
Exploring the Average Values of Boolean Functions
via Asymptotics and Experimentation

Robin Pemantle∗

Department of Mathematics
University of Pennsylvania

Philadelphia, PA 19104–6395
pemantle@math.upenn.edu

Mark Daniel Ward
Department of Mathematics
University of Pennsylvania

Philadelphia, PA 19104–6395
ward2@math.upenn.edu

Abstract
In recent years, there has been a great interest in studying
Boolean functions by studying their analogous Boolean
trees (with internal nodes labeled by Boolean gates; leaves
viewed as inputs to the Boolean function). Many of these
investigations consider Boolean functions of n variables and
m leaves. Our study is related but has a quite different
flavor.

We investigate the mean output Xn of a Boolean
function defined by a complete Boolean tree of depth n.
Each internal node of such a tree is labeled with a Boolean
gate, via 2n − 1 IID fair coin flips. The value of the input
at each leaf can be simply fixed at 1/2, so the randomness
of Xn derives only from the selection of the gates at the
internal nodes.

For each n, there are 2(2n−1) possible Boolean binary
trees to consider, so we cannot expect to obtain a complete
description of the probability distribution of Xn for large
n. Therefore, we perform a twofold investigation of the
Xn, using both asymptotics and experiments. We prove
that, with probability 1, Xn → 0 or Xn → 1. Then we
directly compute the asymptotics of the first four moments
of Xn. Writing Zn = Xn(1−Xn), we also prove that E(Zn)
and E(Z2

n) are both Θ(1/n). Finally, we utilize C++ and
a significant amount of computation and experimentation
to obtain a more descriptive understanding of Xn for small
values of n (say, n ≤ 100).

1 Introduction.

We first outline the construction of a Boolean function
using a binary tree. We utilize complete binary trees
Tn of depth n. At each of the internal nodes, we place
either an AND gate or an OR gate, with probability
1/2 each. Selection of the gates at distinct nodes is
independent, so the gates are essentially chosen by IID
fair coin flips. In other words, we uniformly select a
vector consisting of 2n − 1 AND’s and OR’s, namely
~gn ∈ {AND,OR}2n−1. By labeling the internal nodes
of a complete binary tree of depth n with this collection
~gn of 2n−1 gates, we naturally define a random Boolean
function φn(~gn) : {0, 1}2n → {0, 1}. The leaves of the
tree, say i1, i2, . . . , i2n , are considered as the inputs to
the Boolean function. The output at the root of the tree

∗Supported by NSF grant DMS-0401246.

is viewed as the output of the Boolean function. Thus
we write

φn(~gn)(i1, i2, . . . , i2n) ∈ {0, 1}

for each (2n − 1)-tuple ~gn of gates and each 2n-tuple of
inputs i1, i2, . . . , i2n .

In this investigation, we are interested in studying
the behavior of the random variable Xn, which denotes
the mean output of φn(~gn) on 2n Boolean inputs. In
other words,

Xn :=
1

22n

∑
i1,i2,...,i2n

φn(~gn)(i1, i2, . . . , i2n)

We observe that Xn is a random variable because the se-
lection of the 2n−1 gates in ~gn is performed at random.
Once the selection of the gates ~gn is determined, then
Xn is completely determined, because Xn is the average
of all possible 22n

selections of inputs i1, i2, . . . , i2n to
the Boolean tree described above. So the randomness
of Xn does not stem from a random choice of the inputs
i1, i2, . . . , i2n at all; Xn’s randomness only depends on
the random selection of gates at the internal nodes of
the tree. Once the gates at the nodes are chosen, then
we average over all possible inputs to the binary tree.

For each selection ~gn of gates, we note that
φn(~gn) is a function with 2n inputs. If the inputs
i1, . . . , ij−1, ij+1, . . . , i2n are all fixed, then φn(~gn) is a
linear function of ij . Since ij ∈ {0, 1} for each j, then
we conclude that Xn can be computed easily, once the
gates ~gn are chosen, by simply taking 1/2 as the value of
each input ij to the Boolean function φn(~gn). In other
words, for each selection of ~gn, we have

Xn = φn(~gn)(1/2, 1/2, . . . , 1/2);

in this representation, it is perhaps easiest to see that
the randomness of Xn is due to the random selection of
the gates in the (2n − 1)-tuple ~gn.

An example is useful for clarification. Consider the
selection of ~g3 given below in this tree of depth 3:

∨
∨ ∧

∧ ∨ ∨ ∧
i1 i2 i3 i4 i5 i6 i7 i8

For complete trees of depth 3, we see that X3 denotes
the mean output of a Boolean random function with
gates ~g3. If the choice of ~g3 is the one given above, this
results in X3 having the value 217/256. To see this,
simply evaluate the tree

∨
∨ ∧

∧ ∨ ∨ ∧
1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

Evaluating such a tree with inputs besides the familiar
{0, 1} requires a bit of explanation. The evaluation
of expressions such as i1 ∧ i2 is quite easy. This
expression, for instance, evaluates to 1 if both i1 and
i2 have the value 1; otherwise, the expression evaluates
to 0. Unfortunately, this evaluation is useful only
for i1, i2 ∈ {0, 1}. So we instead use the following
equivalent interpretation (which is quite standard). We
write

i1 ∧ i2 := i1i2
i1 ∨ i2 := 1− (1− i1)(1− i2)(1.1)

This interpretation has the benefit that i1 and i2 can be
any real numbers; in particular, they can each be set to
the value 1/2.

Evaluating a binary tree with inputs of 1/2 at each
of the leaves yields the value of Xn for each particular
selection of gates. Considering all possible selections of
gates, however, is computationally infeasible for even
small trees of small depth. For only the smallest values
of n, say n ≤ 5, can we possible hope to compute
Xn for all of the possible choices of gates. Therefore,
for medium sized values of n, say n ≤ 20, we can
readily compute the value of Xn for one particular
selection of gates for one complete tree of depth n, but
we cannot hope to compute Xn for every selection of
gates. Therefore, we simply compute Xn on a large
number of trees, but we cannot perform an exhaustive
investigation of all trees and their associated Boolean
functions. For large values of n, say n ≥ 30, it
becomes computationally intractable to even compute
the value of Xn for one particular selection of gates on a
complete binary tree of depth n. In such cases, we must
discriminately choose which gates to evaluate, because
we cannot possibly hope to evaluate them all.

In such cases, where we want to approximate the
value of Xn on a complete tree of depth n, but where
we cannot hope to evaluate all gates of the Boolean tree,
we consider a growing tree. We begin simply with the
root of a Boolean binary tree. At every stage, we select
one leaf of the tree and change it into an internal leaf,
by giving it two children and a Boolean gate. Which
leaves should be transformed into parent nodes first?
We utilize the concept of sensitivity of a leaf to select
the next leaf to transform. The leaves that are the most
sensitive, i.e., that have the largest potential effect on
the evaluation of Xn, should be first.

We rigorously define the notion of the sensitivity
of a leaf in a Boolean binary tree. We label the root
node as v0. For a leaf L at depth k in the tree, we
write v0, v1, v2, . . . , vk = L to describe the path within
the tree, from the root node, to the leaf L. For i ≥ 1,
we note that vi−1 has two children, namely, vi and one
other child, which we refer to as wi. Thus vi and wi

are distinct nodes at level i with the same parent; such
nodes are frequently referred to as siblings. We write
X(v) to denote the evaluation of the complete Boolean
binary subtree that has v as a root. Thus, Xn = X(v0)
is the same Xn that we discussed above. Also, X(v1)
is the evaluation of one of the subtree of the root, and
then X(w1) is the evaluation of the other subtree of the
root. So if the root node v0 of the entire tree is labeled
by an AND gate, then Xn = Xn(v0) = X(v1)X(w1).
Otherwise, the root node v0 of the entire tree is labeled
by an OR gate, and in this case, Xn = Xn(v0) =
1 − (1 − X(v1))(1 − X(w1)). Transversing the tree
with the notion in mind, we are naturally lead to the
definition of the sensitivity of L = vk. We recall that
v0, v1, v2, . . . , vk = L is the path through the tree from
the root node v0 to the leaf node vk = L. For ease
of notation, we write g(vi) = AND or g(vi) = OR,
according to whether node vi is labeled with an AND
or an OR gate. Then the sensitivity of the leaf vk = L
is defined as

S(vk) :=
k−1∏
i=0

(
[[g(vi) = AND]]X(wi)

+ [[g(vi) = OR]](1−X(wi))
)

(1.2)

where the Iverson notation [[A]] is 1 if event A holds and
is 0 otherwise.

We developed a C++ program to investigate the
growth of Boolean binary trees, using the sensitivity
of the leaves as a guide for which subtrees to explore
first. The program is completely adaptive, according
to the sensitivities of the leaves. At each stage of the
execution of the program, the most sensitive leaf is cho-
sen, using the definition of sensitivity described above.
If several leaves have the same sensitivity, the program

selects one of the candidate leaves uniformly at ran-
dom; sometimes the candidate leaves are at different
levels, so this is an important subtlety in the imple-
mentation of the program. Once a leaf L is selected
to be updated, we consider the path v0, v1, . . . , vk = L
from the root of the tree to the leaf. Only the X-values
X(v0), X(v1), . . . , X(vk) must be updated; this is ex-
tremely efficient in terms of the computation required,
because at most n nodes are found on the path from
the root to the leaf. The sensitivities of every leaf in
the tree must be updated afterwards. Recall the defini-
tion of S(vk) in product notation above. Only the X-
values X(w0), X(w1), . . . , X(wj) were changed at this
stage, for some value of j, which is usually very small.
In other words, only the X-values of the nodes that are
ancestors of both the current node and the most sensi-
tive node L must be updated.

We wrote several C++ programs to perform the
computations in this project. Some sample output
from the programs is available freely online at http:
//www.math.upenn.edu/∼ward2/boolean

We have computed millions and millions of values
of Xn for various values of n. For instance, when
n = 15, we are able to compute approximately 30 values
of Xn per second on a 1.42 GHz Power Macintosh G4
computer. We have built a large database that archives
all of the output from these investigations. It has grown
so large that it is unwieldy to distribute all of it publicly
on the Internet, but we summarize some of the results
of our computations at the end of this report.

2 Main results

We were inspired to pursue an analysis of Xn be-
cause of the Gardy and Woods’ intriguing study [7],
in which various measures on Boolean functions are an-
alyzed. Gardy and Woods consider trees chosen uni-
formly among all sub-binary trees with n leaves; they
also place randomly assigned logical gates at the inter-
nal nodes. We note that a uniformly chosen tree with
n leaves is stringy. The typical random function pro-
duced in this way is therefore dominated by the Θ(1)
many inputs at leaves of distance Θ(1) from the root.
Their model is natural for some purposes, but we are
interested in considering the model in which as n →∞
the distance from the root to the boundary goes to in-
finity. For this reason, we consider the simplest such
model, namely, the complete binary tree. The typical
behavior of a random Boolean function produced by a
complete binary tree turns out to be interesting but in
some ways elusive.

Besides [7], we note that other recent results about
Boolean functions, binary Boolean trees, and tree recur-
rences, have have been explored in [1], [2], [3], [6], [8],

[9], [10], [11], [12],
We recall that Xn is the mean output of a Boolean

function defined by a complete Boolean tree of depth n.
In this report, we prove the following facts about Xn.

Theorem 2.1. The sequence {Xn} is a Martingale.
With probability 1, we have limn→Xn

exists and is either
0 or 1. The moments of Xn may all be computed
recursively. In particular, the first four moments of Xn

are

E(Xn) =
1
2

E(X2
n) =

1
2
− 1

n
+ O

(
log n

n2

)
E(X3

n) =
1
2
− 3

2n
+ O

(
log n

n2

)
E(X4

n) =
1
2

+
α− 2

n
+ O

(
log n

n2

)
(2.3)

where α =
√

7−1
2 . Since Xn is distributed about 1

2 , it is
natural to describe the moments of Zn := Xn(1 − Xn)
as well. We have

E(Zn) =
1

n + O(log n)
(2.4)

E(Z2
n) ∼ α

n
(2.5)

It follows from this that for some a > 0, P (Zn ∈
[a, 1− a]) = Θ(1/n).

Left open is whether the rest of the time Zn is typically
of order 1/n or of some smaller order.

Just as the right 1/n-tail of Zn is larger than one
might initially expect, it is also not hard to show that
the left 1/n-tail of Zn is quite small: there is a c > 0
such that P (Zn < exp(−cn2)) > c/n. We believe in fact
that the distribution of log Zn is spread over an interval
of increasing size as n → ∞. Perhaps, for instance,√

log Zn/n has a nondegenerate distributional limit.
We point out that there are issues in effective

simulation that are bound up with theoretical analyses
of the problem. In particular, exact simulation of Zn

(the study of Zn and Xn is basically interchangeable)
requires a time that is exponential in n. However,
we have analyzed Zn extensively (for various n) by
approximately simulating Zn; we do this by exploring
only nodes of the tree that one expects to have high
impact on the value of Zn. Given a rooted subtree
of already explored nodes (nodes for which we have
decided whether the gate is “AND” or “OR”), we define
the sensitivity as follows: We write v0, v1, v2, . . . , vk = L
to denote the path through the tree from the root node
v0 to the leaf node vk = L. For ease of notation, we
write g(vi) = AND or g(vi) = OR, according to whether

node vi is labeled with an AND or an OR gate. Then
the sensitivity of a leaf is defined as

S(vk) :=
k−1∏
i=0

(
[[g(vi) = AND]]X(wi)

+ [[g(vi) = OR]](1−X(wi))
)

(2.6)

where the Iverson notation [[A]] is 1 if event A holds and
is 0 otherwise.

At each stage in the growth of the tree, there is a
well defined most sensitive remaining node (there may
be ties) and one may define a greedy search algorithm
which always looks next at the node for which revealing
the gate will reduce the variance by the most. It is
easy to compute this optimal choice. If one can then
compute how close one is to Xn one will know how far to
go in order to simulate a pick from Xn with the desired
precision. If, further, one can analyze the growth of the
exploration tree, then one will know how long it takes to
simulate Xn and this will have implications directly on
the distribution of Xn. For example, if Xn is typically
well approximated by a tree of depth m < n, then the
distributions of Xn and Xm are close and, if m = o(n),
this precludes a limit law with n in the denominator.
Obtaining more rigorous results on the growth of the
search tree and the accuracy of these approximations is
one of our current and ongoing goals.

Ample data generated by various C++ programs
for studying the behavior of Xn when n is small (say,
n ≤ 100) can be obtained from the authors. Our files of
data are too large to distribute on the internet at present
(we have hundreds of megabytes of files, containing
millions of samples of various Xn).

At the present time, it suffices to present a few
tables of sample data about Xn at the end of the
paper. We give tables of values for X15 and X20, using
numerical data from millions of samples of X15 and
X20 using C++ programs that generate sample random
Boolean trees. Upon revision of this paper, we plan to
present graphical representations of this data, but we
hope that the raw data itself is enticing enough for the
reviewers at this stage of the project.

3 Analysis and Proofs.

We establish the fact that {Xn} is a martingale. We
also derive the first four moments of Xn. Using a similar
methodology, one can set up similar recurrences and use
analogous arguments to derive any of the moments of
Xn.

Lemma 3.1. The sequence {Xn} is a martingale.

Proof. To see that {Xn} is a martingale, suppose that
X1, . . . , Xn are known. In particular, Xn is known.

What is the conditional expectation of Xn+1 in this
case? Recall that, when we compute Xn, we have inputs
of 1/2 for each leaf, all of which occur at depth n. Now
we consider the computation of Xn+1, given the value
of Xn. Each leaf at depth n is replaced with an AND or
OR gate, in an IID fashion. The inputs to the leaves at
depth n + 1 are equally likely either 0 or 1, so we input
1/2 to each leaf at depth n + 1. Thus, the expected
value of each gate output at depth n is also 1/2. Then
the rest of the tree is evaluated exactly as it would be
when computing Xn itself, so we obtain

E(Xn+1 | X1, X2, . . . , Xn) = Xn

and we conclude that the sequence {Xn} is a martingale.

Corollary 3.1. With probability 1, limn→∞Xn ex-
ists.

Proof. Since 0 < Xn < 1 for each n, we have E[|Xn|] ≤
1 for all n. By Lemma 3.1, we know that {Xn} is a
martingale. Thus, the corollary follows immediately by
the Martingale Convergence Theorem (see [4], [5]).

Lemma 3.2. We note that

E(Xn) = 1/2

is the expected value of Xn.

Proof. The root node is equally likely an AND or OR
gate. Writing Xn and X̃n to denote the output of the
Boolean functions for the left and right subtrees of the
root node, we note that Xn and X̃n are independent
and identically distributed. Thus

E(Xn+1) =
1
2
E(XnX̃n)

+
1
2
E(1− (1−Xn)(1− X̃n))(3.7)

Note that Xn takes values on the interval (0, 1), and the
distribution of Xn is symmetric about 1/2. To see this,
we observe that if the selection ~gn of 2n−1 gates results
in Xn = a, then replacing each AND from ~gn with an
OR, and also replacing the OR’s with AND’s, we get
a new selection of gates that results in Xn = 1 − a.
Therefore, Xn, X̃n, 1 − Xn, and 1 − X̃n all have the
same distribution. Thus (3.7) becomes

E(Xn+1) =
1
2
E(Xn)2 +

1
2
− 1

2
E(Xn)2 =

1
2

(3.8)

which completes the proof of the lemma.

We use the following Lemma to aid in the proof of
Theorem 3.1. If we define Zn = Xn(1 − Xn), then we
make the following observations.

Lemma 3.3. We observe that

E(X2
n) ↗ 1/2,

i.e., E(X2
n) increases to the limiting value of 1/2. To

describe the rate of convergence, we note that

E(X2
n) =

1
2
− 1

n
+ O

(
log n

n2

)
Also

E(Zn) := E(Xn(1−Xn)) =
1
n

+ O

(
log n

n2

)
is the expected value of Xn(1−Xn).

Proof. To see this, we first establish a recurrence for
E(X2

n). When computing Xn+1, we again utilize Xn

and X̃n, namely, the independent random variables
which denote the output of the Boolean functions for
the left and right subtrees of the root node. If the
root contains an AND gate, then Xn+1 = XnX̃n. On
the other hand, if the root contains an OR gate, then
Xn+1 = 1− (1−Xn)(1− X̃n). Thus

E(X2
n+1) =

1
2
E(X2

nX̃2
n)

+
1
2
E((1− (1−Xn)(1−X∗

n))2).(3.9)

As in the previous lemma, we also use the fact that Xn,
X̃n, 1−Xn, and 1− X̃n all have the same distribution.
Thus, from (3.9) we obtain

E(X2
n+1) =

1
2
E(X2

n)2 +
1
2
− E(Xn)2 +

1
2
E(X2

n)2

= E(X2
n)2 +

1
4

(3.10)

To see that E(X2
n) is an increasing sequence, note that

(E(X2
n) − 1/2)2 ≥ 0, so E(X2

n)2 + 1/4 ≥ E(X2
n), or

equivalently by (3.10), we have E(X2
n+1) ≥ E(X2

n).
Since E(X2

n) increases and is bounded above by 1, then
a limiting value exists; we take a limit on both sides of
(3.10) to obtain

lim
n→∞

E(X2
n+1) = (lim

n→∞
E(X2

n))2 + 1/4(3.11)

Thus lim
n→∞

E(X2
n) = 1/2, which completes the proof of

the first statement of the Lemma.
Now we observe

E(Zn) = E(Xn(1−Xn))
= E(Xn)− E(X2

n)

=
1
2
− E(X2

n)(3.12)

Thus E(X2
n) = 1

2 − E(Zn). From (3.10), it follows
immediately that

1
2
− E(Zn+1) =

(
1
2
− E(Zn)

)2

+ 1/4

Simplifying, it follows immediately that

E(Zn+1) = E(Zn)− E(Zn)2

For ease of notation, we write an = E(Zn). So we have
an+1 = an − a2

n. Then we write bn = 1/an, and we
compute

bn+1 =
1

an+1

=
1

an − a2
n

=
1

1
bn
− 1

b2n

=
b2
n

bn − 1

= bn + 1 +
1

bn − 1
(3.13)

Substituting bn = bn−1 + 1 + 1
bn−1−1 into (3.13) yields

bn+1 = bn−1 + 2 +
n∑

k=n−1

1
bk − 1

Substituting bn−1 = bn−2 + 1 + 1
bn−2−1 yields

bn+1 = bn−2 + 3 +
n∑

k=n−2

1
bk − 1

and repeated substitutions of a similar flavor eventually
yield

bn+1 = b1 + n +
n∑

k=1

1
bk − 1

(3.14)

From (3.14), we observe that bn+1 > n, so bk > k−1 for
all k. Thus, the summation in (3.14) can be bounded
by writing

n∑
k=1

1
bk − 1

=
1

b1 − 1
+

1
b2 − 1

+
n∑

k=3

1
bk − 1

≤ 1
16
3 − 1

+
1

256
39 − 1

+
n∑

k=3

1
(k − 1)− 1

=
3
13

+
39
217

+ 1 +
n−2∑
k=2

1
k

= O(log n)(3.15)

Returning to (3.14), we conclude that

bn = n + O(log n)

Again using (3.14), it follows that

bn+1 = b1 + n +
n∑

k=1

1
n + O(log n)

Therefore, bn = n + log n + O(1), and we conclude

E(Zn) = an =
1
n

+ O

(
log n

n2

)
This proves the final sentence of the lemma. All that
remains to show is E(X2

n) = 1/2− 1/n + O
(

log n
n2

)
, but

this follows immediately from observing that E(X2
n) =

E(Xn)− E(Xn(1−Xn)) = 1/2− E(Zn).

Now that we have completed the proof of Lemma
3.3, we are equipped to prove the following theorem
about the limiting behavior of Xn.

Theorem 3.1. With probability 1, Xn → 0 or Xn → 1.

Proof. It suffices to prove that, for each ε > 0, there
exists Nε such that

Pr(Xn ∈ [ε, (1− ε)]) ≤ ε

for all n ≥ Nε.
Note that, if Xn ∈ [ε, 1 − ε], then also 1 − Xn ∈

[ε, 1− ε]. It follows that Xn(1−Xn) ∈ [ε2, (1− ε)2], or
equivalently,

Zn ∈ [ε2, (1− ε)2]

So

Pr(Xn ∈ [ε, (1− ε)]) ≤ Pr(Zn ∈ [ε2, (1− ε)2])
(3.16)

Note that E[Zn] is at least ε2Pr(Zn ∈ [ε2, (1− ε)2]), i.e.,
the expected value of Zn is at least the probability that
Zn is in the interval [a, b] times the smallest value in
the interval, namely a (here, we are using a = ε2 and
b = (1− ε)2). So we obtain

ε2Pr(Zn ∈ [ε2, (1− ε)2]) ≤ E[Zn]

Now we return to (3.16) to see that

Pr(Xn ∈ [ε, (1− ε)]) ≤ 1
ε2

E[Zn](3.17)

We just proved in Lemma 3.3 above that E[Zn] =
1
n + O

(
log n
n2

)
, and it follows that there is some N

(depending on ε) such that E[Zn] < ε3 for all n ≥ Nε.
Therefore

Pr(Xn ∈ [ε, (1− ε)]) ≤ ε(3.18)

for all n ≥ Nε. This completes the proof of the theorem.

Lemma 3.4. We observe that

E(X3
n) =

1
2
− 3

2n
+ O

(
log n

n2

)
is the third moment of Xn.

Proof. As in Lemma 3.3, we establish a recurrence for
E(X3

n). When computing Xn+1, we again write Xn and
X̃n to denote the output of the Boolean functions for
the left and right subtrees of the root node, which are
independent. Then we compute

E(X3
n+1) =

1
2
E(X3

nX̃3
n)

+
1
2
E((1− (1−Xn)(1− X̃n))3)(3.19)

We once again use the fact that Xn, X̃n, 1 − Xn, and
1− X̃n share a common distribution. Thus

E(X3
n+1) =

1
2
E(X3

n)2 +
1
2
− 3

2
E(Xn)2

+
3
2
E(X2

n)2 − 1
2
E(X3

n)2

=
3
2
E(X2

n)2 +
1
8

(3.20)

recall from (3.10) that

E(X2
n+1) = E(X2

n)2 +
1
4

(3.21)

Plugging this result into (3.20) yields

E(X3
n+1) =

3
2

(
E(X2

n+1)−
1
4

)
+

1
8

=
3
2
E(X2

n+1)−
1
4

(3.22)

and by Lemma 3.3, we conclude that

E(X3
n) =

1
8
− 3

4n
+ O

(
log n

n2

)
(3.23)

This establishes the lemma.

We abbreviate the proof of the next theorem [and
may expand the proof for the final submission before
publication]. We recall that

Zn = Xn(1−Xn)(3.24)

Using the lemmas above, we now establish the following
asymptotics for E(Z2

n).

Theorem 3.2. The second moment of Z2
n decays as

E(Z2
n) ∼ α

n where α =
√

7−1
2 ≈ .82.

Proof. As in several of the above lemmas, we observe
that

E(X4
n+1) =

1
2
E(X4

nX̃4
n)

+
1
2
E((1− (1−Xn)(1− X̃n))4)(3.25)

where, as above, Xn and X̃n denote the output of the
Boolean functions for the left and right subtrees of the
root node. Simplifying, and using the same methodol-
ogy as in the lemmas (i.e., utilizing the independence of
Xn and X̃n, and also the fact that Xn, 1−Xn, X̃n, and
1−X̃n have the same distribution), and using the results
established in Lemmas 3.3 and 3.4, it follows that

E(X4
n+1) = E(X4

n)2 − 3
2
E(X2

n)2 +
3
2
E(X2

n)− 1
8

(3.26)

In order to simplify things, we define

hn :=
1
2
− E(X4

n)(3.27)

and
dn :=

1
2
− E(X2

n)(3.28)

Then it follows from (3.26) that

hn = hn−1 − h2
n−1 +

3
2
d2

n(3.29)

We recall that, by Lemma 3.3, dn = 1
n + O

(
log n
n2

)
, and

it follows that hn ∼ α
n for some α. To solve for α, we

rewrite (3.29) as

α

n
∼ α

n− 1
− α2

(n− 1)2
+

3
2

1
(n− 1)2

=
α

n− 1
− α

(n− 1)2
+

α− α2 + 3/2
(n− 1)2

(3.30)

so we require −α2 + α + 3/2 = 0, and we conclude that
α =

√
7−1
2 ≈ .82. This verifies the theorem.

We observe that

Corollary 3.2. It follows from the theorem above that
the fourth moment of Xn

E(X4
n) =

1
2

+
α− 2

n
+ O

(
log n

n2

)
where α =

√
7−1
2 .

Proof. We note that E(X4
n) = E(Z2

n) − E(X2
n) +

2E(X3
n), and then the corollary follows immediately

from Lemmas 3.3 and 3.4 along with Theorem 3.2.

4 Experimental Data

If we write i = P (X15 ≤ a), then the following chart
gives the values of i and analogous a value. So, for
example, we see that 10% of the time, we have X15 ≤
4.23×10−9. The data is based upon four million samples
of X15. We note that X15 cannot actually take on the
values 0 or 1 (in other words, 0 < X15 < 1 always),
but some values of X15 that were simulated by C++
became so close to 0 or 1 that the program did not have
sufficient accuracy to make a distinction.

We also give similar data for X20, based on 800,000
samples.

We emphasize that each sample of X15 and X20 was
produced by computing a complete Boolean binary tree
of depth 15 and 20, respectively.

On the other hand, complete Boolean binary trees
of larger depth, say depth 100, are impossible to sample
completely. So we have an interactive C++ program
that allows the user to sample values from X100, for
instance, with interactions about when to stop the
simulation. The C++ program is trained to stop the
simulation itself if it detects that the sensitivities of the
leaf nodes, collectively, are sufficiently small.

The C++ program has several other features. For
instance, it lets us visualize the data by examining the
profile as the tree grows. The evolution of the profile as
the most sensitive nodes are selected within the tree is a
fascinating phenomenon. Besides further studying the
profile, we also plan to continue investigating stopping
criteria for the growth of large Boolean binary tree when
simulating Xn for large n, for example, n = 100.

Values of i = P (X15 ≤ a) for vari-
ous i’s, based on four million samples of X15:

i a
0 0

0.02 1.5842880459137615782× 10−18

0.04 1.5417759331674780113× 10−14

0.06 3.6853441307647837367× 10−12

0.08 1.946150783972689839× 10−10

0.1 4.2389795053727498602× 10−09

0.12 5.5574572680172713111× 10−08

0.14 4.8096310496682111124× 10−07

0.16 3.0620598368277611197× 10−06

0.18 1.5096759165431513337× 10−05

0.2 6.0584853376422378275× 10−05

0.22 0.00020423085893656053673
0.24 0.00060358903651591916482
0.26 0.0015788697227436521413
0.28 0.0037028015298202639725
0.3 0.0081775785999889938349
0.32 0.016096791381125210435
0.34 0.02931675216108991372
0.36 0.049929145494566826158
0.38 0.080863856150230561948
0.4 0.12284620845589767912
0.42 0.17824045429117807426
0.44 0.24535675616933050325
0.46 0.32363312838019353546
0.48 0.40902018329138667418
0.5 0.49958615335734124496
0.52 0.59031949427051666479
0.54 0.67577470773851533448
0.56 0.75413287054239663831
0.58 0.82141239443075020343
0.6 0.87690879166932234057
0.62 0.91887054992423133903
0.64 0.94994420606753837699
0.66 0.9705969104376125367
0.68 0.9838663676699012095
0.7 0.9917975019371320089
0.72 0.99628960071692485023
0.74 0.99841700621740403498
0.76 0.99939369149401702241
0.78 0.99979514056467388983
0.8 0.99993933648367427924
0.82 0.99998486455164625752
0.84 0.9999969351429923714
0.86 0.99999951878718318365
0.88 0.99999994442444495313
0.9 0.99999999576808529245
0.92 0.9999999998065358664
0.94 0.99999999999631150605
0.96 0.99999999999998467892
0.98 1

Values of i = P (X20 ≤ a) for vari-
ous i’s, based on 800,000 samples of X20:

i a
0 0

0.02 5.0382163087912427022× 10−38

0.04 1.5230128229556538674× 10−27

0.06 6.3286657458441326702× 10−22

0.08 5.1735411059772937349× 10−18

0.1 2.9976021664879226591× 10−15

0.12 3.9904445455628754719× 10−13

0.14 2.4095577834622933117× 10−11

0.16 7.7836396180672318864× 10−10

0.18 1.4707447536456487624× 10−08

0.2 1.8935175488311919258× 10−07

0.22 1.7570854901545337144× 10−06

0.24 1.1945313073671176302× 10−05

0.26 6.2980668432316506337× 10−05

0.28 0.00027352357944943062051
0.3 0.00097795102835056854466
0.32 0.0029612089558833220443
0.34 0.0078629214644783118615
0.36 0.018220237574111095707
0.38 0.037505430862690404548
0.4 0.070754484857089683381
0.42 0.12213471928528014943
0.44 0.1920888875815146557
0.46 0.28193889046471437565
0.48 0.38713351770430382004
0.5 0.49943452288831491348
0.52 0.61368509464475073933
0.54 0.71905791401265817253
0.56 0.80821918187350394458
0.58 0.87741511277304573557
0.6 0.92859840337232846252
0.62 0.96225347983792974826
0.64 0.9815937200809048413
0.66 0.99203387517333319057
0.68 0.99695351480120708576
0.7 0.99898484968621981128
0.72 0.99971894535199090637
0.74 0.99993478528828672047
0.76 0.99998779094032930193
0.78 0.99999819053417760006
0.8 0.99999979618479006849
0.82 0.99999998367149167677
0.84 0.99999999910327408426
0.86 0.99999999997058586221
0.88 0.99999999999949451546
0.9 0.9999999999999960032
0.92 1
0.94 1
0.96 1
0.98 1

Acknowledgments

We appreciate the input of Svante Janson, who simul-
taneously derived several of the observations presented
here. We also acknowledge Bob Sedgewick’s insightful
advice about using randomization in the implementa-
tion of data structures (Finding Paths in Graphs, A of
A 2005).

References

[1] C. Banderier, M. Bousquet-Mélou, P. Flajolet
A. Denise, D. Gardy, and D. Gouyou-Beauchamps.
Generating functions for generating trees. Discrete
Mathematics, 246:29–55, 2002.

[2] H. Buhrman and R. de Wolf. Complexity measures
and decision tree complexity: a survey. Theoretical
Computer Science, 288:21–43, 2002.

[3] B. Chauvin, P. Flajolet, D. Gardy, and B. Gitten-
berger. And/or tree revisited. Combinatorics, Prob-
ability and Computing, 13(4–5):475–497, 2004.

[4] R. Durrett. Probability: Theory and Examples.
Duxbury, Belmont, CA, 3rd edition, 2005.

[5] W. Feller. An Introduction to Probability Theory and
Its Applications. Wiley, New York, 1968, 1971.

[6] J. Fill, P. Flajolet, and N. Kapur. Singularity analysis,
hadamard products, and tree recurrences. Journal of
Computational and Applied Mathematics, 174:271–313,
February 2005.

[7] D. Gardy and A. Woods. And/or tree probabilities of
boolean functions. In Conrado Mart́ınez, editor, 2005
International Conference on Analysis of Algorithms,
volume AD of DMTCS Proceedings, pages 139–146.
Discrete Mathematics and Theoretical Computer Sci-
ence, 2005.

[8] H. Lefmann and P. Savický. Some typical properties
of large and/or Boolean formulas. Random Structures
and Algorithms, 10:337–351, 1997.

[9] P. Savický. Bent functions and random Boolean
formulas. Discrete Mathematics, 147:211–237, 1995.

[10] P. Savický. Complexity and probability of some
Boolean formulas. Combinatorics, Probability and
Computing, 7(4):451–463, 1998.

[11] P. Savický and A. Woods. The number of Boolean
functions computed by formulas of a given size.
Random Structures and Algorithms, 13(3–4):349–382,
1998.

[12] I. Wegener. The complexity of Boolean functions.
Teubner, Stuttgart, 1987.

