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1 Motivation

Over the next few lectures we want to establish an “regularity and compactness theory” for
solutions to elliptic equations. By a regularity theory I mean theorem(s) stating that the regularity
of a solution follows from the regularity of the coefficients, inhomogeneous term f , and other data.
By a compactness theory I mean theorem(s) stating that given a sequence of solutions to elliptic
equations and appropriate bounds, there exists a convergent subsequence. This will correspond
to estimates called the Schauder estimates.

The simplest such theorem that one might imagine is that if u is a reasonable solution to an
elliptic equation Lu = f in the unit ball B1(0) and the coefficients and f are all continuous, then
u ∈ C2(B1/2(0)) and

‖u‖C2(B1/2(0)) ≡
∑
|α|≤2

sup
B1/2(0)

|Dαu| ≤ C

(
sup
B1(0)

|u|+ sup
B1(0)

|f |

)

for some constant C ∈ (0,∞) depending only on n and L. Such a theorem is false!
Additionally, we know that given a sequence {uj} of C2 functions (say solutions to elliptic

equations) with supj ‖uj‖C2(B1/2(0)) < ∞, then it is possible that {uj} converges to a function

that is not in C2. However, if we additionally showed that {uj} is equicontinuous, then we could
apply Arzela-Ascoli to extract a subsequence of {uj} converging to a C2 function i uniformly, and
moreover the derivatives up to order two also converge uniformly.

Thus we will introduce a subset of Ck(Ω) known as Hölder spaces.

2 Ck,µ functions

Let Ω be an open set in Rn, k ≥ 0 be an integer, and µ ∈ (0, 1]. Given a function u : Ω→ R, we
let

[u]µ,Ω = sup
x,y∈Ω, x 6=y

|u(x)− u(y)|
|x− y|µ

.

We can regard [u]µ,Ω as a measure of the modulus of continuity of u. In the special case that µ = 1
and u is Lipschitz, [u]1,Ω is the Lipschitz constant of u:

[u]1,Ω = Lipu = ess supΩ |Du|.
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Given functions u, v : Ω→ R,

[u+ v]µ;Ω ≤ [u]µ;Ω + [v]µ;Ω [uv]µ;Ω ≤ sup
Ω
|u| [v]µ;Ω + [u]µ;Ω sup

Ω
|v|.

Recall that Ck(Ω) is the space of all functions u : Ω → R such that Dαu exists and are
continuous on Ω whenever |α| ≤ k. We define

Ck,µ(Ω) = {u ∈ Ck(Ω) : [Dαu]µ,Ω′ <∞ whenever|α| ≤ k and Ω′ ⊂⊂ Ω},

where Ω′ ⊂⊂ Ω means that Ω′ is an open subset of Ω whose closure Ω′ is compact. Note that
in this definition of Ck,µ(Ω) we do not say anything about the behavior of u ∈ Ck,µ(Ω) at the
boundary of Ω or at infinity, we only control the local modulus of continuity of Dαu in Ω for
|α| ≤ k.

We let Ck
c (Ω) denote the set of u ∈ Ck(Ω) such that for some compact set K ⊂ Ω, u = 0 on

Ω \ K. Similarly, we let Ck,µ
c (Ω) denote the set of u ∈ Ck,µ(Ω) such that for some compact set

K ⊂ Ω, u = 0 on Ω \K.
We define Ck(Ω) to be the set of u ∈ Ck(Ω) such that Dαu extends to continuous functions on

Ω whenever |α| ≤ k. As a slight abuse of notation, we will let Dαu denote the extension of Dαu to
Ω. Note that if u ∈ Ck,µ(Ω) and Ω is a C1 domain, then for every x ∈ ∂Ω, α with |α| ≤ k− 1, and
ε > 0 we can choose δ > 0 such that the following holds true. There exists a C1 diffeomorphism
Ψ : Bρ(x)→ Rn such that

Ψ(x) = 0, DΨ(x) = In, |DΨ(x)− In| ≤ 1/2, Ψ(Bρ(x) ∩ Ω) ⊆ {x ∈ B1(0) : xn > 0}

(where Im denotes the m×m identity matrix); for example, translate x to the origin and rotate
so that

Bρ(0) ∩ Ω = Bρ(0) ∩ {(x′, xn) ∈ Rn−1 × R : xn > ψ(x′)}
for some C1 function ψ : Rn−1 → R with ψ(0) = 0, Dψ(0) = 0, |Dψ| is small and let Ψ(x′, xn) =
(x′, xn−ψ(x′)). Given h ∈ Bρ(0) with x+ h ∈ Ω, let γ(t) = Ψ−1(tΨ(x+ h)). By the fundamental
theorem of calculus,

|Dαu(x+ h)−Dαu(x)−DDαu(x) · h| =
∣∣∣∣∫ 1

0

DDαu(γ(t)) · γ′(t)dt−
∫ 1

0

DDαu(x) · γ′(t)dt
∣∣∣∣

≤
∫ 1

0

|DDαu(x+ th)−DDαu(x)||γ′(t)|dt

≤ 4|DDαu(x+ th)−DDαu(x)||h| < ε|h|,

where we use the fact that

|γ′(t)| = |DΨ−1(tΨ(x+ h)) ·Ψ(x+ h)| ≤ |DΨ−1(tΨ(x+ h))||Ψ(x+ h)−Ψ(x)| ≤ 4|h|,

so DDαu(x) is the derivative of Dαu at every x ∈ Ω even when x ∈ ∂Ω.
We let

Ck,µ(Ω) = {u ∈ Ck(Ω) : [Dαu]µ,Ω <∞}.
Given any open set Ω in Rn and integer k ≥ 0, we can let

‖u‖Ck(Ω) = |u|k;Ω =
∑
|α|≤k

sup
Ω
|Dαu|
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for all u ∈ Ck(Ω). Additionally given µ ∈ (0, 1], we can let

‖u‖Ck,µ(Ω) = |u|k,µ;Ω =
∑
|α|≤k

|Dαu|0;Ω +
∑
|α|=k

[Dαu]µ,Ω

for all u ∈ Ck(Ω). (Note that at the moment this is just notation and I say nothing about whether
‖u‖Ck(Ω) or ‖u‖Ck,µ(Ω) are finite.) It is convenient to define a scale invariant “norms” by

‖u‖′Ck(Ω) = |u|′k;Ω =
∑
|α|≤k

(d/2)|α||Dαu|0;Ω,

‖u‖′Ck,µ(Ω) = |u|′k,µ;Ω =
∑
|α|≤k

(d/2)|α||Dαu|0;Ω +
∑
|α|=k

(d/2)k+µ[Dαu]µ,Ω,

where d = diam Ω (for example, if Ω = BR(x0) is a ball then d/2 = R is the radius of the ball). It
is easily checked that if u ∈ Ck(BR(x0)) and ũ(x) = u(x0 +Rx), then

|u|′k,µ;BR(x0) = |ũ|k,µ;B1(0).

We say for uj, u ∈ Ck(Ω) that uj → u in Ck(Ω) if Dαuj → Dαu uniformly in Ω′ whenever
|α| ≤ k and Ω′ ⊂⊂ Ω. Similarly we say for uj, u ∈ Ck(Ω) that uj → u in Ck(Ω) if Dαuj → Dαu
uniformly in Ω whenever |α| ≤ k.

Note that the spaces Ck,µ(Ω) are nested in the sense that if 0 < µ < τ ≤ 1 then Ck,τ (Ω) ⊂
Ck,µ(Ω) since if u ∈ Ck,τ (Ω) and Ω′ ⊂⊂ Ω then

[Dαu]µ,Ω′ = sup
x,y∈Ω′, x 6=y

|Dαu(x)−Dαu(y)|
|x− y|µ

= sup
x,y∈Ω′, x 6=y

|Dαu(x)−Dαu(y)|
|x− y|τ

· |x− y|τ−µ

≤ diam(Ω′)τ−µ[Dαu]τ,Ω′ <∞.

Similarly, if Ω is a bounded Ck,τ domain and 0 < µ < τ ≤ 1 then Ck,µ(Ω) ⊂ Ck,τ (Ω).

3 Compactness theorems

As was claimed previously, Arzela-Ascoli yields compactness theorems for Hölder spaces:

Theorem 1. Let Ω be an open set in Rn, k ≥ 0, and µ ∈ (0, 1]. Given a sequence of uj ∈ Ck,µ(Ω)
such that

sup
j
|uj|k,µ;Ω′ <∞ for all Ω′ ⊂⊂ Ω

there exists a subsequence {uj′} of {uj} and a function u ∈ Ck,µ(Ω) such that uj → u in Ck(Ω).
(Note that we do not claim that uj → u in Ck,µ(Ω), i.e. |uj − u|k,µ;Ω′ → 0 for all Ω ⊂⊂ Ω.)

Theorem 2. Let Ω be a bounded, open, C1 domain in Rn, k ≥ 0, and µ ∈ (0, 1]. Given a sequence
of uj ∈ Ck,µ(Ω) such that

sup
j
|uj|k,µ;Ω <∞ (1)

there exists a subsequence {uj′} of {uj} and a function u ∈ Ck,µ(Ω) such that uj → u in Ck(Ω).
(Note that we do not claim that uj → u in Ck,µ(Ω), i.e. |uj − u|k,µ;Ω → 0.)
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The proofs are similar so let’s prove Theorem 2.

Proof of Theorem 2. Let
Λ = sup

j
|uj|k,µ;Ω.

By (1), for |α| ≤ k, the sequence {Dαuj} is pointwise uniformly bounded on Ω as supΩ |Dαuj| ≤
Λ <∞. For |α| < k, {Dαuj} is also equicontinuous on Ω since [Dαuj]1;Ω = supΩ |DDαuj| ≤ Λ <
∞. To see this, observe that since Ω is a C1 domain, for every y ∈ ∂Ω there exists a ρy > 0 and
C1 diffeomorphism Ψy : Bρy(y)→ Rn such that

Ψy(y) = 0, DΨy(y) = In, |DΨy(x)− In| ≤ 1/2, Ψ(Bρy(y) ∩ Ω) ⊆ {x ∈ B1(0) : xn > 0}.

{Dαuj ◦Ψ−1
y } is equicontinuous on Bρy/2(y) ∩ {x ∈ B1(0) : xn > 0} since given ε > 0 there exists

δ = δ(y) > 0 independent of j such that

|(Dαuj ◦Ψ−1
y )(z)− (Dαuj ◦Ψ−1

y )(z′)| ≤ sup |DDαuj| sup |DΨ−1
y ||z − z′| ≤ 2Λδ < ε

for all z, z′ ∈ Bρy/2(y) ∩ {x ∈ B1(0) : xn > 0} with |z − z′| < δ and for all j. Hence {Dαuj}
is equicontinuous on Bρy/4(y) ∩ Ω. Cover ∂Ω by a finite collection of balls {Bρyk/8

(yk)} where
yk ∈ ∂Ω and let ρ = mink ρyk . For every ε > 0 there exists δ ∈ (0, ρ/16) independent of j such
that

|Dαuj(z)−Dαuj(z
′)| ≤ sup |DDαuj||z − z′| ≤ Λδ < ε

for all z, z′ ∈ Ω with dist(z, ∂Ω) > ρ/16 with |z − z′| < δ and for all j. Combining this with
{Dαuj} being equicontinuous on each Bρyk/4

(yk)∩Ω, {Dαuj} is equicontinuous on Ω. For |α| = k,
the sequence {Dαuj} is equicontinuous since [Dαuj]µ;Ω ≤ Λ < ∞ and thus given ε > 0 we can
choose δ > 0 independent of j that

|Dαuj(z)−Dαuj(z
′)| ≤ Λδµ < ε

for all z, z′ ∈ Ω with |z − z′| < δ and j. Therefore, for |α| ≤ k, by Arzela-Ascoli we can pass to a
subsequence of {Dαuj} that converges uniformly to some continuous function vα : Ω→ R.

For k ≥ 1 we need to check that vα = Dαu for all α. By the fundamental theorem of calculus
and (1), for every α with |α| = k − 1, x ∈ Ω, and ε > 0 we can choose δ > 0 independent of j
such that Bδ(x) ⊂⊂ Ω and∣∣∣∣∣Dαuj(x+ h)−Dαuj(x)−

n∑
i=1

DiD
αuj(x)hi

∣∣∣∣∣ =

∣∣∣∣∫ 1

0

DDαuj(x+ th) · hdt−DDαuj(x) · h
∣∣∣∣

≤
∫ 1

0

|DDαuj(x+ th)−DDαuj(x)||h|dt

≤ [DDαuj]µ;Ω|h|1+µ

≤ Λ|h|1+µ < ε|h|

for all h with |h| < δ and j. Similarly when α with |α| ≤ k − 2, x ∈ Ω, and ε > 0 we can choose
δ > 0 independent of j such that Bδ(x) ⊂⊂ Ω and∣∣∣∣∣Dαuj(x+ h)−Dαuj(x)−

n∑
i=1

DiD
αuj(x)hi

∣∣∣∣∣ ≤ sup
Ω
|D2Dαuj||h|2 ≤ Λ|h|2 < ε|h|
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for all h with |h| < δ and j. Letting j →∞,∣∣∣∣∣vα(x+ h)− vα(x)−
n∑
i=1

vα+ei(x)hi

∣∣∣∣∣ < ε|h|,

where e1, e2, . . . , en is the standard basis for Rn and thus α+ ei denotes the multi-index in which
we replace αi by αi + 1. Therefore Divα = vα+ei for all α with |α| ≤ k − 1 and i = 1, 2, . . . , n.

Finally we need to check that [Dαu]µ;Ω <∞ for |α| = k. By (1),

|Dαuj(x)−Dαuj(y)| ≤ Λ|x− y|µ

for all x, y ∈ Ω and j. Letting j →∞, using merely the fact that Dαuj → Dαu uniformly in Ω,

|Dαu(x)−Dαu(y)| ≤ Λ|x− y|µ

for all x, y ∈ Ω.

4 Interpolation

Theorem 3. Let k and l be integers such that 1 ≤ k ≤ l and µ ∈ (0, 1]. For every ε > 0, for
every u ∈ C l,µ(BR(0)),

Rk|Dku|0;BR(0) ≤ C|u|0;BR(0) + εRl+µ[Dlu]µ;BR(0) (2)

for some constant C = C(ε, k, l, µ) ∈ (0,∞).

Proof. Obviously we may rescale as to assume that R = 1. The rest of the proof will be an
exercise.

5 Extension theorems

Define Rn
+ = {x : xn > 0} and Rn

− = {x : xn < 0}. For R > 0, let B+
R = BR(0) ∩ Rn

+ and
B−R = BR(0) ∩ Rn

−.

Theorem 4 (Extension Lemma). Let k ≥ 1 be an integer and µ ∈ (0, 1]. Let Ω be a bounded
Ck,µ domain and let Ω′ be an open set containing Ω. Then every function u ∈ Ck,µ(Ω) has
an extension ū ∈ Ck,µ

c (Ω′) such that ū = u on Ω and |ū|k,µ,Ω′ ≤ C|u|k,µ,Ω for some constant
C = C(n, k, µ,Ω,Ω′) ∈ (0,∞) independent of u.

Proof. Since Ω is a Ck,µ domain, for every ξ ∈ ∂Ω, there is a δξ > 0 and Ck diffeomorphism
Ψξ : Bδξ(ξ)→ Ψξ(Bδξ(ξ)) ⊆ Rn such that

Ψξ(Ω ∩Bδξ(ξ)) ⊆ Rn
+,

Ψξ(∂Ω ∩Bδξ(ξ)) ⊆ {(x1, x2, . . . , xn) ∈ Rn : xn = 0}.

We may assume Bδ(ξ)(ξ) ⊂⊂ Ω′, Ψξ(ξ) = 0, and B+
1 (0) ⊆ Ψξ(Bδξ(ξ).
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Let ũξ = u ◦Ψ−1
ξ on B+

1 (0). We extend ũξ to all of B1(0) by letting

ũξ(x
′, xn) =

k+1∑
j=1

cjũξ(x
′,−xn/j)

for x = (x1, x2, . . . , xn) ∈ B1(0) with xn < 0, where x′ = (x1, x2, . . . , xn−1) and

k+1∑
j=1

cj(−1/j)m = 1 for m = 0, . . . , k.

The cj are the unique solution to a linear system with a Vandermonde matrix. We compute for
all α with |α| ≤ k and all x = (x′, xn) ∈ B1(0) with xn ≤ 0 that

Dαũξ(x
′, xn) =

k+1∑
j=1

cj(−1/j)αnDαũξ(x
′,−xn/j)

and in particular when xn = 0,

Dαũξ(x
′, 0) =

k+1∑
j=1

cj(−1/j)αnDαũξ(x
′, 0) = Dαũξ(x

′, 0),

so ũξ ∈ Ck(B1(0)). (Note that all this really shows is that Dαũξ is continuous across B1(0)∩{xn =
0}, not quite that ũξ is continuously differentiable up to order k at points in B1(0). However,
ũξ ∈ Ck,µ(B+

1 (0)) and the reflection of ũξ across {xn = 0} is consequently in Ck,µ(B−1 (0)), so it
follows from our discussion in Section 2 above that ũξ is continuously differentiable up to order k
on B1(0).) Also, for every α with |α| = k and every x = (x′, xn) and y = (y′, yn) in B−1 (0),

|Dαu(x′, xn)−Dαu(y′, yn)| ≤
k+1∑
j=1

cj(1/j)
αn|Dαũξ(x

′,−xn/j)−Dαũξ(y
′,−yn/j)|

≤
k+1∑
j=1

cj(1/j)
αn [Dαũξ]µ;B+

1 (0)(|x
′ − y′|µ + |xn − yn|µ/j)

≤
k+1∑
j=1

cj[D
αũξ]µ;B+

1 (0)|x− y|
µ,

so [Dαũξ]k,µ,B−1 (0) ≤ C[Dαũξ]k,µ,B+
1 (0) for C = C(n, k, µ) ∈ (0,∞). It readily follows that ũξ ∈

Ck,µ(B1(0)) and |ũξ|k,µ;B1(0) ≤ C|ũξ|k,µ,B+
1 (0) for C = C(n, k, µ) ∈ (0,∞). Therefore, ũξ ◦ Ψξ is an

extension of u to Ψ−1
ξ (B1(0)) with |ũξ ◦Ψξ|k,µ;Ψ−1

ξ (B1(0)) ≤ C|u|k,µ;Ω.

Find a finite subcover {Vi = Ψ−1
ξi

(B1(0)) : i = 1, . . . , N} of ∂Ω, where ξ1, . . . , ξN ∈ ∂Ω. Then

{Vi : i = 1, 2, . . . , N}∪ {Ω} covers Ω. Find a partition of unity χi subordinate to {Vi}∪ {Ω}; that
is, find χi ∈ C∞c (Ω′) such that χ0 = 0 on Ω′ \ Ω, χi = 0 on Ω \ Vi for i = 1, 2, . . . , N , and

∞∑
i=1

χi = 1 on Ω.
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Let ūi denote the extension of u to Vi constructed in the preview paragraph. Define

ū = χ0u+
∞∑
i=1

χiūi on Ω′.

Obviously,

ū =
∞∑
i=0

χiu = u on Ω.

and |ū|k,µ,Ω′ ≤ C|u|k,µ,Ω for C = C(n, k, µ,Ω,Ω′) > 0.

Note that what the proof of the Extension Theorem shows is that there exists a bounded linear
extension operator

E : Ck,µ(Ω)→ Ck,µ
c (Ω′)

with Eu = u on Ω for every integer k ≥ 1, µ ∈ (0, 1], bounded Ck,µ domain Ω, and open set Ω′

containing Ω. Thus if R : Ck,µ
c (Ω′)→ Ck,µ(Ω) is the restriction operator Ru = u|Ω, then R ◦ E is

the identity map.
We also have the following extension theorem for ϕ ∈ Ck,µ(∂Ω) in the case that Ω is a Ck,µ

domain. Recall that since Ω is a Ck,µ domain, ∂Ω is a Ck,µ, (n−1)-dimensional submanifold since
for every ξ ∈ ∂Ω, there is a δξ > 0 and Ck diffeomorphism Ψξ : Bδξ(ξ) → Ψξ(Bδξ(ξ)) ⊆ Rn such
that

Ψξ(∂Ω ∩Bδξ(ξ)) ⊆ Rn−1 × {0}.

Thus by ϕ ∈ Ck,µ(∂Ω) we mean that ϕ ◦ (Ψξ|Rn−1×{0})
−1 is in Ck,µ for all ξ ∈ ∂Ω (note that the

choice of Ψξ is irrelevant by the chain rule).

Theorem 5. Let k ≥ 1 be an integer and µ ∈ (0, 1]. Let Ω be a bounded Ck,µ domain and let Ω′

be an open set containing Ω. Then every function ϕ ∈ Ck,µ(∂Ω) has an extension ϕ̄ ∈ Ck,µ
c (Ω′)

such that ϕ̄ = ϕ on ∂Ω and |ϕ̄|k,µ,Ω′ ≤ C|ϕ|k,µ,∂Ω for some constant C = C(n, k, µ,Ω,Ω′) ∈ (0,∞)
independent of ϕ.

Proof. The proof is similar to the proof of the Extension Theorem. Let ξ ∈ ∂Ω and Ψξ be as in
the proof of the Extension Theorem. We want to extend ϕ̃ξ = ϕ ◦ Ψ−1

ξ from Bn−1
1 (0) × {0} to

Bn−1
1 (0)× R. We do so by letting

ϕ̃ξ(x
′, xn) = ϕ̃ξ(x

′, 0)

for all x′ ∈ Bn−1
1 (0) and xn ∈ R. It is easily checked that ϕ̃ξ ∈ Ck,µ(Bn−1

1 (0) × R) and
|ϕ̃ξ|k,µ,Bn−1

1 (0)×R ≤ C|ϕ̃ξ|k,µ,Bn−1
1 (0)×{0} for C = C(n, k, µ) ∈ (0,∞). Thus ϕ̃ξ ◦Ψξ is an extension of

ϕ to Ψ−1
ξ (B1(0)) with |ϕ̃ξ ◦ Ψ−1

ξ |k,µ;Ψ−1
ξ (B1(0)) ≤ C|ϕ|k,µ;∂Ω. Let {Vi = Ψ−1

ξi
(B1(0)) : i = 1, . . . , N}

be a finite cover of ∂Ω, where ξ1, . . . , ξN ∈ ∂Ω. Let χi be the partition of unity subordinate to
{Vi} ∪ {Ω}. Define

ϕ̄ = χ0ϕ+
∞∑
i=1

χiϕ̄i on Ω′.

Obviously, ϕ̄ = ϕ on ∂Ω and |ϕ̄|k,µ,Ω′ ≤ C|ϕ|k,µ,∂Ω for C = C(n, k, µ,Ω,Ω′) > 0.

References: Gilbarg and Trudinger, Section 4.1.
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