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ON TENSOR POWERS OF INTEGER PROGRAMS*
ROBIN PEMANTLE!, JAMES PROPP!, AND DANIEL ULLMANS

Abstract. A natural product on integer programming problems with nonnegative coefficients is
defined. Hypergraph covering problems are a special case of such integer programs, and the product
defined is a generalization of the usual hypergraph product. The main theorem of this paper gives a
sufficient condition under which the solution to the nth power of an integer program is asymptotically
a8 good as the solution to the same nth power when the variables are not necessarily integral but
may be arbitrary nonnegative real numbers.
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1. Definitions and notations. The minimization problems that we consider
here are of the form “Minimize the quantity

12 +c2%2 + -+ Ca%yg
subject to the constraints

a11&1 + G12%2 + - -+ + 014Tq > by
02171 + @22%2 + < - + a24q 2 b

Am1Z1 + Oma%2 +* +* + GmdZd 2 bm,

where a;;, b;, and ¢; are fixed nonnegative real numbers, and z; are unknown nonneg-
ative integers.” Label the constraints C(1),:--,C(m). We would lose no generality
by throwing out those variables z; for which ¢; = 0 (together with every constraint
C(4) for which a;; > 0) and those constraints for which b; = 0, thus making all b; and
¢; positive. For the time being, however, we do not require positivity.
We may write our integer program more compactly as “Minimize cT'z subject to
Az > b with £ > 0 and integral,” where A is a nonnegative m-by-d matrix, b is a
nonnegative column vector of length m, c is a nonnegative column vector of length 4,
and z ranges over the set of nonnegative integer column vectors of length d. Assume
further that b; > O implies the existence of a j for which ¢;; > 0. We denote this
integer program by the triple P = (4,5, ¢). Our positivity assumptions on A, b and
¢ imply that feasible solution vectors z exist; the minimum possible value of Tz as
2 ranges over all solution vectors is called the value of P, denoted v(P).
Associated with the integer program P is its LP-relazation, obtained by dropping
the requirement that the entries in the solution vector be integers. We let v*(P) (the
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128 R. PEMANTLE, J. PROPP, AND D. ULLMAN

LP-relazed value of P) signify the optimum of this relaxed linear program. Note that
v*(P) is a real number between 0 and v(P).

Also associated with the minimization program P is the program P+, “Maximize
bTy subject to ATy < ¢, with y > 0 and integral.” The program P! is called the
dual of P. The well-known duality theorem asserts that the optimum values of the
respective LP-relaxations of P and P+ are equal; that is, if we extend our definitions of
v and v* to cover maximization programs in the natural way, we have v*(P1) = v*(P).
However, it is by no means true that v(P1) = v(P); for, in general, we have

0 < v(P1) < v*(PL) = v*(P) < v(P),

so that if b and ¢ have integer entries, but v*(P) is not an integer, there is no chance
of the integers v(P+) and v(P) being equal.

Given two minimization programs P and P’, there is natural way to define two
other programs called their sum and tensor product. (For wholly analogous construc-
tions in information theory, see pp. 65-66 of [7]. See also [1], where the analogous
sum of two network flow problems is seen to correspond to parallel-composition of the
two networks.) Suppose P = (4,b,¢), P' = (A',V,d), where A is m-by-d and A’ is
m’-by-d’. We define A @ A’ as the (m + m’)-by-(d + d’') matrix

A 0
o A p

b@ ¥ as the vector of length m + m/ obtained by concatenating the vectors b and ¥/,
and c@®c as a similar concatenation; we then define the sum P&® P’ of the programs P
and P’ to be the program (A® A', b b, cd’). To define multiplication of programs,
it is notationally convenient to allow indices for vectors and matrices to be not just
natural numbers, but also pairs of natural numbers; then, the tensor product of A
and A’ may be defined as the matrix whose ((%, 7), (k,!))th entry is a;caj;. (If, as is
often done, we re-index the product so that the indices are natural numbers, then the
matrix A ® A’ may be depicted as

aj 1A’ 751 zA' LR /51 nA'
as 1A’ a2 2A’ et Qo ,.A'

: : : '
am1A' amad’ - amaA’

however, this representation is not necessary for our purposes.) We define b ® b’ as
the column vector of length mm’ whose (4, j)th entry is b;b;, and c®¢’ as the column
vector of length nn’ whose (k, {)th entry is cxcj. We conclude by defining the product
P ® P’ of the programs P and P’ to be the program (A® A,bQV,c® ).

We leave it to the reader to verify that ® and ® satisfy the natural commutativ-
ity, associativity, and distributivity properties; moreover, we can define the “empty
program” (no variables, no constraints) and the “identity program” (with A as the
1-by-1 identity matrix, and b and ¢ as vectors whose lone entry is 1) to serve as iden-
tity elements for & and ®, respectively. We further remark that, defining @ and ®
for maximization programs in the obvious way, we have (P @ P')* = P+ @ P'L and
(P ® P))* = P ® P'L. Finally, we point out that if P is a minimization program
in which some of the entries of the b-vector or c-vector equal 0, there is a canonical
program P’ obtained by throwing out the corresponding variables and constraints;
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moreover, the mapping P — P’ preserves v(-) and v*(-) and commutes with the op-
erations @ and ®. Hence, in the following we may without loss of generality assume
that b; and c; are positive for all 4, j and that v(P) > 0.

An easy fact from the next section is that v*(P® P’) = v*(P)v*(P’); however, an
example there will show that it is not true in general that v(P® P') = v(P)v(P’), and
that we must content ourselves with the weaker statement v(P ® P') < v(P)u(P').
If we define P®" as PR P ® --- ® P with n occurrences of P, then this inequality
implies that v(P®*t7) < v(P®)y(P®) for all i, j; by Fekete’s lemma [2], we conclude
that as n gets large, the quantity

Y v(Pen)

approaches its infimum, which we call the asymptotic optimum value of P. The
following theorem gives conditions on P that force the asymptotic optimum value to
equal the value of the LP-relaxation of P.

THEOREM 1. Let P = (A,b,c) be an integer minimization program in which b;
and c; are strictly positive for all i and j. Suppose there exists an optimum solution-
vector (a(1),a(2), -+, a(d)) for the LP-relazation of P such that

2 (5

3

Then 3/v(P®") — v*(P) asn — oo.

(In condition (1), we are to take 0° = 1, as usual. If we multiply the exponent
V*(P), the resulting inequality is equivalent to (1) and looks simpler, but the form
we have given will be more useful.)

It has already been mentioned (see the first paragraph of §1) that once we have
assumed that our program P satisfies a;j, b;,c; > 0 for all ¢, j, we may as well assume
that b; > O for all 4 and ¢; > O for all j. An explanation of the role played by
condition (1) will be given later. For now, let us mention the following result.

THEOREM 2. Suppose P = (A, b, c) is an integer minimization program in which
0<aij <b; andc; > 0 for alli and j. Then {/v(P®") — v*(P) as n — oo.

This is a special case of Theorem 1. The hypothesis of Theorem 2 gives us
ai;/b; < 1 for all ¢, 7, so that condition (1) is automatically satisfied by any optimum
solution-vector a.

Theorem 2 is strictly weaker than Theorem 1, because condition (1) is strictly
weaker than a;; < b;. For example, the set of (z,y) in the positive quadrant for which
the matrix (§¥) satisfies (1) when b = ¢ = (1,1)” is the region {(z,y) : z°y¥ < 1},
which strictly includes the unit square. It can be shown that the condition z7y¥ <1
is sharp for programs of this kind; that is, {/v(P®") — v*(P) if and only if z%y¥ < 1.
It would be interesting to know if condition (1) is sharp in general.

Section 2 of this paper outlines the relationship between integer programming and
hypergraph theory and gives the basic results on tensor powers of integer programs.
Section 3 contains a probabilistic proof of Theorem 1. Section 4 contains a constructive
{in fact, greedy) proof of Theorem 2.

aiya(j)/v’ (P)
) <1 for all i.

2. Background and preliminary results. First, we briefly recapitulate the
discussion of hypergraphs and integer programs contained in ([3]. A hypergraph H =
(V,E) is a finite vertex set V together with a collection E C 2V of nonempty subsets
of V, called (hyper)edges. A cover of H is a set of vertices C that intersécts every




edge of M; that is, for all e € E, CNe # ¢. The covering number T(H) is the smallest ;
cardinality of a cover of H. Suppose H has d vertices and m edges; then the incidence
matriz of H is the m-by-d matrix A with (,j)th entry equal to 1 if the ith edge
contains the jth vertex, and equal to 0 otherwise. Furthermore, if we let b and ¢ be
vectors of length m and d, respectively, consisting entirely of 1’s, and associate with
each cover C of H a d-vector = whose jth entry is 1 or 0, according to whether or not
C contains the jth vertex of H, then 7() is seen to equal the value of the integer
minimization program (A, b,c). This integer programming viewpoint naturally leads
us to consider the relaxed version of the program in which the integrality constraint
has been dropped; the value of the relaxed program is called the fractional covering
number 7 (H) of H. .

The definitions that appear in §1 all correspond to notions that have already been
used in the theory of hypergraphs; for example, if P; is the program that corresponds
to the problem of determining r(M;) (i = 1,2), then P, ® P, corresponds to the

problem of determining 7(H; x Hz), where H; x Hj is the hypergraph defined as
follows (with x denoting Cartesian product on the right):
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V(H1 x Hg) = V(H1) x V(Ha),
E(Hy x H2) = {e1 X e2: &1 € E(Ha),e2 € E(H)}-

In [8], McEliece and Posner proved (in different notation) a special case of Theorem
1, namely,

,,llr.&, Yr(H) =1"(H) .

This amounts to our Theorem 1 in the special case that the matrix A consists entirely
of 0’s and 1's, and the vectors b and c consist entirely of 1’s. This analogy suggests
the following definition.

DEFINITION 3. A program P is a fuzzy hypergraph covering (FHC) program if
all b; and c; are equal to 1 and 0 < a;; < 1 for all 4,j. (The terminology arises by
analogy with fuzzy sets.)

This paper extends McEliece and Posner’s result to a more general class, including
FHC programs.

Remark. It is not immediately clear that the condition ¢; =1 for all j is inessen-
tial, but an argument for this is given to finish the proof of Theorem 1 after it has
been proved in the case where c; = 1 for all j. Note, however, that the normalization
of b to a vector of ones breaks the symmetry between P and P! and may thus change
whether v(P) = v(P*). Finally, the condition 0 < a;; < 1 may not be entirely relaxed
without invalidating the theorem (see the second-to-last paragraph of this section).

Ezample. A typical FHC program is the following: “Minimize z; + z2 subject to

1
(2) n+5m2],
1
(3) 321 +x2 21,

with z;,T2 > 0.” This program P is associated with the matrix

A=( )

Wi =
- N
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Clearly, v(P) = 2, with optimal solution vectors z = (1,1) and (0,2). To determine

v*(P), note that the feasibility of z = (£, #) implies that v*(P) < I, while the
feasibility of y = (#, 2) for the dual program P+ implies that v*(P) = v*(P') > .
The tensor square of this program, P®2, has coefficient matrix

1 1 1
1 3 5 1
17 11
A®2=3 6 2
111 1|
3 8 2
1 1 1
? 3 3 1

and we readily see that = = (0,1, 1, 1) is a solution vector, so that v(P®2) < 3. This
illustrates that v(P®2) may be stnctly less than v(P)2. Here v(P®?%)1/2 = - /3 and,
in fact, by Theorem 1, v(P®")}/" —

The following proposition does not make use of the FHC property, but the fuzzy
hypergraph point of view may still be helpful to the reader in interpreting the state-
ments and their proofs.

PROPOSITION 4. The following hold:

(i) v*(P & P') =v*(P)+ v"(P);

(i) v(P & P') = v(P) +v(P');

(iti) v*(P® P') = v* (P)o* (P');

(iv) v(P® P') < v(P)v(P').

Proof. To prove (i) and (ii) note that if z and z’ are solution vectors for P and
P’, then their concatenation is a solution vector for P ® P’; and, conversely, every
solution vector for P @ P’ is such a concatenation. To prove (iii), suppose = and z’
are optimal solution vectors to the respective linear programs P and P’. Then since

(A A)(z®7') = (Az) @ (A'2) 2 b® Y

(note the use of nonnegativity), ¢ ® z' is a feasible vector for the product program
P® P', with

(c®)T(z®z') = (cTz)(c' T2)
= v*(P)v*(P"),

so that v*(P ® P’) < v*(P)v*(P’). On the other hand, suppose that y and y' are
optimal solution vectors to the dual programs P and P’; then y ® ¢’ is a feasible
vector for the program P+ ® P'+ = (P ® P')L with

ket yey) =0Ty Ty)
- =vt(PW(P),

so that v*(P ® P') > v*(P)v*(P’). (Note that we have applied the duality theorem
three times: to P, to P/, and to P® P'.) We conclude that v*(P®P’) = v*(P)v*(P’).
The proof of (iv) is the same as the first half of the proof of (iii) (but we no longer
have a duality principle to provide us with the reverse inequality). ]

The preceding proposition gives us an upper bound on v{P @ P’). The following
less obvious result (an extension of the first inequality in Fiiredi’s formula (3, (5.14)])
gives us a lower bound.

PROPOSITION 5. It holds that v(P ® P') > max{v*(P)v(P’),v(P)v*(P’)}.
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Proof. Put P = (A,b,¢), P! = (A", V,). By symmetry, it is enough to show that

v(P® P')

v(P) < = py

when v(P’) > 0. Given an optimal solution vector z to P® P’, indexed by pairs (k,1),
where 1 <k <dand1<{<d, define

1 .
Tk = m Xl:c‘z(k,l) -
We show that z is a feasible solution to the LP-relaxation of P. Fix ¢ and note that
_ 1 , _ b ;X Gik
zk: QAipTk = zk:atk ‘U(P') ; Qg1 = ‘U(P') ;cl ; b; 2k, -
Setting

Z —z(k s

k

we get
Zaik-’vk = —b'-—' Zcfyz .
p u(P) 4

However, since
! 1 / 1 / 1 '} /
Z L Z GikGj1Z(kY) = 3 (A® A) (=) 2 ;(b‘g )45 = b
] k|l * *
for all j, y is a feasible solution to P’, and hence satisfies
chyl > u(P).
1

Thus

> ez 2 P,)U(P ) =

k

establishing that z is indeed a feasible solution to P. We conclude that

) 1 1 v(PQ P
v(P) <Y oxmi = chm > dzen = WP > _onelzwn = (v(P') )’
* k 1 k!

which was to be shown. o

Proposition 4(iii) implies that /v(P®") > {/v*(P®") = v*(P). Our main
theorem states that if P is an FHC program or, more generally, if P satisfies condi-
tion (1), then, in fact, {/v(P®") — v*(P) as n — oo. Our first proof of this fact
relies heavily on the ideas of McEliece and Posner and, in particular, uses the same
sort of probabilistic construction as theirs did; however, our argument is necessarily
more complicated, since optimal solution vectors z will typically need to have entries
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much larger than 1 to satisfy the constraints. In our second proof, we use a greedy
construction as in Lovdsz’s proof of the McEliece and Posner theorem {6].

It should be mentioned that the convergence 3/v(P3®") — v*(P) does not hold
for integer minimization programs in general. As an illustration of this, let P be the
program “Minimize z + y + 2 subject to 2z > 1, 2y > 1, 2z > 1 with z,y,z > 0 and
integral.” Then v(P®") = 3" for all n, whereas v*(P) = 3. Hence, we see that for
convergence to v*(P) to hold, something like the FHC property is required.

It should also be mentioned that the convergence {/v(P®?) — v*(P) typically
does not hold for integer maximization programs, even when all of the a;; are 0’s and
1’s. For example, consider the problem P of maximizing 1 + 3 + 3+ z4 + 5 subject
to the constraints that 1 + 22, T2 + 3, 23+ 24, T4+ s, and x5 + 2z, all be at most 1.
Viewed as an integer program, this is equivalent to finding the largest independent set
of vertices in the pentagon graph Cs. More generally, the nth power of P is equivalent
to finding the largest independent set of vertices in the nth strong power of Cj (see [4]
for graph-product and graph-power terminology). The limit {/v(P) is known as the
Shannon capacity of the graph Cj [9]. It has been shown [5] that the Shannon capacity
of the graph Cj is v/5; on the other hand, v*(P) is 3, since (1/2,1/2,1/2,1/2,1/2) is
a solution to both P and PL. This example shows that Theorem 1 does not dualize
to a theorem about maximization programs; that is, {/v((P1)®") need not approach
v*(PL) = v*(P).

3. Proof of Theorem 1. The proof of Theorem 1 requires some ideas from the
theory of two-player zero-sum games. Treat the matrix A as the payoff matrix in
a two-player zero-sum game between Alpha, who names a variable (column of A),
and Beta, who names a constraint (row of A), where Alpha tries to maximize the
payoff and Beta tries to minimize the payoff; the payoff is a;; when constraint ¢ and
variable j are chosen. (To prepare for the multi-indices that are to follow, write a;;
as a(4,j).) Alpha has an optimal mixed strategy that chooses each variable z(7)
with some probability u(j). The expected value of the payoff under this strategy is
called the value of the game (see [10]) and will be denoted by S. There is a very
simple relationship between this game and the LP-relaxation of the program P with
matrix A and with b and ¢ consisting of ones, namely, that if (a(1),---,a(d)) is a
feasible solution for the linear program, then u(j) = a(j)/ X, a(j) gives a strategy
for Alpha with a guaranteed payoff of at least 1/ E, a(j). Moreover, v*(P) (the value
of the linear program P) is equal to 1/8 (the reciprocal of the value of the matrix
game), with each optimal solution-vector a giving rise to an optimal strategy u. In
the case where the ¢ vector is not all ones, it will still be convenient to let u(;) denote
a(j)/ 32, a(j), where (a(1), - -, a(d)) (a feasible solution with minimal cost) is given
by the hypothesxs of Theorem 1.

To illustrate this, conmder the prewous example of minimizing z; + z2 subject
to the constra.mts a:1 + 2:1:2 >1 and 3:01 + z2 > 1; 23 + 2 is minimized by choosing
z; = £ and z, = %, and v*(P) = {. The best strategy for Alpha in the game with

payoff matrix
1
A= 1
3

is to choose u(l) = 3/ = £ and u(2) = 4. Then S = $, which is clear from

the fact that the expected payoﬁ' against this strategy is 7, whether Beta chooses

constraint 1 or comstraint 2 or any probabilistic combination of the two. In other
words, 3° a(i, j)u(j) = 2 fori=1,2

[

-
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Remark. For ease of exposition, we will assume hereafter that, as in the preced-
ing example, all of Beta’s strategies are equivalent against Alpha'’s chosen optimal
strategy; i.e.,

(4) D ali,g)uli) =8 ;

F]

for all ¢, where u(j) = a(j)/ 3_; ®(j) with « as in the statement of Theorem 1. There l
is no loss of generality in doing so, since if this is not the case, there is always a way

to make it be true by diminishing some of the a(%,j) without changing the value of

the game (in other words, without making the integer programming problem or its
LP-relaxation any easier). Informally, this amounts to reining in the slack in all the
constraints where the inequality is strict for the optimal solution vector.

The proof requires a probabilistic construction. Assume without loss of generality
that b; are all equal to one, since v, v*, and the truth of condition (1) for P and its
tensor powers are all preserved by the normalization that divides each a;; by &; and
sets b; equal to one. Then (1) becomes

(5) H“(i’ jetiut) <1
J

for all i. For ease of exposition, assume also that the ¢ vector is all 1’s (the last
paragraph of the proof handles the case of general positive ¢ vectors). Let vy be
any constant greater than v*(P) and let V = [v}] for n large (just how large, we
will decide later). It will be shown via (12) below that »*(P) > 1 and hence that
V/vg — 1. To determine a set of values for the d" variables in the n-fold tensor
product of P such that the sum of the variables is V', begin with all the variables equal
to zero, and then select one of them according to a certain probability distribution
and increment it by 1. Repeat this V times with the choices being independent and
identically distributed. It will be shown that for the correct choice of probability
distribution, this procedure has a positive probability (in fact, a probability close to
1) of producing a feasible integer vector. The probability distribution is exactly the
same as the probability distribution used by McEliece and Posner [8]. That is to say,
the probability of choosing the variable z(j1, j2,+ -+, Jn) is given by u(j1)u(j2) - - - u(jn)
where u is the optimal strategy for Alpha. The proof that this construction works,
however, is more involved than the one in the paper by McEliece and Posner.

Proof of Theorem 1. Choose a vector at random according to the scheme described
in the previous paragraph. The random vector will be feasible if for every constraint

C(i1,-+,in) the sum of the coefficients of the V randomly chosen variables in that
constraint is at least 1. For each variable z = z(j1,-- -, jn), the coefficient in the
constraint C = C(3y, - -, iy,) is just the product
. ‘
H a(ika ]k) ;
k=1

Note that the value of this product depends on the number of times each pair (%, )
occurs in the list of (¢x, jx), but not on the order of these pairs, and with that in mind
define the type of the constraint-and-variable pair (C,z) to be the matrix Y, where
Y (3,7) is (1/n) times the number of times the pair (%, §) occurs in the list of (i, ji).
Also, define

r=r(¥) =[] a6, 5"

ilj
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so that the coefficient of z in C is just r(Y)".

The proof will proceed by finding for each constraint C' a matrix Y for which,
with high probability, the number of times we select a variable = such that (C,z) is
of type Y is at least r(Y)~™. In other words, the coefficients in C of the randomly
chosen variables sum to at least r~"r™ = 1, even if we ignore all but those variables
for which (C, z) is of one particular type. (This is less surprising than it might at first
seem, since the number of types is polynomial in n, whereas all other quantities are
growing exponentially; hence, in restricting to those « for which (C, z) is of a certain
type, we are not losing an exponentially significant contribution.)

Fix a particular constraint C = C(4,,- - -, i,) and define its type 3 to be the vector
of length m such that B(i) is equal to (1/n) times the number of times i appears in
the list of the i;. Define the m-by-d matrix

(6) Z(i,5) = a{4, 5)B(E)u(j)/S.
Note that

M sz) 0 (Za(z a)uo)/s) = BG3),

by (4). Also, note that r = r(2) = [ ; a(3, j)**)*WAE)S  which is the product
over i of positive powers of quantities HJ. a(s, 7)*9)%) | each of which is at most 1
(by (5)); thus

(8 r<l

Now define an approximation Z to Z recursively in j by

Z(i,5) = —fnZ(m )i Z Z(i,5") < Z Z(i,j'), and

J'=1 J'=1

2(i,4) = |n20.9)] 1f2zm> 5 26,

i'=1

The important properties of Z are that

(i) Z(4,5) = 0 implies Z(i,5) =

(i) nZ(i,7) is an integer;

(i) |2G,7) - Z(,5)| < 1/n;  and

(iv) ¥°; 23.9) = X2, Z(i,5) = B).
They follow unmedla.tely from the definition. The reason we want conditions (i) and
(iii) to hold is so that calculations involving Z can be approximated by calculations
involving Z; the reason we want conditions (i) and (iv) is so that Z will actually be
the type of a constraint-and-variable pair (C, z) for some z.

Define

7 =#(2) = [ ati,)*¢9.

The immediate object is to estimate the number of variables x of the V' that are
chosen (with repetition) for which the pair (C, z) is of the type Z, and show that this
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number is very likely to be at least #~". Each time a variable z = z(j1,--,Jja) is
chosen, the chance that (C,z) is of the type Z is just the chance that for each 1, the
values of the jy for which i, = i form the multiset that has nZ(i, 1) ones, nZ(i,2)
twos, and so on. Denote this probability by P(Z ). Then

P(Z) = H [multi (nﬂ(”)r nZ(i) 1)1 Tt 1nZ(i9m)) H u(j)"z-(i’j)jl ’
J

i

where multi(z; y1, y2, - - -) denotes the multinomial coefficient with  on top and 3,3, -

on the bottom. Evaluate these multinomial coefficients by assuming n > 3 and by
using the inequalities

z! > %™ * and z! < nz®e

for the numerator and denominator, respectively. Here 0° = 1 by convention. After
all the e* and n® factors cancel, we obtain

n
(9) P(Z) > n~™ H ﬁ(i)ﬁ(i) H Z(i,j)“z(i'j) H,u(j)Z(i,j) )
i i,J i

Note that if we replace Z by Z everywhere in the bracketed expression, it becomes

186" I 2G,5)~ 26 T u(s) =)

i l"j irj
= [1 s 26, 5)7) "

i

(10) = I (Sati, 1) %"

iij
=SJ a(s,5)7 %6
iJ
=S/,
where the first equality follows from (7) and the second follows from the definition of
Z in (6). We proceed to rewrite (9) in terms of S/r. Specifically, we will appraximate

(9) by a version with Z replacing Z, thereby introducing an additional error factor of
the form (1 — 8(n))™ with §(n) — 0 as n — oo. By property (iii) of Z,

Z(5 S\~ Z(5,9) ]

Z(Z,] ) 203 zi _z__

Z(i,5) (i.7) yv
where the infimum is taken over nonnegative x and y satisfying |z —y| < 1/n. Denote
this infimum by 1 — 6(n); since the function zln(z) (with 0ln0 defined to be 0) is

uniformly continuous on [0,1}, (n) — 0 as n — oo. Thus, putting 1 — 8,(n) =
(1 — 8(n))™2, we get

I1 2697562
W 2 (1-0(m)™ =1~ 6,(n)

9.7
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with §;(n) — 0 as n — co. Also note that

u(s) %)

_— = y Z.(i'j)-z(irj)
=y ,
u(j)?¢9) 9)

which is at least u(j)!/™ when u(j) > 0 and is 1 when u(j) = 0; either way, the
fraction is at least umin!/™, where um, is the minimum of the positive entries of u.
Thus

Hu(j)z("j) )
L R— 7L
u(j)Z0) ( fo )
'.‘j
Letting 62(n) be defined by 1 — 63(n) = umis™4/"(1 — 6:(n)), we conclude that

P(Z) > ™41 - &(n)" |[] BG)PD T 26, 5) =26 ] u(s) ¢
i $,J ij

(11) =n"™4(1 - G (n))*(S/P)",
where 62(n) — 0 as n — oo.

The other estimate of this sort that we will need is a bound on 7 in terms of r.
Take 5 > 0 with n < a(4,j) and n < 1/a(4, ) for all a(¢,5) # 0. Then

a(i,j)z(i’j) .\ Z(i,5)—2(5,5) 1/n
—_—y = all, * b 2
ati g7~ °9) !

for all i, 7, and
7 = [ o6, )76

’IJ
> [T~ [T ati. 976
1 i
— pmd/n r.
Then from (11) it follows that
(12) P(2) 2 Q(m)(S/7)",

where Q(n) = (1 — 82(n))"n™4n-™<. (Note that 8,6,, 62, and Q depend only on n,
not on which constraint was chosen. What will end up being important about Q(n) is
that 3/Q(n) — 1 since 6(r) — 0.) Since S/r = lim,S/7 < lim ,Q(n)/*P(2)"/" <
lim ,Q(n)}/™ = 1, it follows that v*(P) = 1/8 > 1/r > 1, and the debt we incurred
in the paragraph before the proof of Theorem 1 by claiming V/vg — 1 is paid. A
more meaningful interpretation of (12) is that if we choose a variable = = x(j1, - * jn)
at random with probability u(j1) - - - u(jn), the probability that (C,z) is of type Z is
at least Q(n)(S/F)". Also, recall that if (C,z) is of type Z, then the coefficient of z
inCisf.

The last step in the proof of Theorem 1 is an application of the following lemma.
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LEMMA 6. Let a,b,c,e be positive real numbers with ab/(1 +¢€) > c > 1 >
b. Consider a family {X;} of at least a™ independently and identically distributed
Bernoulli random veriables with P(X; = 1) > b®. Then there is some positive constant
& and some positive integer N for which P(3_X; < ¢*) < e~*'" whenever n > N.
Furthermore, N and 6§ can be chosen to depend only on e.

Assuming the lemma for the moment, the rest of the proof of Theorem 1 is as
follows. We have selected V = [vo™] variables for some vy > v*(P) = 1/S. Then for
any fixed constraint C = C(iy, -+, 1), we have chosen a matrix Z and its associated
value 7 so that each variable chosen by our random scheme has coefficient at least 7"
with probability at least P(Z). Let a = vy, b = P(Z)'/", and ¢ = max(1,1/7). Let
X; be the Bernoulli random variable that equals 1 if the ith variable chosen, z, has
the property that (C,z) is of type Z and equals 0 otherwise. Since 7 converges to r
as n gets large, and since » < 1 by (8), it follows that for any 6 > 0, 1/f > 1-§
for sufficiently large n. Then (12) implies that the first inequality in the hypothesis
of Lemma 6 is satisfied with any ¢ < v9S — 1 for sufficiently large n, since ab/c >
108Q(n)Y"/cF and Q(n)'/?/ci — 1. The second inequality is guaranteed by the
choice of ¢ and the last is true because b is a positive power of a probability. The
conclusion of the lemma is that the probability of there being enough variables of
type Z to satisfy the constraint (namely, =" of them) is at least 1 — e=="". This
is true uniformly over all constraint types for sufficiently large n, and since there
are only exponentially many constraints C, the sum of the failure probabilities over
all constraints goes to zero as n goes to infinity. In particular, the constraints are all
satisfied with nonzero probability for n sufficiently large, and that proves the theorem.

The case where the ¢ vector is not all 1’s. Suppose that (a(1),---,a(d)) is an
optimal solution to the program. Then letting u(j) = a(j)/ 3_, a(j) gives a strategy
in the two-player game that achieves a payoff of 1/}, a(j). Lettmg S=1/3;alj),
the calculation after (7) still shows that condition (1) implies » < 1, and (12) still
gives § < 1. Here we have borrowed another page from matrix-game theory to assert
that the optimal solution with the new ¢ vector will, in general, have a different
set of dominated strategies for Alpha (i.e., a different set of j for which u(j) = 0),
but that each 3~ a(é,j)u(j) will still be 1/8 for all 7 such that strategy i is not a
dominated strategy for Beta. Note that since the set of dominated strategies changes
with the ¢ vector, the modification of dominated strategies as in the paragraph before
condition (1) must come after looking at the ¢ vector. Ignore the cost vector c for the
moment and use the same randomized algorithm as before to choose [(e+3_; a(4))"]
variables to increment, where ¢ is a new, arbitrarily small, positive number. Since
the number of variables is going to infinity, the constraints are now satisfied with a
probability that goes to one as n — 00. The expected total cost of the variables chosen
is [(e+ X_; a(5))™], so the probability that the cost exceeds (2 + 3, a(j))(cTu)"
goes to zero as n goes to infinity; hence, in particular, the probability that the cost

is at most (2¢ +3_; a(7))"(cTu)", and that the constraints are all satisfied that, is
positive for large n. However, c’u = ¢’/ Y, a(j), so, for large enough n, there

are feasible integer vectors with cost at most ((2c"a/ Y ; aj)e +cTa)™ for arbitrarily
small e. The theorem is proved. c

Proof of Lemma 6. This is a standard large deviation estimate, but, to get §
to depend only on ¢, the usual moment estimate will be redone from scratch. The
following fact can easily be seen by looking at chords of the graph of In(1 — z) near

7

¢

,’
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z = 0, below:

In(1 — zu)

(13) zIn(1 —u)

— 1 uniformly over z € [0,1] as u | 0.

(The expression is taken to be 1 when 2 or u is 0.) Letting ¢ > 0 be a free parameter,
the moment calculation is

P Xi<c) =P L% > e7")
< Eet(—in) / e—-tc"

< (Ee-tx, )a" /e-tc"

<(1-br(1—eh)) fet

Exponentiating (13), we see that for all v € (0, 1), u can be chosen small enough
so that for any z € [0,1], 1 — zu < ((1 — u)*)". Then with z =b"andu=1—-e"* we
have that for any v € (0, 1) and sufficiently small ¢, the following inequality holds for

any b € [0, 1]:

1-tr(1-e ) < (L-(1-e)") =t
Then
(14) P(E Xi < ) < et =),

Fix any «y such that yab > c. The right-hand side of (14) increases when b and
c are decreased by the same factor, and also when b is decreased, so assume without
loss of generality that ab/(1 + ¢) = ¢ = 1. Then the exponent in the right-hand side
grows like (1 + €)®, so for any 6 € (0,In(1 + ¢€)), there is an N for which the left-hand
side of (14) is bounded by e="" whenever n > N. It is clear that § and N can be
chosen to depend only on e. 0

4. Proof of Theorem 2. The proof of Theorem 1 made delicate use of the
structure of the nth power of an integer program. In contrast, the proof presented
in this section is based on very general lemmas about semi-FHC programs (defined
below), and only at the very end does the notion of a product of integer programs
make an appearance. Even then, we appeal only to the most basic facts about P®"—
namely, that v*(P®") = v*(P)", and that the number of constraints in P®" grows
exponentially, not faster.

We will prove the following restatément of Theorem 2 (obtained by rescaling, as
in the proof of Theorem 1).

THEOREM 7. Suppose that P = (A,b,c) is an integer minimization program in
which 0 < a;; <1, b; =1, and ¢; > 0 for all i and j. Then {/v(P®") — v*(P) as
n — 00.

We will prove Theorem 7 by analyzing & somewhat broader class of programs
than those that satisfy its hypothesis. Say that an integer program P = (A,b,c) is
of semi-FHC type if all of the entries of A are in [0,1] and all of the entries of ¢ are
positive (the entries of b may be arbitrary real numbers). Call a constraint trivial

, if it is satisfied by all real vectors z (i.e., all its coefficients are 0 and its right-hand

=




el
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side is less than or equal to 0), and call a program trivial if all its constraints are ‘
trivial. Given an integer program P = (A,b,c) of semi-FHC type, let m denote
the number of nontrivial constraints, S(P) denote the sum of the entries of b, and
D(P) denote max;{3_;aij/c;}. When P is of FHC type, S(P) = m; when P is
trivial, S(P) < 0. (The notation “D(P)” originates from the fact that when P is
a hypergraph-covering program, D(P) coincides with the maximum degree of the
hypergraph, i.e., the maximum number of edges sharing a vertex.)

Our argument begins with the observation that v*(P) > S(P)/D(P) for any
nontrivial semi-FHC program P. To see this, let y be the vector of length m, all of
whose components equal 1/D(P). Since the jth row-sum of AT is at most D(P)c;,
the jth component of the vector ATy is less than or equal to ¢; for every j. Hence
y is a feasible solution to the dual program P+, whence v*(P) = v*(P1) > bTy =
S(P)/D(P).

In particular, suppose that P is as in Theorem 7, and Q is a nontrivial semi-
FHC program such that every feasible solution to P is also feasible for Q. Then
S(Q)/D(Q) < v*(Q) < v*(P). This upper bound on the ratio S(Q)/D(Q) is the key
ingredient in the proof of the following fact.

LEMMA 8. If P is as in Theorem 7 and ¢; < v*(P) for all j, then there is o
nonnegative integer vector * such that cTz* < 2(In10 + 1)v*(P) and at least one-
fourth of the entries of the column vector Az* exceed 1.

Proof. We define a sequence of semi-FHC programs P®) = P, P, p() ...
PN), where N will be specified later, together with a sequence of d-component integer
vectors u(® = 0, uD, 4@, ... 4™ in the following iterative way. We assume that
P& = (A®) p(k) ¢) has already been defined, and wish to define P(*+1), Take
J (more properly speaking, ji) such that 3, ag-‘) /c; = D(P®), and let u(*+1) be
the vector obtained from u(*) by incrementing its jth component by 1. Let b+
equal %) minus the jth column of A®*), Lastly, to define A*+1), call a row of A®
satisfied if the corresponding entry of b(**1) is negative; replace all the entries in all
the satisfied rows of A®*) by 0’s and call the resulting matrix A%*+1). Terminate this
greedy Rrocedure after NV steps, where N is chosen to be the smallest integer such
that Zk=_01 ¢, 2 v*(P)Inlo.

Note that under this scheme, if we fix i between 1 and m and look at the ith
entries of the successive vectors b(®,5(1) b2, ... (V) we see a sequence of numbers
that decreases by at most 1 at each stage until a negative term appears, at which
point the sequence is constant (since the corresponding row of A gets “zeroed out”).
Hence all the entries of all the b-vectors lie in the interval -1, 1].

Also note that a feasible solution for P(*) remains feasible for P*+1) gince the
only change made in passing from the former to the latter is that certain constraints
have been relaxed (some of the entries in the b-vector have decreased), while other
constraints have been effectively dropped (some of the rows of the A-matrix have been
zeroed out). Therefore any feasible solution for P(®) = P is feasible for each P(*¥). If
P(®) ig nontrivial, this implies that S(P(*))/D(P(*)) < v*(P) and hence

5(P®) — c;, D(PW)

S(P(’H-l))/S(P(k)) = S(Pk))

1o, DE®)
=1-c S(P("))
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c 3
<1- Tk
- v(P)

< e~ /v (P)
for all k between 0 and N — 1. Multiplying these N inequalities together, we obtain
S(PM)/S(P) < &= Lmo /¥"(P)

S e—ln 10

1
=5
If any of the P(¥) are trivial then so is PWV), so that S(P(")) = 0, from which we
see that the foregoing inequality holds in this case as well. We have shown that the
sum of the entries of 4¥) (all of which lie between —1 and 1) is at most S(P) =
% > b§°) = m/10. This means that at least a quarter of its entries are less than %
(since, otherwise, the average of the entries of b") would be at least 3 (1) + 3 (-1) =
% > 315, a contradiction). On the other hand, we also know that all of the entries of
b®) were 1’s, so at least a quarter of the entries of b©® — () must exceed 1; since
b > p©@ — Au®) | we have Aul™ > b0 — p(M) 50 that at least a quarter of the
entries of Au(™) exceed 1. Also, by the minimality of N and our assumption on c, we
conclude that cTu™ = YN tei +¢jp < v*(P)In10+4*(P) = (In10 + 1)v*(P).
Setting z* = 2u(™), we obtain a vector with the desired properties. 1]
LEMMA 9. If P is as in Theorem 7, S(P) > 1, and c; < v*(P) for all j, then

v(P) < 100 v*(P) InS(P) .

Proof. Let z* be the vector of Lemma 8 with ¢7z* < 2(In10 + 1)v*(P) and with
the property that at least one-fourth of the entries of Az* exceed 1. Let P’ be the
integer program obtained from P by dropping all the constraints that correspond to
the values of 1 for which (Az*); > 1. Note that any feasible solution to P, if increased
by adding z*, yields a feasible solution to P; hence

o(P) < v(P') +2(In 10 + 1)v*(P) .

Note that P’ has at most three-fourths as many constraints as P. Hence, iterating
this reduction process K times, where

K = [logy;3 S(P)] > log,/3 S(P) ,
we obtain a program @ such that .
v(P) £ v(Q) +2K(In10 + 1)v*(P) .
The number of constraints in Q, however, is at most
@) sE) < BT8Py = 13

that is, Q is the empty program, with no constraints and with value 0. Hence

v(P) < 2K(In10 + 1)v*(P)
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=2 [ l’l‘n‘i(/};)] (In10 + 1)v*(P)

< 100 v*(P) In S(P),

as claimed, the last inequality following from the fact that [z]/z cannot be too large
when z is bounded away from zero. (8]

The following lemma will permit us to assume that in Theorem 7 no component
of the vector c is greater than v*(P).

LEMMA 10. If P is as in Theorem 7 and cx > v*(P), then every optimal solution
z* to the LP-relazation of P has z} = 0.

Proof. If z* is a feasible solution for P then so is 2*, given by

. { zi(l+x;) for j #k,
zj = 2 ;e
z} for j =k,

since

Za;,-z; = (1+=z}) Za.-jz;-‘ — a;pxy
J J

2(Q+zp)—zr=1.

If z* is optimal as well, then

v (P) = cha:;
J
PP
J

= Ecjz;-‘(l +zt) + cpx}?
i#k

=(1+axy) chz‘;- + —crzy,
J

= (1 + zg)v*(P) — ey,

= v*(P) = (c& — v*(P))3i,

which implies that z} = 0. 1l

Proof of Theorem 7. Let m be the number of constraints of P; we may suppose
that m > 1 since the result is trivial for m = 1. Note that P®® has only m™
constraints. Assume first that ¢; < v*(P) for all j. Then all of the entries of c®" are
at most v*(P)™ = v*(P®") for all n, so that by Lemma 9 we have

v(P®") < 1000*(P®™) In(m™) = 100n In(m)v"(P)",

from which we can conclude that {/v(P®") — v*(P). On the other hand, if c; >
v*(P) for some k, then we may drop those variables z; from the program P. This
can only make v(P®") larger, but does not affect v*(P) because of Lemma 10, so we
have reduced the problem to the first case, which has just been solved. o
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