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WHEN ARE TOUCHPOINTS LIMITS
FOR GENERALIZED POLYA URNS?

ROBIN PEMANTLE

(Communicated by Lawrence F. Gray)

ABSTRACT. Hill, Lane, and Sudderth (1980) consider a Pdlya-like urn scheme
in which X, X, ..., are the successive proportions of red balls in an urn to
which at the n th stage a red ball is added with probability f(X,) and a black
ball is added with probability 1— f(X,). For continuous f they show that X,
converges almost surely to a random limit X which is a fixed point for f and
ask whether the point p can be a limit if p is a touchpoint, i.e. p = f(p) but
f(x) > x for x # p in a neighborhood of p. The answer is that it depends
on whether the limit of (f(x) — x)/(p — x) 1is greater or less than 1/2 as x
approaches p from the side where (f(x)— x)/(p — x) is positive.

Hill, Lane, and Sudderth (1980), hereafter referred to as [HLS], consider
the following urn scheme. Let f:[0, 1] — [0, 1] be any function and let an
urn begin with / balls of which a proportion X,_, € (0, 1) are red and the
remainder black. Add a new ball to the urn, whose color is red with probability
f(X,_,) and black otherwise. Let X, be the new proportion of red balls and
iterate the procedure, producing a sequence of proportions X,_,, X;, X, , ... .
In the case where f is continuous, they show that X, converges almost surely
to some random variable X . Furthermore, f(X) = X almost surely [HLS,
Theorem 2.1 and Corollary 3.1]. Categorize points p € (0, 1) for which p =
f(p) by calling them upcrossings if (y — p)(f(y) —y) is positive for all y in
some neighborhood of p, and downcrossings if (y — p)(f(y) — y) is negative
for all y in some neighborhood of p. The terminology comes from the way
the graph y = f(x) crosses the graph y = x. The next results of [HLS] are
that prob(X, — p) >0 if p is a downcrossing and f maps (0, 1) into itself,
while prob(X, — p) =0 if p is an upcrossing. The only other kind of isolated
point, p,in the set {x:x = f(x)} is a touchpoint where f(y) >y forall y #p
in a neighborhood of p, orelse f(y) <y forall y # p in a neighborhood of
p . They ask whether touchpoints can be in the support of the limiting random
variable X .
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236 ROBIN PEMANTLE

This note answers their question both ways for continuous f, giving a con-
dition on f near p implying prob(X, — p) > 0 and another condition that
implies prob(X, — p) = 0. These conditions almost meet, in the sense that
they cover all cases where (f(x)—x)/(p—x) hasalimitas x T p except for the
case where the limit is equal to 1/2. By symmetry between red and black balls,
there is no loss of generality in considering only touchpoints of the first kind,
where f(y) > y for y # p in a neighborhood of p. Therefore, the proofs
will be given only for the touchpoints of the first kind. Furthermore, whether
X, converges to p with positive probability depends only on the germ of f
at p [HLS, Lemma 4.1], so the arguments below will assume without loss of
generality that f(y) > y for all y # p, 1, as well as assuming that f maps
(0, 1) into itself.

Let & be the o-algebra generated by {X;:i < n}, and let & be defined
similarly for any stopping time 7. The key to the proof of both conditions will
be the decomposition of the submartingale {X,, . } into a martingale and an
increasing process. Write X, |, =X, + 4, + Y, , where

An = E(/Yn+l - Xn|‘?n)

is & -measurable and Y, = X, — X, — 4, ,s0 E(Y,|7,) = 0. Then calculate
the following conditional probabilities given .7, :
Ml =X, + =% with probability f(X,),

=X, - 2 with probability 1 — f(X,).

n+1 n

X1 =
This gives 4, = (f(X,) — X,)/(n + 1), which is nonnegative by assumption;
and hence

n+1

~L%) with probability 1 — f(X,).

n+l

Y_

n=

{ Lo/ with probability f(X,),

Also, Y, is a mean zero random variable given .7, , with the conditional
distribution of Y, given #, satisfying min(f(X,), 1 — f(X ))2(n + 1)~2 =

n

iann2 < E(Ynz|<9";) < sup,, Yn2 < (m+ 1)_2, where the inf is over w in the
& -measurable set for which X, has the given value. Defining

-1
zZ = Y;

n,m

3

i

n

yields for each fixed » a martingale {Z, &} withan L*-bound EZf o0 S
S, i+ )" < 1/n. If f is bounded away from O and 1 near p, then a
lower L2-bound is gotten by stopping the process X, when it exits an interval
on which min(f(X,), 1-f(X,)) > b. If 7 is any stopping time bounded above

by the exit time of the interval, then the above lower bound on EY; gives

(1) E(Z, . |%) > E(Z] |F,) > prob(t = oo|F, )b (n + 1),
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The idea will be that if f(x) — x is less than (p — x)/2, then the increasing
part 4 pushes X toward p so slowly that by the time X gets close to p, the
increments of Z are very very small, and Z cannot push X above p. So, in
fact, one gets convergence to p from below. On the other hand, if f(x) — x
is greater than (p — x)/2, then the increasing part pushes X toward p fast
enough so that the increments of Z are big enough compared with p — X, so
that, eventually, the addition of Z puts X over p. A result along the lines of
Pemantle [P1, P2] then implies that X, cannot converge to p.

Remark. 1t will be shown that convergence to a touchpoint near which f(x) > x
is always from the left. Thus the behavior of the function to the right of the
touchpoint is irrelevant.

Theorem 1. Let f be continuous in a neighborhood of a touchpoint p and
suppose that f maps (0, 1) into itself. Further suppose that x < f(x) <
x+k(p—x) for some k < 1/2 and all x in some left neighborhood, (p—¢, p),
of p. Then prob(X, — p) > 0. [Similarly, if x > f(x) > x — k(x — p) for
some k < 1/2 and all x in a right neighborhood, (p,p +¢€) of p, then also
prob(X, — p) > 0.]

Corollary 2. If f is differentiable at a touchpoint p and continuous in a neigh-
borhood of p, then prob(X, — p) > 0 under the same nontriviality assumption
£((0, 1)) € (0, 1).

Proof. Since f(x)— x does not change sign at p, the derivative of f(x)—x
must be zero at p and Theorem 1 applies. O

Proof of Theorem 1. Replacing f by a function agreeing with f on a neigh-
borhood of p, there is no loss of generality in assuming that f is continuous
and that f(x) > x forall x € [0, 1)\{p}. Thus it will suffice to prove that with
positive probability there is an N for which n > N implies X, < p, since X,
converges to a fixed point of f [HLS, Corollary 3.1], which must then be p.
Pick a k for which the hypothesis is satisfied and pick k, with k <k, <1/2.
Pick a constant y just barely greater than 1 so that yk, < 1/2. The function
g(r) = re!""7/?%7 hagvalue 1 at r = 1 and derivative g'(1) =1-1/2k,;7 <0,
so there is an r € (0, 1) for which g(r) > 1. Fix such an r. Define

T(n) ="' sog(r)'=r"T(n)"* > 1.
Choose M big enough so that er < ¢ and define
Ty =inf{j > T(M):X,_, <p-r" < X}}

if such a j exists, and 7,, = —oo otherwise. By the nontriviality assumption
that f maps (0, 1) into itself, prob(z,, > T(M)) > 0. For each n > M,
define 7, | = inf{j > 7,:X; > p - r"+1}. Note that if X; > p for some
j > T(M), then 7, < j forall n > M. The theorem will be proved by
showing that prob(z, > T'(n) for all n > M) > 0, which will imply that with
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, is eventually less than p, proving the theorem. Begin
by assuming that 7, > T(n) and calculate prob(t, , > T(n + 1)[t, > T(N))
as follows. Let & be the event {inf st X ;2P yr"} and estimate

nonzero probability, X

prob(#&°|t, > T(N)) = prob <}_i;1rf X, <p-yrlt, > T(N))

< prob (inf zZ, <-(y-Dr"lt,> T(N))

Jj>t,  n.i
2 2
<E(Z, lt,>T(N)/((v - Dr')
< e—n(l—r)/kly(y _ 1)—2r—2n

=(r-1)"[g(m ™"

Next, note that if & holds, then

Yo 4= Y (fX)-X)/U+1)

T(n)<j<T(n+1) T(n)<j<T(n+1)
<(In[T(n+1)] - ln['T(n)])(kyr")
< (kyr")I(1 = r)/vk, +1/T(n)]
= (k/k)(r" ="y + kyr" | T(n).

But then if & holds and 7,,, = L < T(n+ 1), it must be the case that

L-1
Zrn,L =X, _Xr,, - ZAj
Jj=t

>X, -X, - )., 4
T(n)<j<T(n+1)

> =" g~ (k/k) (" =" = kyr" T (n)
=r"(1=r)(1 = (k/k,)) =&, — kyr" /T(n)
(1 =r)(1 = (k/k) =€

The term ¢, comes from the fact that X_ may overshoot the stopping point
p—r",and & denotes the sum of ¢ and the kyr"/T(n) term. Then &, is
bounded by an - Xz,,—l < ‘c;l < T(n)_l by assumption. Since T(n)—l is of
order less than r*" , the fn contribution vanishes asymptotically in the sense
that
(L= (= (kfk) =&,
r(1=r)(1 - (k/k)))
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2 -1
Now E(Zt",ooltn >T(N))<T(n) ,so

prob(z,,, < T(n+1)[t, > T(N))

< prob(&‘|t, > T(N))

+ prob (9@” and supZ_ , > r(1-7r) < - E) —fn|rn > T(N))
L n’ 1

<=9 g™+ 1™ [ - (1= £) —fn]z

1

< (=) 1gM ™ +1(1 = r)(1 = (k/k))*[8(M)]

92
y r(1=-n(l - (k/k)) =&,
r”(l—r)(l—kﬁl) .

Because the last term of the numerator vanishes asymptotically, the sum of
these probabilities converges. Then prob(z, > T'(n) for all n > M) =
prob(z,, > T(M))]I],>, (1 —prob(z,,, < T(n+ 1)|r, > T(N))) > 0 since
each factor is positive and ) prob(z,,, < T(n)|t, > T(N)) is finite. In this
case, X, must converge to p from below. O

™

-2 -2n

Theorem 3. Suppose that f(x) > x + k(p — x) for some k > 1/2 and all x in
some left neighborhood, (p—¢, p), of p. Then prob(X, — p) =0. [Similarly,
if f(x)<x—k(x—p) forsome k >1/2 and all x in a right neighborhood,
(p,p+e€) of p, then also prob(X, — p) = 0.]

Remark. No continuity assumptions are needed this time.

Proof. Again there is no loss of generality in assuming that f(x) > x for all
x ; similarly, assume f(x) > min(l, x + k|p — x|) on [0, p]. Furthermore,
Lemma 2.2 of [HLS] says that replacing f by a pointwise smaller function
gives a process which can be defined on the same probability space so as always
to be smaller. Thus replacing f by the minimum of 1 and x + k|p — x| on
[0, p] and by x on [p, 1] gives a process which converges to p whenever the
original process does, so it suffices to prove the theorem for this choice of f.
The importance of assuming this lies only in getting f bounded away from
0 and 1 near p (without assuming continuity) so that there will be a lower
L*>-bound on Z.

The following argument is self-contained, but the reader may wish to look at
Pemantle [P2, Lemmas 1 and 2] to see the template from which this proof was
constructed.

Lemma 4. There are constants a, ¢ > 0 and a neighborhood /" of p such that
for any n

~1/2
prob(Z, . >cn orX,,

g N for some j|Z,) > a.
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Proof. Pick b > 0 and .#" a neighborhood of p such that f(/#") C[b, 1-0].
Assume that X, € /" or else the result is trivially true. For & > 0, let 7 <
oo be the first time X, exits /" or Z, , exits (—kn_l/z,kn_l/z). Then
equation (1) gives E(Zf’r|3‘:) > prob(t = oo|<9";)b2(n +1)7'. On the other
hand, E(Zf’r|37n) < EX, - Xn)2 < kz/n , since Z is just the martingale part
of X . Putting these together gives prob(r = ool¥,) < k2(n + 1)/b2n, and
choosing £ small enough makes this at most 1/3. Let
g =prob(r < oo, X gN|F,),

so that the conditional probability of Z, j exiting (—kn_l/ 2, kn~Y 2) given
&, is at least 2/3 — gq. Any martingale .# started at zero that exits an in-
terval (—L, L) with probability at least r and has increments bounded by
L/2 satisfies prob(sup.# > L/2) > (3r — 1)/4; stopping .# upon exiting
(=L, L/2) and letting s = prob(sup.#Z > L/2) gives 0 = E#Z < sL+
(r=s)(=L) + (1 = r)(L/2) = 2L(s — (3r — 1)/4). Thus Z, ; > k/2/n for
some j with probability at least (1 — 3g)/4.

Now for any j, condition on the event Z, i 2 k/2+/n; then the conditional
probability of the event Z, _ < k/4\/n can be bounded away from 1 using the
following one-sided Tschebysheff estimate:

Lemma 5. If # has mean zero and L <0, then
prob(.# < L) < EA*/(EA* + LY.
Proof. Write w for prob(/# < L). From
0=E#’ = wE(M|# <L)+ (1 - w)E(H|# > L)
and E(/#Z|M < L) < L, it is immediate that
E(#|4 >L)> ~L——.
Then
EA* —wE(M IM<L)+(1- //|/41>L)
>wL? + (1 —w)(E (/|//I>L))
>wL + (1 - w)L*(w?/(1 - w)*)
= L'w/(1-w),
from which the desired conclusion follows. O

Apply this to the process Z ;i stopped at the entrance time 7 of the interval
(-0, —k/4\/n) to get
prob(Z, . < k/4/n|F) < prob(Z, . < —k/4V/n|F))

<EZ; /(EZ  +k’[16n)
<EZ! _/(EZ) _+k’/16n)
< 16/(k* + 16).
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Combining this with the previous result shows that the condmonal probability
of Z, > k/4y/n given &, is at least (1 — 3q)k /64 + 4k* ). Recall that
q is the conditional probablhty of the process exiting /" given 9‘; , so that
the probability we are trying to bound below is at least the maximum of ¢
and (1 — 3q)k2/(64 + 4k2). For any value of ¢ the maximum is at least
K*/(64 + 7k%), thus the statement of the lemma is proved with ¢ = k/4 and

a=k*(64+7k*). O

Let 7 be any finite stopping time. Conditioning on %, then gives a stopping
time version of the previous lemma:

(2) prob(Z, > ct™* or X, . ¢ for some JIF) > a

T+j

A corollary of this is a sort of converse to the proof of Theorem 1, saying that
if X, — p then it does so from the left.

Corollary 6. Let p be a touchpoint of the first kind, i.e.. f(y) >y forall y #p
in a neighborhood of p. Then the probability of the event that either X, > p
finitely often or X, does not converge to p is 1.

Proof. Suppose to the contrary that the probability that X, converges to p
and is greater than or equal to p infinitely often is nonzero. Then there are
n, M, and some event & € %, such that n < M and conditional on % , the
probability of X converging to p and being greater than p some time before
M but never leavmg A after time n is at least 1 —a/3. Define 7 to be the
minimum of M and the least j > n such that X, > p. Then letting & be the
event that X, converges to p without leaving ./~ after time »n,

prob(t < M|%)prob(%|% , t < M) + prob(t = M|% )prob(Z|Z , 1 = M)
= prob(%¥|%#)>1—-a/3.

So
prob(%|# , 1< M) >1—-a/3 —prob(t = M|#)>1-2a/3.

Now 7 < M implies that X > p. But since 4, is an increasing process, it
follows that X ;=P and X, > p together imply Z < 0. Thus

prob(Z, . <O0Oand X, ; €./ forall JIZ,t<M)>1-2a/3,

and hence

prob(Z, ., > ct ™ or X, . ¢ for some j|B , 1> M) < 2a/3.

T+j
But this contradicts (2), since the events % and 7 < M are bothin & . O
Continuation of the proof of Theorem 3. It remains to show that under the

hypothesis of the theorem, the probability is zero that X, eventually resides in
(p — ¢, p). If the probability were nonzero, then for any J there would be an
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event & in some ., for which prob(X,,, € (p —¢, p) forall j > 0|%) >
1 — 6. In fact, conditioning on X, , % may be taken to determine X, . So
it suffices to show that the probability of the event X,, + € (p — ¢, p) for all
Jj >0 given X,, is bounded away from 1. For what follows condition on %,

and on X,, € (p—e¢, p). Also choose M large enough so that for any n > M,

n~K12%% < cn=1% where ¢ is chosen as in Lemma 4, and choose ¢ small enough
so that (p—¢, p) is a subset of a neighborhood .#" to which Lemma 4 applies.

Begin by setting up constants and stopping times: pick a k < 3/4 for which
the hypothesis of the theorem is satisfied and pick k, so that k >k, > 1/2.
For n > M define

V,=(k/k,)In(n) +2In(p — X,,) for X, <p and — oo otherwise.

By assumption on X, , V,, > —oo. Let 7 be the least n > M such that
X, ¢ (p—¢,p) or V, <0. Observe that if ¥, >0 then 1/n < (p - X,)"/* <
(p - Xn)“/3 , 80 |X,,, —X,| is small compared to p — X, , so V,,, can never
reach —oo and is in fact bounded below by min(-1, V,,). Now for n < 7

calculate

E(ln(p - Xn+1)|9n) < lnE(p - X,,.Hl‘g,—,)
=In(p-X,-4,)
<In((p - X,)(1 -k/(n+1)))
=In(p-X,)+In(l -k/(n+1));

SO

E(V, . |#,) <V, +(k/k)(In(n+ 1) —1n(n)) + 2In(1 - k/(n + 1))
=V, +(k/k)n™ +o(n”") = 2k(n™ +o(n”"))
=V, —(2-1/kDk+o(1))n” <V, —Cn”"

for large n and some C > 0. So V,, is a supermartingale for large n,
bounded below by min(-1, V},), and hence converges almost surely. Clearly it
cannot converge without stopping, since the increments of the expectation sum
to —oo, therefore the stopping time is reached almost surely.

In other words, conditional upon any event in any .%,,, the probability is
1 that for some n > M, either X, will leave (p —¢,p) or (k/k))In(n) <
—2In(p — X,). Let o < oo be the least n > M for which (k/k)In(n) <
—2In(p — X,). We have just shown that the conditional probability of some
X, leaving (p—¢, p) given o = oo is one. On the other hand, the conditional
probability of some X, ; leaving (p — €, p) given g = n < oo is at least

a by Lemma 4 since X, ;€ A trivially implies X, ;€ (p — €, p), while
/2

Z, > cn' implies Z
implies Xn+j >p. 0O

1/2 —k/2k . .
nonpj >R >n ' >p-— X, for some j, which
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