain €2, and open set
containing 2. Thus if R : C*#(Q)) — C*#(Q) is the restriction operator Ru = ulg, then Ro E is
the identity map.

We also have the following extension theorem for ¢ € C*#(9€) in the case that Q is a C**#
domain. Recall that since Q is a C** domain, 99 is a C*#, (n — 1)-dimensional submanifold since
for every ¢ € 99, there is a 6 > 0 and C* diffeomorphism W¢ : By (§) — Ue(Bs,(€)) € R” such
that

U (002N By, (€)) SR x {0}

Thus by ¢ € C**(9€) we mean that ¢ o (¥¢|gn-15g0y) " is in C** for all £ € IQ (note that the
choice of W¢ is irrelevant by the chain rule).

Theorem 5. Let k > 1 be an integer and pu € (0,1]. Let Q be a bounded C** domain and let €V
be an open set containing Q. Then every function ¢ € C**(0Q) has an extension g € CH1(QY)
such that @ = ¢ on 02 and ||k u0 < Clelkuon for some constant C' = C(n, k, 11,2, Q') € (0, 00)
independent of .

Proof. The proof is similar to the proof of the Extension Theorem. Let £ € 92 and ¥, be as in
the proof of the Extension Theorem. We want to extend ¢ = ¢ o \Ilgl from BP'(0) x {0} to
B7(0) x R. We do so by letting

955(1‘/’ xn) = 95§($/’ O)
for all 2/ € B '(0) and z, € R. It is easily checked that @ € C**(B}"'(0) x R) and
|Pe iy, 51 0)xr < ClPeli 51 (0)x g0y for € = C(n, k, p) € (0,00). Thus ¢ 0 W is an extension of
@ to W' (By(0)) with | o \1/51|kwg1(31(0)) < Clglpuon. Let {V; = U (B1(0)) i =1,...,N}
be a finite cover of 02, where &;,..., &y € 0f). Let x; be the partition of unity subordinate to
{Vi} u{Q}. Define
P = Xop + ZX%@' on (',
i=1

Obviously, ¢ = ¢ on 9Q and |@| 0 < Clo|kuon for C = C(n, k, 1, Q,Q) > 0. O

References: Gilbarg and Trudinger, Section 4.1.



