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A Time-Dependent Version of Pélya’s Um
Robin Pemantle'
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A process is defincd that consists of drawing balls from an urn and replacing
them along with extra balls. The process generalizes the wellknown Pélya urn
process. It is shown that the proportion of red balls in the um converges to a
random limit that may have a nonzero probability of being 0 or 1, but is non-
atomic elsewhere.
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The Polya urn process was introduced -in Eggenberger and Pélya (1923).
To run this process, let an urn contain R red balls and B black balls at
time 2= 1. A ball is drawn at random from thc urn and replaced in the urn
along with another ball of the same color, so that at time n=2 there are
R+ B+1 balls; R+1 of them are red with R/(R+ B) and R of them are
red otherwise. The draw and replacement are repeated ad infinitum, with
the probability of drawing a red ball always cqual to the proportion of
balls in the urn that are red at that time. It is a well-known fact that the
proportions of red balls converge almost surcly to a limit that is random
and has beta distribution with parameters R and B; see Feller® for a
discussion of this.

This article considers a Polya urn with the singlc change that the num-
ber of extra balls added of the color drawn is a function of time. A possible
interpretation of this model is the American presidential primary election.
Assume an initial amount of popular support for each candidate that dic-
tates that candidate’s chance of winning the first primary and then assume
that the support increases proportionally to the size of the states won by
the candidate in each primary. Then Proposition 6 below describes how the
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628 Pemantle

order in which the primaries are held influences each candidate’s chances
and the final margin of victory. Many other variants of the Polya um have
been studied: Friedman®’ allows balls of both colors to be added each
time; Athreya'® allows the number of balls added each time to be i.id. ran-
dom variables; Hill, Lane, and Sudderth‘® allow the probability of drawing
a red ball to vary nonlincarly with the proportion of red balls in the urn;
and Arthur, Ermolev, and Kaniovskii''! generalize Hill, Lanc, and
Sudderth’s scheme to allow balls of finitely many different colors. Other
discrete timc random processes such as reinforced random walk can be
embedded in urn models (see Pemantie!™),

Let F:Z2°% (0, c0) be any function. Let {v,, v3,..} be the successive
proportions of red balls in an urn that begins with R red balls and B black
balls and evolves as follows: at discrete times n=1, 2,..., a ball is drawn and
replaced in the urn along with F{(n) balls of the same color. (Allow F to
take nonintegral values by defining the probability of drawing a red ball
still to be proportional to the total mass of red balls in the urn.) The usual
Pdlya urn schemc is the casc where F(n)=1 for all n. It is shown that v,
must converge for any F and that the limit has no atoms except possibly
at 0 and 1. Necessary and sufficient conditions for the limit to concentrate
entirely on the two point set {0, 1} are given. The proofs of Theorems 1-3
are based on variance calculations for a discrete-time Martingale. The
methods are thus fairly elementary although the approach used to prove
Theorem 3 is useful in a much more general stochastic approximation
setting'®’ and I have not scen it used before.

The following formal definition of the process is completely routine
and may be skipped. Let £2 be [0, 1]%"° with the product uhiform measure.
All probabilities will be with respect to this space and all functions will be
functions of w where o is a generic point in £2, but the notation will supress
the role of w when no ambiguity arises. Let z, be the nth coordinate of @
so that {z,: n=0,1,2,..} is a set of independent uniformly distributed
variables on [0, 1], and let &, be the ¢-algebra generated by {z;: i <n}. Let
$,(0)=R, 5,(0)= B, and recursively definc

Si(n+1)=S(n) + Fln) 1z, < S (n)/[S:(n) + Saln) ] )
Sa(n+ 1) = Sy(n) + F(n) 1(z,> S,(n)/[S1(n) + S(n)])

where 1 denotes the indicator function of a set. So S,(n) and S,(n)
represent the numbers of red and black balls in the urn after n draws. For
convenience we let

n—1
6,,=F(n)/[R+ B+ Y F(i)]

im0
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denote the fractional additions. Let v, = $,(n)/[S;(n) + $5(n)] denote the
proportion of red balls at time n. The following results will be proved.

Theorem 1. For any function F as above, the random variables Uy
converge almost surely 10 some random variable v.

Theorem 2. The limit v satisfies prob(v= 0)=1-prob(o=1)=
B/(R+ B)if and only if ¥*, 6% = co.

This thcorem applies, for example, when F(n)=2". Roughly, the
hypothesis means that F grows faster than polynomially, but one needs to
look more closely if the growth is irregular since the function

if nisapowerof2
otherwise

n
Fo-{..
satisfies the hypothesis.

Theorem 3. The distribution of v has no atoms on (0, 1).

Theorem 4. If F is bounded by some constant M, then the distribu-
tion of v has no atoms at all, i.e., prob(v=0) = prob(v=1)=0.

Remark. It is possible for the distribution of v to have atoms at 0
and 1 of total weight less than 1; then the remainder of the time » is in
(0, 1) and this part of the distribution is nonatomic. An example where this
occurs is where R=B=1 and F(n)=~n. In this case the probability that all
draws are of the same color is §x§x4x ... >0, but according to
Theorem 2 the distribution is not entirely concentrated on {0, 1}. I do not
know an interpolation between Theorem2 and Theorem4 giving a
necessary condition for the probability that ve {0, 1} to be nonzero.

Proof of Theorem I. {v,:n=1,2,.} is a Martingale. To see this,
calculate

E@, 1| %) =0.(S\(n) + F(n))/[Sy(n} + F(n) + $1(n)]
+ (L= v,) $)(#)/[S1(n) + Sx(n) + F(n)]
= [$(n) + v, F(n))/[S(n) + Sz(n) + F(n)]

=V,

Now since {v,} is bounded, it converges almost surely to some ». a

860/3/4-10
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Proof of Theorem 2. We calculate the expected value of v Since
0<v<1 and E(v)=R/(R + B), this is at most R/(R + B) with equality if
and only if prob(s =0)=1—prob(v=1)= B/(R + B). Necessary and suf-
ficicnt conditions for this will follow from the simple recurrence relation (2)
below for the values of R/(R + B) — E(v?), which are denoted W,.

Since v, converges almost surely 10 v and the variables arc bounded by
1, we know that E(v?) converges to E(v?). Let ¥, denote E(v?). For a fixed
F, v, takes on only finitcly many values and ¥, , can be rccursively
calculated as follows. If v, (w)=x=8,(n)/[S,(n) + S;(n)] then

Vs (@) =8y(n)/[S\(n)+ Sx{n) + F(n)]
=x/(1+,)
with probability 1 —x, and

Vusl@}=L8(n) + F(n}]/[S,(n} + Sa(n) + Fin)]

=(x+4d,)/(1+4,)
with probability x. So

Viir= E”:n
=E[(1 - 0,) 03 /(1 + 8, +v,(0, + 6,)%/(1 +5,)*]
=[1/(1+3,°1 EL(1 —v,) 0 +v,(v,+6,)*]
=[1/1+6,)*] E[v2+ 26,02 +v,02]
=E(v;) + [9,/(1 +6,)]° (Ev,— Ev?)
=V,+[8,/(1+6,) [RAR+ B)—V,]

To see better how the value of ¥, | relates to the valuc of V,, we let W,
denote R/(R+ B)~ V,. Then

W,, 'S e Wu[l _6:/(] +6u)2] (2)

Thus the value ¥, converges to R/(R+ B) if and only if W, converges to
0, which happens whenever the product of the values [1—82/(1+4,)%]
converges to 0. This happens whenever 3%, 82/(1 +6,)? diverges, which

in turn happens cxactly when 3, | 82 diverges, and Theorem 2 is proved.
0O

Proof of Theorem 3. Fix pe(0, 1). If prob(v, — p)>0 then there is
some n and some event .o € #, such that prob(v, — p|.&¢) is arbitrarily
close to 1, In fact, n can be taken to be as large as desired. Define

A2
a,= 3 0

fau
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The quantity «, can be thought of as the “remaining variance,” since the
expected square increments of the Martingale {v,} are bounded between
constant multiples of 5} when v, is near p. According to Theorem 2 there
is no loss of generality in assuming «,, to be finite. Also assume without loss
of generality that p < 1/2 since the case p>1/2 is identical but with red
balls and black balls interchanged.

Since a, =0 there is an N for which #> N implies &, < p/10. Choose
¢> 0 small enough so that

9¢? < 81p%/800 (3)

The essence of the proof is in the following two claims, holding for any
n>N.

Claim 1: prob(sup |v, — p| > ¢ \/u,| %) = 9p/10 (4)

kon

Claim 2: prob(inf v, — pi>¢ V2| F,, B)2 Y16

where 4 istheevent |v,— p|=c /o, (5

Putting these two claims together, we see that for any value of n> N,
the probability given &, is at least 9p/10-¢%/16 that some v, , will be at
least ¢ \/«, away from p and that no subsequent v, ., ., will ever return to

the interval [p—c /«,/2, p+c . /a,/2]. This contradicts the existence of
the event .f above, and the theorem follows,

Proof of Claim 1. Let t=inf{k>2n: Iv*—p|>c\/a_,,}. We need to
show that prob(t < co | #,) 2 9p/10. We will calculate the variance of v, , ..
On the one hand, this is limited by the fact that v, , , is never very far from
p. (If the increment on which the stopping time is reached may be very
large, then a different argument is used; see Case [ below.) On the other
hand, the variance always grows by at least a constant multiple of 67 until
7 is reached, and ¢ is chosen to be much smaller than this constant. These
two facts together will imply that the stopping time is reached often enough
for Claim 1 to be true.

Case 1. 6,>2¢ Jc?,,/(l —p—c\/a_,,) for some i>n. Basically what
happens in this case is that there is a good enough chance of stopping on
the i+ 1st draw:

t>iand draw i is red
=>v; 2 p—¢+/a,and draw i is red
=0 =0+ (1 —v,) §,/(1 +51)?P+C\/&—n

=rt=i+1
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The probability of a red draw is always at least p— ¢ \/oT, until 7 is reached,
which is at least 9p/10 by choice of ¢ and N. This easily implies that
prob{z < oo | &) =z 9p/10.

Case 2. No &, is that big. Then the increment on which t is reached

cannot be bigger than 2c \/a,,. Pick any i > and use the fact that v,, .~ p
is a Martingale to get

E((v“_,_n”—p)zl.?{,)

=E((”.'M—P)2|-9'-;-)+E(1r>t("l+l—”i)2|-ﬁ) (7)
But
3 )2_{9,?[6,/(1+6,.)]2 with probability 1 —p, @®)
@it =0) = ({2 [6,/(1 +6)1*  with probability o,

Now since 1+3,<2 by the assumption that a, < p/10 and since 1> i=
minfv, 1 —-v,}2p—c \/az_,, =9p/10, it follows that

(041 —v) 2 81]’25?10 /400
So the right-hand side of Eq. (7) is at least

E((v; . — P)*| %) +815} prob(z = o0 | #,)/400

Now summing over / and dropping the positive term (v, ~ p)* gives

n+M—1

E((vmm,m—p)zwf,.)z(slpf 5 6?/400)prob(r=oo|z)

imn

But Eq. (6) implies that

00
E((t?(,”, Myat p)z |@)~<~902¢n =9¢* z 6,1

so letting M — oo gives
prob(z = o0 | F,) < 9¢*/(81p%/400) < 1/2
by the choice of ¢ in (3) above. So Claim 1 is proved. O

Proof of Claim 2. The idea this time is that the remaining variance
is not enough to give a high probability of getting back to within ¢ \/rx_,, /2
of p. The inequality we use is a one-sided Tschebysheff inequality saying
that if v, has a probability greater than 1 — ¢ of reentering the interval, then
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since it is a Martingale, the other ¢ of the time its average is on the order
of ¢! in the other direction, and this gives a contribution to the variance
that gets impossibly large as & goes to 0.

Let @ be the event |v,— |>cJ_ as in (5) above. Define a new

stopping time by t=inf{k>n; |v.—p|<c /u,/2}. From (7) again,
calculate

n+M-1
Var(”(u+M)M|$';)— Z E(l., vy, —v)* I F)< E 5 (1]
tump fmn

according to the values for (v, ~v )? given in (8) 80 {Viysnyac) isan L2
bounded Martingale with variance E((v,— 0,)*| %,) at most 3° 6% =
On the other hand,

E((v.—v,)’| %, R)
> prob(t < 0 | %, #)(c \/2,/2)?
+ prob(r = © |.%,, ) E((v,, — v,)* | %, B, 1= )
> prob(t =0 | %, B)E(v, —1,|F,, &, 1=)*

¢ /o, prob(t< 0| %, )T
;prob(t=w|3‘;,9)[ [grob(t=co|5".gl

_ C*a, prob(r < o | &, #)? (10)
T 4 prob(t=w|%, %)

where the penultimate term is calculated from the fact that |E(v,, —v,]
F,, B, 1< )| >¢/x,/2 while E(v,, —v,) must be zero. Combining the
two inequalities (9) and (10) gives

prob{t < o | %,, B)*
prob(t = 0 |.%,, &)

2, > (/) ,

It follows easily from this that prob(r=co|%,, #)>min{1/2, ¢*/16} =
/16 and Claim 2 is proved, along with Theorem 3. O

Proof of Theorem 4. Suppose prob{v =0)=p>0. For any £¢>0 Jet
kg [0, 1] — [0, 2] be defined by 4,(x)=max{0, 2 — 2x/¢}. Then &, > 1.,
$O

lim inf Eh,(v,,)>hm 1nr prob(v,€[0,e])2p

n--+

Then to prove Theorem4 it suffices to show that lim, o Eh(v,)=0
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“uniformly in 2. To do this, define a partial order on distributions of [o, 13-
valued random variables by writing

Py j' hdu < f hdv  for all continuous convex #: [0, 11— [0, 2]

Note that
piXv.and g, — p, v, > v weakly
(11)
= uxy

Another characterization of this partial order is that u=<v if and only if
there are random variables y and z with laws y and v, respectively, such
that E(z] y)= y. Also say y=<Xz if y and z have laws u and v, respectively,
with g=<Xv (this does not mean that y and z need to be the y and z of the
previous sentence, or even be defined on the same probability space). As a
notational convention, for any function F: Z#%— (0, ), let v!? be the
successive proportions of red balls in an urn that is governed by Eq. (1) but
with F" in place of F. Let all other superscripted variables refer to such an
urn as well, The initial distribution is always taken to be R red balls and
B black balls. The proof of Theorem 4 rests on the following two proposi-
tions.

Proposition 1,

()" For any n, if v{" = v? and 6> 62 then v!'), »v?,.
(i) If M > 8D for all n, then v!!), =o'

a+ 17 Yngt-

Proposition 2. Suppose that for some k, F(k)= FP(k+1)>
FOR)=F Ok +1) and F®(n)=F"n) for all n#k, k+1. Then
v =0 for all n.

Assuming these for the moment, the proof of Theorem 4 is finished as
follows. Fix N and let F"(n)= F(n) for n< N and F"(n)=0 for n> N.
Then v =19, for n<N. Let F? take on the same values as F? but
rearranged in descending order and let F®(n) = M for all n, where M is a
bound for the values of F. So, for example, if the values of F are 1, 4,3,
2,9,.. and N =3, then the values of FV are 1, 4, 3, 0, 0,...,, the values of F*¥
are 4,3,1,0,0,.. and the values of F® are M, M, M, M, M,... for some
M =9. Now Propositions 5 and 6 and Eq. (11) give

oy =04 = p oD g

But the distribution of v® is known to be beta with parameters R/M
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and B/M.“ So Eh(vy) <[ h. dB(R/M, B/M) which goes to zero as ¢—0
independently of N. Tt remains now to prove Propositions 1 and 2.

Proof of Proposition I. Part (ii) follows inductively from part (i). To
show (i) begin with the following definition. For any [0, 1]-valued random
variable y let T4(y) be a random variable whose distribution is given by

prob(Ts(y) =y — [/(1 +6)] y| y)
=1-prob(Ty(y)=y+ [6/(1+)IA -y =1-y
In other words, T,(y) is the proportion of red balls in an wurn after a

fractional addition of & to an initial proportion y. By conditioning on y it
is easy to see that

. 0Zn=Tyy)=T,(y) (12)
Then to show (i) it suffices to show
yrz=Ts(y)FTyz) (13)

So let y >» z be random variables, with y’ and z', respectively, dnoting 75(y)
and Ty(z). A foew reductions are helpful. First, assume without loss of
generality that E{ y)z) = z. In other words, since the law of Ts( y) depends
only on the law of y, we now do assume that y and z are defined on the
same probability space with E(y|z) =z Second, assume that z is deter-
ministic. This is possible because Ts(y) and Ty(z) can both be defined
separatcly for each value of z, and then E(A(T4(y))) = E(A(T,(z))) will
follow by conditioning on z. Third, assume that y takes on oniy two values,
since otherwise it is possible to interpolate random variables y=y, >
Yn-t1# o F Y1 #F yo=2z so that E(y,| y,_,)=y,, and y, takes on only
two valucs for each value of y; ,. (Recall that y takes on only finitely
many values). Thus without loss of generality let @, r >0 be such that

prob(y=z—ar)=1—prob(y=z+ (1 —-a)r)=1—a
Then the laws of y’ and z’ are given by «
prob(z’=Q=z-[6/(1+5)]2)=1—z
prob(z'=R=z+ [§/(1+d)](1 —2)) =z
prob(y'=A=z—[6/(1+8)]z—ar/(1 +6))=(1 —a)1 —z+ar)
prob(y'=B=z—[6/(1+0)]z+ (1 =a}r/(1 + &) =a[l—z—(1—a)r]
prob(y'=C=z+[§/(1+8)J(1 —2)—ar/(1+8)) = (1 —a)(z—ar)
prob(y'=D=z+[6/(1+}J(1 —z)+(1—a)r/({ +8))=a[z+(1—a)r]



636 Pemavtle

From this it is easy to see that a variable y" =% y' can be constructed so
that E(y“|2z') =z To do this, let y* =B only when =0 and let y'=C
only when z'=R. Since the ratio of prob(y" = A4) to prob(y” = B) is at
least 1 — a to a, the remaining values of y” when z' = can be assigned 50
that E(y"|z’=0Q)= without exceeding the value for prob(y” = 4)
required above. Then it follows that E(y"|2’=R)=R and hence y' =z’

Proof af Proposition 2. The two urns agrec up to time k, so by condi-
tioning on vy, assume k=1, It suffices to show of}? =0, since R
by (12), and it then follows from Proposition § that v§" 3= v§ = v =0l
for i>3. To show that v}'?3=v{?, construct two more urns. They both -
begin with R red balls and B black balls. From the first urn, two balls are
drawn with replacement and then F(1) balls of the first color and F(2) balls
of the second color arc added to the urn. Let u be the law of the resulting
proportion of red balls. From the second urn, draw a single ball and
replace it along with F(1) + F(2) balls of the color drawn. Let v be the law
of the resulting proportion of red balls in the second urn. The majorization
inequality implies that <w

__B__B+F(1) R

IM“‘R+BR+B+m)h[R+B+F(1)+F(2)]
LB R [ R+F(Q2)
R+BR+B+F() R+ B+ F(1)+ R2)

+ R B [ R+ F(1) ]
R+BR+ B+ F(1) R+ B+ F(1)+F(2)
N R R+F(Q) [ R+ F(1)+ F(2) ]
R+ B R+ B+F(1) R+ B+ F(1)+ F(2)

P el
> h
R+ B |R+B+HA+F2)

LR {'R+F(1)+F(2) ]
R+ B | R+B+F(1)+F(2)

'-—-j.hdv

Now the variables v§"’ and v’ can be constructed as follows. To construct
viV, begin with R red balls and B black balls, draw a ball, and replace it
along with F(1) balis of the same color bearing a special mark. Now draw
. another ball, If it is unmarked, replace it with along with F(2) balls of the
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same color. If it is marked, replace it along with F(2) more balls of that
color that are also marked. The probability of drawing a marked ball is
F(1)/R+ B+ F(1) and it is clcar from the construction that the law of v’
is given by v when a marked ball is drawn and by g when an unmarked
ball is drawn. So the law of v{" is [F(1)yR+B+F(1)}v+ {(R+BY
[R+ B+ F(1)]}p. Similarly, the law of v{? is [F(2)/R+ B+ F(2))v+
{(R+B)/[R+B+F(2)]}p. Then o{"2=v® follows from v>pu and
F(1) 2 F(2). O

Knowing that the distribution of v is nonatomic on (0, 1), it is logical
to ask when the distribution is absolutely continuous with respect to
Lebesgue measure. Nothing is known about this except when F is constant
and the distribution of v is known to be a beta, or when F(n) goes to zero
faster than 2" and v is supported on a Cantor set.
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