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Département de mathématiques et de statistique, Université de Montréal, Montréal
QC H3C 3J7, Canada

andrew@dms.umontreal.ca

Department of Mathematics, University of Pennsylvania, 209 S. 33rd Street,
Philadelphia, Pennsylvania 19104, USA

pemantle@math.upenn.edu

School of Mathematics and College of Computing, Georgia Tech, Atlanta, GA
30332-0160 USA

tetali@math.gatech.edu

In 1994, Carl Pomerance proposed the following problem:
Select integers a1, a2, . . . , aJ at random from the interval [1, x], stopping when
some (non-empty) subsequence, {ai : i ∈ I} where I ⊆ {1, 2, . . . , J}, has a square
product (that is

∏
i∈I ai ∈ Z2). What can we say about the possible stopping

times, J?
A 1985 algorithm of Schroeppel can be used to show that this process stops af-

ter selecting (1+ε)J0(x) integers aj with probability 1−o(1) (where the function
J0(x) is given explicitly in (1) below. Schroeppel’s algorithm actually finds the
square product, and this has subsequently been adopted, with relatively minor
modifications, by all factorers. In 1994 Pomerance showed that, with probability
1− o(1), the process will run through at least J0(x)1−o(1) integers aj , and asked
for a more precise estimate of the stopping time. We conjecture that there is a
“sharp threshold” for this stopping time, that is, with probability 1 − o(1) one
will first obtain a square product when (precisely) {e−γ + o(1)}J0(x) integers
have been selected. Herein we will give a heuristic to justify our belief in this
sharp transition.

In our paper [4] we prove, with probability 1 − o(1), that the first square
product appears in time

[(π/4)(e−γ − o(1))J0(x), (e−γ + o(1))J0(x)],

where γ = 0.577... is the Euler-Mascheroni constant, improving both Schroeppel
and Pomerance’s results. In this article we will prove a weak version of this the-
orem (though still improving on the results of both Schroeppel and Pomerance).
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naturelles et en génie du Canada. The third author is supported in part by NSF
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We also confirm the well established belief that, typically, none of the integers
in the square product have large prime factors.

Our methods provide an appropriate combinatorial framework for studying
the large prime variations associated with the quadratic sieve and other factoring
algorithms. This allows us to analyze what factorers have discovered in practice.

1 Introduction

Most factoring algorithms (including Dixon’s random squares algorithm [5], the
quadratic sieve [14], the multiple polynomial quadratic sieve [19], and the number
field sieve [2] – see [18] for a nice expository article on factoring algorithms) work
by generating a pseudorandom sequence of integers a1, a2, ..., with each

ai ≡ b2i (mod n),

for some known integer bi (where n is the number to be factored), until some
subsequence of the ai’s has product equal to a square, say

Y 2 = ai1 · · · aik ,

and set
X2 = (bi1 · · · bik)2.

Then
n | Y 2 −X2 = (Y −X)(Y +X),

and there is a good chance that gcd(n, Y −X) is a non-trivial factor of n. If so,
we have factored n.

In his lecture at the 1994 International Congress of Mathematicians, Pomer-
ance [16, 17] observed that in the (heuristic) analysis of such factoring algorithms
one assumes that the pseudo-random sequence a1, a2, ... is close enough to ran-
dom that we can make predictions based on this assumption. Hence it makes
sense to formulate this question in its own right.

Pomerance’s Problem. Select positive integers a1, a2, · · · ≤ x independently
at random (that is, aj = m with probability 1/x for each integer m, 1 ≤ m ≤ x),
stopping when some subsequence of the ai’s has product equal to a square (a
square product). What is the expected stopping time of this process ?

There are several feasible positive practical consequences of resolving this
question:

– It may be that the expected stopping time is far less than what is obtained
by the algorithms currently used. Hence such an answer might point the way
to speeding up factoring algorithms.

– Even if this part of the process can not be easily sped up, a good under-
standing of this stopping time might help us better determine the optimal
choice of parameters for most factoring algorithms.
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Let π(y) denote the number of primes up to y. Call n a y-smooth integer if all of
its prime factors are ≤ y, and let Ψ(x, y) denote the number of y-smooth integers
up to x. Let y0 = y0(x) be a value of y which maximizes Ψ(x, y)/y, and

J0(x) :=
π(y0)
Ψ(x, y0)

· x . (1)

In Pomerance’s problem, let T be the smallest integer t for which a1, ..., at has
a square dependence (note that T is itself a random variable). As we will see in
section 4.1, Schroeppel’s 1985 algorithm can be formalized to prove that for any
ε > 0 we have

Prob(T < (1 + ε)J0(x)) = 1− oε(1)

as x→∞. In 1994 Pomerance showed that

Prob(T > J0(x)1−ε) = 1− oε(1).

as x → ∞. Therefore there is a transition from “unlikely to have a square
product” to “almost certain to have a square product” at T = J0(x)1+o(1).
Pomerance asked in [3] whether there is a sharper transition, and we conjecture
that T has a sharp threshold:

Conjecture. For every ε > 0 we have

Prob(T ∈ [(e−γ − ε)J0(x), (e−γ + ε)J0(x)]) = 1− oε(1), (2)

as x→∞, where γ = 0.577... is the Euler-Mascheroni constant.

The bulk of this article will be devoted to explaining how we arrived at
this conjecture. In [4] we prove the upper bound in this conjecture using deep
probabilistic methods in an associated random graph. Here we discuss a quite
different approach which justifies the upper bound in this conjecture, but we
have not been able to make all steps of the proof rigorous.

The constant e−γ in this conjecture is well-known to number theorists. It
appears as the ratio of the proportion of integers free of prime divisors smaller
than y, to the proportion of integers up to y that are prime, but this is not how
it appears in our discusssion. Indeed herein it emerges from some complicated
combinatorial identities, which have little to do with number theory, and we
have failed to find a more direct route to this prediction.

Herein we will prove something a little weaker than the above conjecture
(though stronger than the previously known results) using methods from com-
binatorics, analytic and probabilistic number theory:

Theorem 1. We have

Prob(T ∈ [(π/4)(e−γ − o(1))J0(x), (3/4)J0(x)]) = 1− o(1),

as x→∞.



4 Ernie Croot, Andrew Granville, Robin Pemantle, and Prasad Tetali

To obtain the lower bound in our theorem, we obtain a good upper bound on
the expected number of sub-products of the large prime factors of the ai’s that
equal a square, which allows us to bound the probability that such a sub-product
exists, for T < (π/4)(e−γ − o(1))J0(x). This is the “first moment method”.
Moreover the proof gives us some idea of what the set I looks like: In the unlikely
event that T < (π/4)(e−γ−o(1))J0(x), with probability 1−o(1), the set I consists
of a single number aT , which is therefore a square. If T lies in the interval given
in Theorem 1 (which happens with probability 1−o(1)), then the square product
I is composed of y1+o(1)

0 = J0(x)1/2+o(1) numbers ai (which will be made more
precise in [4]).

Schroeppel’s upper bound, T ≤ (1 + o(1))J0(x) follows by showing that
one expects to have more than π(y0) y0-smooth integers amongst a1, a2, . . . , aT ,
which guarantees a square product. To see this, create a matrix over F2 whose
columns are indexed by the primes up to y0, and whose (i, p)-th entry is given
by the exponent on p in the factorization of ai, for each y0-smooth ai. Then a
square product is equivalent to a linear dependence over F2 amongst the corre-
sponding rows of our matrix: we are guaranteed such a linear dependence once
the matrix has more than π(y0) rows. Of course it might be that we obtain a
linear dependence when there are far fewer rows; however, in section 3.1, we give
a crude model for this process which suggests that we should not expect there
to be a linear dependence until we have very close to π(y0) rows

Schroeppel’s approach is not only good for theoretical analysis, in practice
one searches among the ai for y0-smooth integers and hunts amongst these for a
square product, using linear algebra in F2 on the primes’ exponents. Computing
specialists have also found that it is easy and profitable to keep track of ai of
the form siqi, where si is y0-smooth and qi is a prime exceeding y0; if both ai
and aj have exactly the same large prime factor qi = qj then their product is a
y0-smooth integer times a square, and so can be used in our matrix as an extra
smooth number. This is called the large prime variation, and the upper bound
in Theorem 1 is obtained in section 4 by computing the limit of this method.
(The best possible constant is actually a tiny bit smaller than 3/4.)

One can also consider the double large prime variation in which one allows
two largish prime factors so that, for example, the product of three ais of the form
pqs1, prs2, qrs3 can be used as an extra smooth number. Experience has shown
that each of these variations has allowed a small speed up of various factoring
algorithms (though at the cost of some non-trivial extra programming), and a
long open question has been to formulate all of the possibilities for multi-large
prime variations and to analyze how they affect the running time. Sorting out
this combinatorial mess is the most difficult part of our paper. To our surprise
we found that it can be described in terms of the theory of Huisimi cacti graphs
(see section 6). In attempting to count the number of such smooth numbers
(including those created as products of smooths times a few large primes) we
run into a subtle convergence issue. We believe that we have a power series which
yields the number of smooth numbers, created independently from a1, . . . , aJ ,
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simply as a function of J/J0; if it is correct then we obtain the upper bound in
our conjecture.

In the graphs constructed here (which lead to the Husimi graphs), the vertices
correspond to the aj ’s, and the edges to common prime factors which are > y0.
In the random hypergraphs considered in [4] the vertices correspond to the prime
factors which are > y0 and the hyperedges, which are presented as subsets of
the set of vertices, correspond to the prime factors of each aj , which divide aj
to an odd power.

In [4] we were able to understand the speed up in running time using the k-
large prime variation for each k ≥ 1. We discuss the details of the main results of
this work, along with some numerics, in section 8. We also compare, there, these
theoretical findings, with the speed-ups obtained using large prime variations by
the researchers who actually factor numbers. Their findings and our predictions
differ significantly and we discuss what might contribute to this.

When our process terminates (at time T ) we have some subset I of a1, ..., aT ,
including aT , whose product equals a square.? If Schroeppel’s argument comes
close to reflecting the right answer then one would guess that ai’s in the square
product are typically “smooth”. In section 3.2 we prove that they will all be
J2

0 -smooth with probability 1− o(1), which we improve to

y2
0 exp((2 + ε)

√
log y0 log log y0) − smooth.

in [4], Theorem 2. We guess that this may be improvable to y1+ε
0 -smooth for any

fixed ε > 0.
Pomerance’s main goal in enunciating the random squares problem was to

provide a model that would prove useful in analyzing the running time of fac-
toring algorithms, such as the quadratic sieve. In section 7 we will analyze the
running time of Pomerance’s random squares problem showing that the running
time will be inevitably dominated by finding the actual square product once we
have enough integers. Hence to optimize the running time of the quadratic sieve
we look for a square dependence among the y-smooth integers with y signifi-
cantly smaller than y0, so that Pomerance’s problem is not quite so germane to
factoring questions as it had at first appeared.

This article uses methods from several different areas not usually associated
with factoring questions: the first and second moment methods from probabilistic
combinatorics, Husimi graphs from statistical physics, Lagrange inversion from
algebraic combinatorics, as well as comparative estimates on smooth numbers
using precise information on saddle points.

2 Smooth Numbers

In this technical section we state some sharp results comparing the number of
smooth numbers up to two different points. The key idea, which we took from
? Note that I is unique, else if we have two such subsets I and J then (I ∪J) \ (I ∩J)

is also a set whose product equals a square, but does not contain aT , and so the
process would have stopped earlier than at time T .
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[10], is that such ratios are easily determined because one can compare very
precisely associated saddle points – this seems to be the first time this idea has
been used in the context of analyzing factoring algorithms.

2.1 Classical Smooth Number Estimates

From [10] we have that the estimate

Ψ(x, y) = xρ(u)
{

1 +O

(
log(u+ 1)

log y

)}
as x→∞ where x = yu, (3)

holds in the range
exp

(
(log log x)2

)
≤ y ≤ x, (4)

where ρ(u) = 1 for 0 ≤ u ≤ 1, and where

ρ(u) =
1
u

∫ u

u−1

ρ(t) dt for all u > 1.

This function ρ(u) satisfies

ρ(u) =
(
e+ o(1)
u log u

)u
= exp(−(u+ o(u)) log u); (5)

and so
Ψ(x, y) = x exp(−(u+ o(u)) log u). (6)

Now let

L := L(x) = exp

(√
1
2

log x log log x

)
.

Then, using (6) we deduce that for β > 0,

Ψ(x, L(x)β+o(1)) = xL(x)−1/β+o(1). (7)

From this one can easily deduce that

y0(x) = L(x)1+o(1), and J0(x) = y
2−{1+o(1)}/ log log y0
0 = L(x)2+o(1), (8)

where y0 and J0 are as in the introduction (see (1)). From these last two equations
we deduce that if y = y

β+o(1)
0 , where β > 0, then

Ψ(x, y)/y
Ψ(x, y0)/y0

= y
2−β−β−1+o(1)
0 .

For any α > 0, one has

Ψ(x, y) ≤
∑
n≤x

P (n)≤y

(x/n)α ≤ xα
∏
p≤y

(
1− 1

pα

)−1

, (9)
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which is minimized by selecting α = α(x, y) to be the solution to

log x =
∑
p≤y

log p
pα − 1

. (10)

We show in [4] that for y = L(x)β+o(1) = y
β+o(1)
0 we have

y1−α ∼ β−2 log y ∼ β−1 log y0. (11)

Moreover, by [10, Theorem 3], when 1 ≤ d ≤ y ≤ x/d we have

Ψ
(x
d
, y
)

=
1

dα(x,y)
Ψ(x, y)

(
1 +O

( 1
u

+
log y
y

))
. (12)

By iterating this result we can deduce (see [4]) the following:

Proposition 1. Throughout the range (4), for any 1 ≤ d ≤ x, we have

Ψ
(x
d
, y
)
≤ 1
dα(x,y)

Ψ(x, y){1 + o(1)},

where α is the solution to (10).

Now Lemma 2.4 of [4] gives the following more accurate value for y0:

log y0 = logL(x)

(
1 +

log3 x− log 2
2 log2 x

+O

((
log3 x

log2 x

)2
))

. (13)

It is usual in factoring algorithms to optimize by taking ψ(x, y) to be roughly
x/y:

Lemma 1. If ψ(x, y) = x/y1+o(1/ log log y) then

log y = log y0

(
1− 1 + o(1)

log2 x

)
.

Proof. By (3) and (5) we have

u(log u+ log log u− 1 + o(1)) = log y
(

1 + o

(
1

log log y

))
,

and from here it is a simple exercise to show that

u =
log y

log log y

(
1 +

1 + o(1)
log log y

)
.

Substituting u = (log x)/(log y) and solving we obtain

log y = logL(x)
(

1 +
log3 x− log 2− 2 + o(1)

2 log2 x

)
,

from which our result follows using (13). ut
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3 Some Simple Observations

3.1 A Heuristic Analysis

Let M = π(y) and
p1 = 2 < p2 = 3 < . . . < pM

be the primes up to y. Any y-smooth integer

pe11 p
e2
2 . . . peMM

gives rise to the element (e1, e2, . . . eM ) of the vector space FM2 . The probability
that any given element of FM2 arises from Pomerance’s problem (correspond-
ing to a y-smooth value of ai) varies depending on the entries in that element.
Pomerance’s problem can be rephrased as: Let y = x. Select elements v1, v2, . . .
of FM2 , each with some specific probability (as above), and stop at vT as soon as
v1, v2, . . . , vT are linearly dependent. The difficulty in this version is in quantify-
ing the probabilities that each different v ∈ FM2 occurs, and then manipulating
those probabilities in a proof since they are so basis dependent.

As a first model we will work with an approximation to this question that
avoids these difficulties: Now our problem will be to determine the distribution
of T when each element of FM2 is selected with probability 1/2M . We hope that
this model will help us gain some insight into Pomerance’s question.

If v1, v2, .., v`−1 are linearly independent they generate a subspace S` of di-
mension ` − 1, which contains 2`−1 elements (if 1 ≤ ` ≤ M + 1). Then the
probability that v1, v2, .., v` are linearly dependent is the same as the probability
that v` belongs to S`, which is 2`−1/2M . Thus the expectation of T is

M+1∑
`=1

`
2`−1

2M

`−1∏
i=1

(
1− 2i−1

2M

)
−→

∏
i≥1

(
1− 1

2i

) M∑
j=0

(M + 1− j)
2j

j∏
i=1

(
1− 1

2i

)−1


= M − .60669515 . . . as M →∞.

(By convention, empty products have value 1.) Therefore |T −M | has expected
value O(1). Furthermore,

Prob(|T −M | > n) =
∑
`≥n+1

Prob(T = M − `) <
∑
`≥n+1

2−`−1 = 2−n−1,

for each n ≥ 1, so that if φ(t)→∞ as t→∞ then

Prob(T ∈ [M − φ(M), M ]) = 1 − o(1).

Hence this simplified problem has a very sharp transition function, suggesting
that this might be so in Pomerance’s problem.
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3.2 No Large Primes, I

Suppose that we have selected integers a1, a2, ..., aT at random from [1, x], stop-
ping at T since there is a non-empty subset of these integers whose product is
a square. Let q be the largest prime that divides this square. Then either q2

divides one of a1, a2, ..., aT , or q divides at least two of them. The probability
that p2 divides at least one of a1, a2, ..., aT , for a given prime p, is ≤ T/p2; and
the probability that p divides at least two of a1, a2, ..., aT is ≤

(
T
2

)
/p2. Thus

Prob(q > T 2)� T 2
∑
p>T 2

1
p2
� 1

log T
,

by the Prime Number Theorem.
By Pomerance’s result we know that T →∞ with probability 1 + o(1); and

so the largest prime that divides the square product is ≤ T 2 with probability
1− o(1). We will improve this result later by more involved arguments.

4 Proof of the Upper Bound on T in Theorem 1

Our goal in this section is to prove that

Prob(T < (3/4)J0(x)) = 1− o(1),

as x→∞.
We use the following notation throughout. Given a sequence

a1, . . . , aJ ≤ x

of randomly chosen positive integers, let

p1 = 2 < p2 = 3 < . . . < pπ(x)

denote the primes up to x, and construct the J-by-π(x) matrix A, which we take
mod 2, where

ai =
∏

1≤j≤π(x)

p
Ai,j
j .

Then, a given subsequence of the ai has square product if the corresponding
row vectors of A sum to the 0 vector modulo 2; and, this happens if and only if
rank(A) < J . Here, and henceforth, the rank is always the F2-rank.

4.1 Schroeppel’s Argument

Schroeppel’s idea was to focus only on those rows corresponding to y0-smooth
integers so that they have no 1’s beyond the π(y0)-th column. If we let S(y0)
denote the set of all such rows, then Schroeppel’s approach amounts to showing
that

|S(y0)| > π(y0)
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holds with probability 1− o(1) for J = (1 + ε)J0, where J0 and y0 are as defined
in (1). If this inequality holds, then the |S(y0)| rows are linearly dependent mod
2, and therefore some subset of them sums to the 0 vector mod 2.

Although Pomerance [15] gave a complete proof that Schroeppel’s idea works,
it does not seem to be flexible enough to be easily modified when we alter
Schroeppel’s argument, so we will give our own proof, seemingly more compli-
cated but actually requiring less depth: Define the independent random variables
Y1, Y2, . . . so that Yj = 1 if aj is y-smooth, and Yj = 0 otherwise, where y will
be chosen later. Let

N = Y1 + · · ·+ YJ ,

which is the number of y-smooth integers amongst a1, ..., aJ . The probability
that any such integer is y-smooth, that is that Yj = 1, is Ψ(x, y)/x; and so,

E(N) =
Jψ(x, y)

x
.

Since the Yi are independent, we also have

V (N) =
∑
i

(E(Y 2
i )− E(Yi)2) =

∑
i

(E(Yi)− E(Yi)2) ≤ Jψ(x, y)
x

.

Thus, selecting J = (1 + ε)xπ(y)/Ψ(x, y), we have, with probability 1 + oε(1),
that

N = (1 + ε+ o(1))π(y) > π(y).

Therefore, there must be some non-empty subset of the ai’s whose product is a
square. Taking y = y0 we deduce that

Prob(T < (1 + ε)J0(x)) = 1− oε(1).

Remark. One might alter Schroeppel’s construction to focus on those rows
having only entries that are 0 (mod 2) beyond the π(y0)-th column. These rows
all correspond to integers that are a y0-smooth integer times a square. The
number of additional such rows equals

∑
d>1

p(d)>y0

Ψ
( x
d2
, y0

)
≤

∑
y0<d≤y2

0

Ψ
( x
d2
, y0

)
+
∑
d>y2

0

x

d2
� Ψ(x, y0)

y
1+o(1)
0

by Proposition 1, the prime number theorem, (11) and (7), respectively, which
one readily sees are too few to significantly affect the above analysis. Here and
henceforth, p(n) denotes the smallest prime factor of n, and later on we will use
P (n) to denote the largest prime factor of n.
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4.2 The Single Large Prime Variation

If, for some prime p > y, we have ps1, ps2, . . . , psr amongst the ai, where each sj
is y-smooth, then this provides us with precisely r− 1 multiplicatively indepen-
dent pseudo-smooths, (ps1)(ps2), (ps1)(ps3), . . . , (ps1)(psr). We will count these
using the combinatorial identity

r − 1 =
∑

I⊂{1,...,r}
|I|≥2

(−1)|I|,

which fits well with our argument. Hence the expected number of smooths and
pseudo-smooths amongst a1, . . . , aJ equals

JΨ(x, y)
x

+
∑

I⊂{1,...,r}
|I|≥2

(−1)|I| Prob(ai = psi : i ∈ I, P (si) ≤ y < p, p prime)

=
JΨ(x, y)

x
+
∑
k≥2

(
J

k

)
(−1)k

∑
p>y

(Ψ(x/p, y)
x

)k
. (14)

Using (12) we have, by the prime number theorem, that

∑
p>y

(
Ψ(x/p, y)
Ψ(x, y)

)k
∼
∑
p>y

1
pαk
∼ y1−αk

(αk − 1) log y
∼ 1

(k − 1)π(y)k−1
;

using (11) for y � y0. Hence the above becomes, taking J = ηxπ(y)/Ψ(x, y),

∼

η +
∑
k≥2

(−η)k

k!(k − 1)

π(y) . (15)

One needs to be a little careful here since the accumulated error terms might
get large as k → ∞. To avoid this problem we can replace the identity (14) by
the usual inclusion-exclusion inequalities; that is the partial sum up to k even is
an upper bound, and the partial sum up to k odd is a lower bound. Since these
converge as k →∞, independently of x, we recover (15). One can compute that
the constant in (15) equals 1 for η = .74997591747934498263 . . .; or one might
observe that this expression is > 1.00003π(y) when η = 3/4.

4.3 From Expectation to Probability

Proposition 2. The number of smooth and pseudosmooth integers (that is,
integers that are a y0-smooth number times at most one prime factor > y0)
amongst a1, a2, . . . , aJ with J = ηJ0 is given by (15), with probability 1 − o(1),
as x→∞.
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Hence, with probability 1 − o(1), we have that the number of linear depen-
dencies arising from the single large prime variation is (15) for J = ηJ0(x) with
y = y0 as x → ∞. This is > (1 + ε)π(y0) for J = (3/4)J0(x) with probability
1− o(1), as x→∞, implying the upper bound on T in Theorem 1.

Proof (of Proposition 2). Suppose that a1, ..., aJ ≤ x have been chosen randomly.
For each integer r ≥ 2 and subset S of {1, ..., J} we define a random variable
Xr(S) as follows: Let Xr(S) = 1 if each as, s ∈ S equals p times a y-smooth for
the same prime p > y, and let Xr(S) = 0 otherwise. Therefore if

Yr =
∑

S⊂{1,...,J}
|S|=r

Xr(S),

then we have seen that
E(Yr) ∼

ηr

r!(r − 1)
π(y).

Hence each

E(Xr(S)) ∼
(
J

r

)−1
ηr

r!(r − 1)
π(y)

for every S ⊂ {1, ..., J}, since each of the Xr(S) have the same probability
distribution.

Now, if S1 and S2 are disjoint, then Xr(S1) and Xr(S2) are independent, so
that

E(Xr(S1)Xr(S2)) = E(Xr(S1))E(Xr(S2)).

If S1 and S2 are not disjoint and both Xr(S1) and Xr(S2) equal 1, then XR(S) =
1 where S = S1 ∪ S2 and R = |S|. We just saw that

E(XR(S)) ∼
(
J

R

)−1
ηR

R!(R− 1)
π(y) .

Hence if |S1 ∩ S2| = j then

E(Xr(S1)Xr(S2)) ∼
(

J

2r − j

)−1
η2r−j

(2r − j)!(2r − j − 1)
π(y).

Therefore

E(Y 2
r )− E(Yr)2 =

∑
S1,S2⊂{1,...,J}
|S1|=|S2|=r

E(Xr(S1)Xr(S2))− E(Xr(S1))E(Xr(S2))

. π(y)
r∑
j=1

(
J

2r − j

)−1
η2r−j

(2r − j)!(2r − j − 1)

∑
S1,S2⊂{1,...,J}
|S1|=|S2|=r
|S1∩S2|=j

1

= π(y)
r∑
j=1

η2r−j

(2r − j − 1)j!(r − j)!2
≤ (1 + η2r−1)π(y) .
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Hence by Tchebychev’s inequality we deduce that

Prob(|Yr − E(Yr)| > εE(Yr))�r
E(Y 2

r )− E(Yr)2

ε2E(Yr)2
�r

1
ε2π(y)

,

so that Yr ∼ E(Yr) with probability 1− o(1). ut

5 The Lower Bound on T ; a Sketch

We prove that

Prob(T > (π/4)(e−γ − o(1))J0(x)) = 1− o(1),

in [4], by showing that for J(x) = (π/4)(e−γ − o(1))J0(x) the expected number
of square products among a1, . . . , aJ is o(1).

By considering the common divisors of all pairs of integers from a1, . . . , aJ
we begin by showing that the probability that a square product has size k, with
2 ≤ k ≤ log x/2 log log x, is O(J2 log x/x) provided J < xo(1).

Next we shall write ai = bidi where P (bi) ≤ y and where either di = 1 or
p(di) > y (here, p(n) denotes the smallest prime divisor of n), for 1 ≤ i ≤ k. If
a1, . . . , ak are chosen at random from [1, x] then

Prob(a1 . . . ak ∈ Z2) ≤ Prob(d1 . . . dk ∈ Z2)

=
∑

d1,...,dk≥1
d1...dk∈Z2

di=1 or p(di)>y

k∏
i=1

Ψ (x/di, y)
x

≤
(
{1 + o(1)}Ψ(x, y)

x

)k ∑
n=1 or p(n)>y

τk(n2)
n2α

, (16)

by Proposition 1. Out of J = ηJ0 integers, the number of k-tuples is(
J

k

)
≤ (eJ/k)k ;

and so the expected number of k-tuples whose product is a square is at most(
(e+ o(1))

ηy

k log y0
Ψ(x, y)/y
Ψ(x, y0)/y0

)k∏
p>y

(
1 +

τk(p2)
p2α

+
τk(p4)
p4α

+ . . .

)
. (17)

For log x/2 log log x < k ≤ y
1/4
0 we take y = y

1/3
0 and show that the quantity in

(17) is < 1/x2.
For y1/4

0 ≤ k = yβ0 ≤ J = ηJ0 ≤ J0 we choose y so that [k/C] = π(y), with C
sufficiently large. One can show that the quantity in (17) is < ((1 + ε)4ηeγ/π)k
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and is significantly smaller unless β = 1 + o(1). This quantity is < 1/x2 since
η < 4πe−γ − ε and the result follows.

This proof yields further useful information: If either J < (π/4)(e−γ −
o(1))J0(x), or if k < y

1−o(1)
0 or k > y

1+o(1)
0 , then the expected number of

square products with k > 1 is O(J0(x)2 log x/x), whereas the expected number
of squares in our sequence is ∼ J/

√
x. This justifies the remarks immediately

after the statement of Theorem 1.
Moreover with only minor modifications we showed the following in [4]: Let

y1 = y0 exp((1 + ε)
√

log y0 log log y0) and write each ai = bidi where P (bi) ≤
y = y1 < p(di). If di1 . . . dil is a subproduct which equals a square n2, but such
that no subproduct of this is a square, then, with probability 1− o(1), we have
l = o(log y0) and n is a squarefree integer composed of precisely l − 1 prime
factors, each ≤ y2, where n ≤ y2l.

6 A Method to Examine All Smooth Products

In proving his upper bound on T , Schroeppel worked with the y0-smooth integers
amongst a1, . . . , aT (which correspond to rows of A with no 1’s in any column
that represents a prime > y0), and in our improvement in section 4.2 we worked
with integers that have no more than one prime factor > y0 (which correspond
to rows of A with at most one 1 in the set of columns representing primes > y0).
We now work with all of the rows of A, at the cost of significant complications.

Let Ay0 be the matrix obtained by deleting the first π(y0) columns of A.
Note that the row vectors corresponding to y0-smooth numbers will be 0 in this
new matrix. If

rank(Ay0) < J − π(y0), (18)

then
rank(A) ≤ rank(Ay0) + π(y0) < J,

which therefore means that the rows of A are dependent over F2, and thus the
sequence a1, ..., aJ contains a square dependence.

So let us suppose we are given a matrix A corresponding to a sequence of
aj ’s. We begin by removing (extraneous) rows from Ay0 , one at a time: that
is, we remove a row containing a 1 in its l-th column if there are no other 1’s
in the l-th column of the matrix (since this row cannot participate in a linear
dependence). This way we end up with a matrix B in which no column contains
exactly one 1, and for which

r(Ay0)− rank(Ay0) = r(B)− rank(B)

(since we reduce the rank by one each time we remove a row). Next we partition
the rows of B into minimal subsets, in which the primes involved in each subset
are disjoint from the primes involved in the other subsets (in other words, if two
rows have a 1 in the same column then they must belong to the same subset).
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The i-th subset forms a submatrix, Si, of rank `i, containing ri rows, and then

r(B)− rank(B) =
∑
i

(ri − `i).

We will define a power series f(η) for which we believe that

E

(∑
i

(ri − `i)

)
∼ f(η)π(y0) (19)

when J = (η + o(1))J0, and we can show that

lim
η→η−0

f(η) = 1, (20)

where η0 := e−γ . Using the idea of section 4.3, we will deduce in section 6.9
that if (19) holds then ∑

i

(ri − `i) ∼ f(η)π(y0) (21)

holds with probability 1 − o(1), and hence (18) holds with probability 1 − o(1)
for J = (η0 + o(1))J0. That is we can replace the upper bound 3/4 in Theorem
1 by e−γ .

The simple model of section 3.1 suggests that A will not contain a square
dependence until we have ∼ π(y0) smooth or pseudo-smooth numbers; hence we
believe that one can replace the lower bound (π/4)e−γ in Theorem 1 by e−γ .
This is our heuristic in support of the Conjecture.

6.1 The Submatrices

Let MR denote the matrix composed of the set R of rows (allowing multiplicity),
removing columns of 0’s. We now describe the matrices MSi for the submatrices
Si of B from the previous subsection.

For an r(M)-by-`(M) matrix M we denote the (i, j)th entry ei,j ∈ F2 for
1 ≤ i ≤ r, 1 ≤ j ≤ `. We let

N(M) =
∑
i,j

ei,j

denote the number of 1’s in M , and

∆(M) := N(M)− r(M)− `(M) + 1.

We denote the number of 1’s in column j by

mj =
∑
i

ei,j ,
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and require each mj ≥ 2.?? We also require that M is transitive. That is, for
any j, 2 ≤ j ≤ ` there exists a sequence of row indices i1, . . . , ig, and column
indices j1, . . . , jg−1, such that

ei1,1 = eig,j = 1; and, eih,jh = eih+1,jh = 1 for 1 ≤ h ≤ g − 1.

In other words we do not study M if, after a permutation, it can be split into
a block diagonal matrix with more than one block, since this would correspond
to independent squares.

It is convenient to keep in mind two reformulations:
Integer version: Given primes p1 < p2 < · · · < p`, we assign, to each row, a
squarefree integer

ni =
∏

1≤j≤`

p
ei,j
j , for 1 ≤ i ≤ r.

Graph version: Take a graph G(M) with r vertices, where vi is adjacent to
vI with an edge of colour pj if pj divides both ni and nI (or, equivalently,
ei,j = eI,j = 1). Notice that M being transitive is equivalent to the graph G(M)
being connected, which is much easier to visualize.

Now we define a class of matrices Mk, where M ∈ Mk if M is as above, is
transitive and ∆(M) = k. Note that the “matrix” with one row and no columns
is in M0 (in the “integer version” this corresponds to the set with just the one
element, 1, and in the graph version to the graph with a single vertex and no
edges).

6.2 Isomorphism Classes of Submatrices

Let us re-order the rows of M so that, in the graph theory version, each new
vertex connects to the graph that we already have, which is always possible as
the overall graph is connected. Let

`I = #{j : there is an i ≤ I with ei,j = 1},

the number of columns with a 1 in or before the I-th row, and

NI :=
∑

i≤I, j≤`

ei,j ,

the number of 1’s up to, and including in, the I-th row. Define

∆I = NI − I − `I + 1,

so that ∆r = ∆(M).
?? Else the prime corresponding to that column cannot participate in a square product.
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Now N1 = `1 and therefore ∆1 = 0. Let us consider the transition when we
add in the (I + 1)-th row. The condition that each new row connects to what
we already have means that the number of new colours (that is, columns with a
non-zero entry) is less than the number of 1’s in the new row, that is

`I+1 − `I ≤ NI+1 −NI − 1;

and so

∆I+1 = NI+1 − I − `I+1

= NI − I − `I + (NI+1 −NI)− (`I+1 − `I) ≥ NI − I − `I + 1 = ∆I .

Therefore
∆(M) = ∆r ≥ ∆r−1 ≥ · · · ≥ ∆2 ≥ ∆1 = 0. (22)

6.3 Restricting to the Key Class of Submatrices

Two matrices are said to be “isomorphic” if one can be obtained from the other
by permuting rows and columns. In this subsection we estimate how many sub-
matrices of Ay0 are isomorphic to a given matrix M , in order to exclude from
our considerations all those M that occur infrequently.

Proposition 3. Fix M ∈ Mk. The expected number of submatrices S of Ay0
for which MS is isomorphic to M is

∼ ηrπ(y0)1−k

|AutRows(M)|
∏

1≤j≤`

1
νj
, (23)

where νj :=
∑`
i=j(mi − 1).

Note that we are not counting here the number of times a component Si is
isomorphic to M , but rather how many submatrices of Ay0 are isomorphic to
M .

Since η ≤ 1, the quantity in (23) is bounded if k ≥ 1, but is a constant times
π(y0) if k = 0. This is why we will restrict our attention to M ∈ M0, and our
goal becomes to prove that

E
( ∑
i : Si∈M

(ri − `i)
)
> π(y0) (24)

in place of (19), where henceforth we write M =M0.

Proof. The expected number of times we get a set of integers of the form∏
1≤j≤` p

ei,j
j times a y0-smooth times a square, for i = 1, ..., r, within our se-

quence of integers a1, ..., aJ is

∼
(
J

r

)
|OrbitRows(M)|

∏
1≤i≤r

Ψ∗(x/
∏

1≤j≤` p
ei,j
j , y0)

x
, (25)
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where by OrbitRows(M) we mean the set of distinct matrices produced by per-
muting the rows of M , and Ψ∗(X, y) := #{n = mr2 : P (m) ≤ y < p(r)} which
is insignificantly larger than Ψ(X, y) (as we saw at the end of section 4.1). Since
r is fixed and J tends to infinity, we have(

J

r

)
∼ Jr

r!
;

and we know that? ? ?

r! = |OrbitRows(M)| · |AutRows(M)|

where AutRows(M) denotes the number of ways to obtain exactly the same
matrix by permuting the rows (this corresponds to permuting identical integers
that occur). Therefore (25) is

∼ Jr

|AutRows(M)|
∏

1≤i≤r

Ψ(x/
∏

1≤j≤` p
ei,j
j , y0)

x

∼ 1
|AutRows(M)|

(
JΨ(x, y0)

x

)r ∏
1≤j≤`

1
p
mjα
j

, (26)

where mj =
∑
i ei,j ≥ 2, by (12). Summing the last quantity in (26) over all

y0 < p1 < p2 < · · · < p`, we obtain, by the prime number theorem,

∼ (ηπ(y0))r

|AutRows(M)|

∫
y0<v1<v2<···<v`

∏
1≤j≤`

dvj

v
mjα
j log vj

∼ ηrπ(y0)r+`−
P
j mj

|AutRows(M)|

∫
1<t1<t2<···<t`

∏
1≤j≤`

dtj

t
mj
j

using the approximation log vj ∼ log y0 (because this range of values of vj gives
the main contribution to the integral), and the fact that vαj ∼ vj/ log y0 for vj
in this range. The result follows by making the substitution tj = vj/y0. ut

6.4 Properties of M ∈ M := M′

Lemma 2. Suppose that M ∈ M := M′. For each row of M , other than the
first, there exists a unique column which has a 1 in that row as well as an earlier
row. The last row of M contains exactly one 1.

? ? ? This is a consequence of the “Orbit-Stabilizer Theorem” from elementary group
theory. It follows from the fact that the cosets of AutRows(M) in the permutation
group on the r rows of M , correspond to the distinct matrices (orbit elements)
obtained by performing row interchanges on M .
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Proof. For each M ∈M, we have ∆j = 0 for each j ≥ 0 by (22) so that

`j+1 − `j = Nj+1 −Nj − 1.

That is, each new vertex connects with a unique colour to the set of previous
vertices, which is the first part of our result.† The second part comes from noting
that the last row cannot have a 1 in a column that has not contained a 1 in an
earlier row of M . ut

Lemma 3. If M ∈M then all cycles in its graph, G(M), are monochromatic.

Proof. If not, then consider a minimal cycle in the graph, where not all the edges
are of the same color. We first show that, in fact, each edge in the cycle has a
different color. To see this, we start with a cycle where not all edges are of the
same color, but where at least two edges have the same color. Say we arrange
the vertices v1, ..., vk of this cycle so that the edge (v1, v2) has the same color as
(vj , vj+1), for some 2 ≤ j ≤ k − 1, or the same color as (vk, v1), and there are
no two edges of the same colour in-between. If we are in the former case, then
we reduce to the smaller cycle v2, v3, ..., vj , where not all edges have the same
color; and, if we are in the latter case, we reduce to the smaller cycle v2, v3, ..., vk,
where again not all the edges have the same color. Thus, if not all of the edges
of the cycle have the same color, but the cycle does contain more than one edge
of the same color, then it cannot be a minimal cycle.

Now let I be the number of vertices in our minimal cycle of different colored
edges, and reorder the rows of M so that this cycle appears as the first I rows.‡

Then
NI ≥ 2I + (`I − I) = `I + I.

The term 2I accounts for the fact that each prime corresponding to a different
colored edge in the cycle must divide at least two members of the cycle, and the
`I − I accounts for the remaining primes that divide members of the cycle (that
don’t correspond to the different colored edges). This then gives ∆I ≥ 1; and
thus by (22) we have ∆(M) ≥ 1, a contradiction. We conclude that every cycle
in our graph is monochromatic. ut

Lemma 4. Every M ∈M has rank `(M).

Proof (by induction on `). For ` = 0, 1 this is trivial. Otherwise, as there are no
cycles the graph must end in a “leaf”; that is a vertex of degree one. Suppose
this corresponds to row r and color `. We now construct a new matrix M ′ which
is matrix M less column `, and any rows that only contained a 1 in the `-th
column. The new graph now consists of m`−1 disjoint subgraphs, each of which
corresponds to an element ofM. Thus the rank of M is given by 1 (corresponding

† Hence we confirm that ` = N − (r − 1), since the number of primes involved is the
total number of 1’s less the unique “old prime” in each row after the first.

‡ This we are allowed to do, because the connectivity of successive rows can be main-
tained, and because we will still have ∆(M) = 0 after this permutation of rows.
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to the r-th row, which acts as a pivot element in Gaussian elimination on the
`-th column) plus the sum of the ranks of new connected subgraphs. By the
induction hypothesis, they each have rank equal to the number of their primes,
thus in total we have 1 + (`− 1) = `, as claimed. ut

6.5 An Identity, and Inclusion-Exclusion Inequalities, for M

Proposition 4. If MR ∈M then∑
S⊂R
MS∈M

(−1)N(S) = r(M)− rank(M). (27)

Furthermore, if N ≥ 2 is an even integer then∑
S⊂R,N(S)≤N

MS∈M

(−1)N(S) ≥ r(M)− rank(M), (28)

and if N ≥ 3 is odd then∑
S⊂R,N(S)≤N

MS∈M

(−1)N(S) ≤ r(M)− rank(M). (29)

Proof (by induction on |R|). It is easy to show when R has just one row and
that has no 1’s, and when |R| = 2, so we will assume that it holds for all R
satisfying |R| ≤ r − 1, and prove the result for |R| = r.

Let N be the set of integers that correspond to the rows of R. By Lemma
3 we know that the integer in N which corresponds to the last row of M must
be a prime, which we will call p`. Note that p` must divide at least one other
integer in N , since MR ∈M.

Case 1: p` Divides at Least Three Elements from our Set

We partition R into three subsets: R0, the rows without a 1 in the `-th column;
R1, the rows with a 1 in the `th column, but no other 1’s (that is, rows which
correspond to the prime p`); and R2, the rows with a 1 in the `th column, as
well as other 1’s. Note that |R1| ≥ 1 and |R1|+ |R2| ≥ 3 by hypothesis.

Write each S ⊂ R with MS ∈M as S0 ∪ S1 ∪ S2 where Si ⊂ Ri. If we fix S0

and S2 with |S2| ≥ 2 then S0 ∪ S2 ∈M if and only if S0 ∪ S1 ∪ S2 ∈M for any
S1 ⊂ R1. Therefore the contribution of all of these S to the sum in (27) is

(−1)N(S0)+N(S2)
∑
S1⊂R1

(−1)|S1| = (−1)N(S0)+N(S2)(1− 1)|R1| = 0 (30)

Now consider those sets S with |S2| = 1. In this case we must have |S1| ≥ 1
and equally we have S0 ∪{p`}∪S2 ∈M if and only if S0 ∪S1 ∪S2 ∈M for any
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S1 ⊂ R1 with |S1| ≥ 1. Therefore the contribution of all of these S to the sum
in (27) is

(−1)N(S0)+N(S2)
∑
S1⊂R1
|S1|≥1

(−1)|S1| = (−1)N(S0)+N(S2)((1− 1)|R1| − 1)

= (−1)N(S0∪{p`}∪S2). (31)

Regardless of whether |S2| = 1 or |S2| ≥ 2, we get that if we truncate the sums
(30) or (31) to all those S1 ⊂ R1 with

N(S1) = |S1| ≤ N −N(S0)−N(S2),

then the total sum is ≤ 0 if N is odd, and is ≥ 0 if N is even; furthermore, note
that we get that these truncations are 0 in two cases: If N −N(S0)−N(S2) ≤ 0
(which means that the above sums are empty, and therefore 0 by convention),
or if N −N(S0)−N(S2) ≥ N(R1) (which means that we have the complete sum
over all S1 ⊂ R1).

It remains to handle those S where |S2| = 0. We begin by defining certain
sets Hj and Tj : If the elements of R2 correspond to the integers h1, . . . , hk then
let Hj be the connected component of the subgraph containing hj , of the graph
obtained by removing all rows divisible by p` except hj . Let Tj = Hj ∪ {p`}.
Note that if S2 = {hj} then S0 ∪ {p`} ∪ S2 ⊂ Tj (in the paragraph immediately
above).

Note that if S has |S2| = 0, then S = S0 ⊂ Tj for some j (since the graph of
S is connected), or S = S1 with |S| ≥ 2. The contribution of those S = S1 with
|S| ≥ 2 to the sum in (27) is∑

S1⊂R1
|S1|≥2

(−1)|S1| = (1− 1)|R1| − (1− |R1|) = |R1| − 1.

Furthermore, if we truncate this sum to all those S1 satisfying

N(S1) = |S1| ≤ N,

then the sum is ≥ |R1| − 1 if N ≥ 2 is even, and the sum is ≤ |R1| − 1 if N ≥ 3
is odd.

Finally note that if S ⊂ Tj with MS ∈ M then either |S2| = 0 or S =
S0 ∪ {p`, hj} and therefore, combining all of this information,

∑
S⊂R
MS∈M

(−1)N(S) = |R1|−1+
k∑
j=1

∑
S⊂Tj
MS∈M

(−1)N(S) = |R1|−1+
k∑
j=1

(r(Tj)− `(Tj))

by the induction hypothesis (as each |Tj | < |M |). Also by the induction hypothe-
sis, along with what we worked out above for N even and odd, in all possibilities
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for |S2| (i.e. |S2| = 0, 1 or exceeds 1), we have that for N ≥ 3 odd,

∑
S⊂R, N(S)≤N

MS∈M

(−1)N(S) ≤ |R1| − 1 +
k∑
j=1

(r(Tj)− `(Tj));

and for N ≥ 2 even,

∑
S⊂R, N(S)≤N

MS∈M

(−1)N(S) ≥ |R1| − 1 +
k∑
j=1

(r(Tj)− `(Tj)).

The Tj less the rows {p`} is a partition of the rows of M less the rows {p`}, and
so ∑

j

(r(Tj)− 1) = r(M)− |R1|.

The primes in Tj other than p` is a partition of the primes in M other than p`,
and so ∑

j

(`(Tj)− 1) = `(M)− 1.

Combining this information gives (27), (28), and (29).

Case 2 : p` Divides Exactly Two Elements from our Set

Suppose these two elements are nr = p` and nr−1 = p`q for some integer q. If
q = 1 this is our whole graph and (27), (28) and (29) all hold, so we may assume
q > 1. If nj 6= q for all j, then we create M1 ∈M with r− 1 rows, the first r− 2
the same, and with nr−1 = q. We have

N(M1) = N(M)− 2, r(M1) = r(M)− 1, and `(M1) = `(M)− 1.

We claim that there is a 1-1 correspondence between the subsets S ⊂ R(M)
with MS ∈M and the subsets T ⊂ R(M1) with (M1)T ∈M. The key observa-
tion to make is that p` ∈ S (ie row r) if and only if p`q ∈ S (ie row r− 1), since
MS ∈M. Thus if rows r−1 and r are in S then S corresponds to T (ie T = S1),
which we obtain by replacing rows r − 1 and r of S by row r − 1 of T which
corresponds to q. Otherwise we let S = T . Either way (−1)N(S) = (−1)N(T ) and
so ∑

S⊂R
MS∈M

(−1)N(S) =
∑

T⊂R(M1)
(M1)T∈M

(−1)N(T ) = r(M1)− `(M1) = r(M)− `(M),

by the induction hypothesis. Further, we have that for N even,∑
S⊂R,N(S)≤N

MS∈M

(−1)N(S) =
∑

T⊂R(M1),N(T )≤N−2
(M1)T∈M

(−1)N(T ) ≥ r(M)− `(M) .
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The analogous inequality holds in the case where N is odd. Thus, we have that
(27), (28) and (29) all hold.

Finally, suppose that nj = q for some j, say nr−2 = q. Then q must be prime
else there would be a non-monochromatic cycle in M ∈ M. But since prime q
is in our set it can only divide two of the integers of the set (by our previous
deductions) and these are nr−2 and nr−1. However this is then the whole graph
and we observe that (27), (28), and (29) all hold. ut

6.6 Counting Configurations

We partitioned B into connected components S1, . . . , Sh. Now we form the ma-
trices Bk, the union of the Sj ∈Mk, for each k ≥ 0, so that

r(B)− rank(B) =
∑
k≥0

r(Bk)− rank(Bk), (32)

and
r(Bk)− rank(Bk) =

∑
j: Sj∈Mk

r(Sj)− rank(Sj).

More importantly∑
j: Mj∈M0

r(Mj)− rank(Mj)

=
∑

j: Mj∈M0

∑
S⊂R(Mj)
MS∈M

(−1)N(S) =
∑

S⊂R(B0)
MS∈M

(−1)N(S) , (33)

by Proposition 4. If k ≥ 1 then there are a bounded number of Sj isomorphic
to any given matrix M ∈ Mk, by Proposition 3, and so we believe that these
contribute little to our sum (32). In particular we conjecture that∑

k≥1

∑
j: Mj∈Mk

(
r(Mj)− rank(Mj)−

∑
S⊂R(Mj)
MS∈M

(−1)N(S)
)

= o(π(y0))

with probability 1 − o(1). Hence the last few equations combine to give what
will now be our assumption.

Assumption.

r(B)− rank(B) =
∑

S⊂R(B)
MS∈M

(−1)N(S) + o(π(y0)). (34)

By combining (23), (34), and the identity

∑
σ∈S`

∏̀
j=1

1∑`
i=j cσ(i)

=
∏̀
j=1

1
ci
,
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(here S` is the symmetric group on 1, ..., `, and taking ci = mi − 1) we obtain,
by summing over all orderings of the primes,

E(r(B)− rank(B)) ∼ f(η)π(y0) (35)

where

f(η) :=
∑

M∈M∗

(−1)N(M)

|AutCols(M)| · |AutRows(M)|
· ηr(M)∏`

j=1(mj − 1)
, (36)

assuming that when we sum and re-order our initial series, we do not change
the value of the sum. Here AutCols(M) denotes the number of ways to obtain
exactly the same matrix M when permuting the columns, and M∗ = M/ ∼
where two matrices are considered to be “equivalent” if they are isomorphic.

6.7 Husimi Graphs

All of the graphs G(M),M ∈ M are simple graphs, and have only monochro-
matic cycles: notice that these cycles are subsets of the complete graph formed
by the edges of a particular colour (corresponding to the integers divisible by
a particular prime). Hence any two-connected subgraph of G(M) is actually a
complete graph: This is precisely the definition of a Husimi graph (see [11]), and
so the isomorphism classes of Husimi graphs are in one-to-one correspondence
with the matrices in M∗.

Husimi graphs have a rich history, inspiring the combinatorial theory of
species, and are central to the thermodynamical study of imperfect gases (see
[11] for references and discussion).

Lemma 5. If G is a Husimi graph then

Aut(G) ∼= AutRows(M)×AutCols(M). (37)

Proof. If σ ∈ Aut(G) then it must define a permutation of the colors of G; that
is an element τ ∈ AutCols(M). Then τ−1σ ∈ Aut(G) is an automorphism of G
that leaves the colors alone; and therefore must permute the elements of each
given color. However if two vertices of the same color in G are each adjacent
to an edge of another color then permuting them would permute those colors
which is impossible. Therefore τ−1σ only permutes the vertices of a given color
which are not adjacent to edges of any other color; and these correspond to
automorphisms of the rows of M containing just one 1. However this is all of
AutRows(M) since if two rows of M are identical then they must contain a single
element, else G would contain a non-monochromatic cycle. ut

Let Hu(j2, j3, . . . ) denote the set of Husimi graphs with ji blocks of size i for
each i, on

r = 1 +
∑
i≥2

(i− 1)ji (38)
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vertices, with ` =
∑
i ji and N(M) =

∑
i iji. (This corresponds to a matrix M

in which exactly ji columns contain precisely i 1’s.) In this definition we count
all distinct labellings, so that

Hu(j2, j3, . . . ) =
∑
G

r!
|Aut(G)|

,

where the sum is over all isomorphism classes of Husimi graphs G with exactly
ji blocks of size i for each i. The Mayer-Husimi formula (which is (42) in [11])
gives

Hu(j2, j3, . . . ) =
(r − 1)!∏

i≥2((i− 1)!jiji!)
· r`−1, (39)

and so, by (36), (37) and the last two displayed equations we obtain

f(η) =
∑

j2,j3,···≥0
j2+j3+···<∞

(−1)r+`−1 r`−2∏
i≥2((i− 1)!ji(i− 1)jiji!)

· ηr. (40)

6.8 Convergence of f(η)

In this section we prove the following result under an appropriate (analytic)
assumption.

“Theorem”. The function f(η) has radius of convergence e−γ , is increasing in
[0, e−γ), and limη→(e−γ)− f(η) = 1.

So far we have paid scant attention to necessary convergence issues. First
note the identity

exp

( ∞∑
i=1

ci

)
=

∑
k1,k2,...≥0

k1+k2+···<∞

∏
i≥1

ckii
ki!

, (41)

which converges absolutely for any sequence of numbers c1, c2, ... for which |c1|+
|c2| + · · · converges, so that the terms in the series on the right-hand-side can
be summed in any order we please.

The summands of f(η), for given values of r and `, equal (−1)r+`−1r`−2ηr

times ∑
j2,j3,···≥0P

i≥2 ji=`,
P
i≥2(i−1)ji=r−1

1∏
i≥2((i− 1)!ji(i− 1)jiji!)

, (42)

which is exactly the coefficient of tr−1 in

1
`!

(
t+

t2

2 · 2!
+

t3

3 · 3!
+ . . .

)`
,
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and so is less than τ `/`! where τ =
∑
j≥1 1/(j · j!) ≈ 1.317902152. Note that if

r ≥ 2 then 1 ≤ ` ≤ r − 1. Therefore the sum of the absolute values of all of the
coefficients of ηr in f(η) is less than

∑
2≤`≤r−1

r`−2 τ
`

`!
� rr−2 τ

r

r!
� (eτ)r

r5/2

The first inequality holds since τ > 1, the second by Stirling’s formula. Thus
f(η) is absolutely convergent for |η| ≤ ρ0 := 1/(eτ) ≈ 0.2791401779. We can
therefore manipulate the power series for f , as we wish, inside the ball |η| ≤ ρ0,
and we want to extend this range.

Let

A(T ) := −
∑
j≥1

(−1)jT j

j · j!
=
∫ T

0

1− e−t

t
dt.

The identity (41) implies that the coefficient of tr−1 in exp(rA(ηt)) is

∑
j2,j3,...

j2+2j3+3j4+···=r−1

(−1)r+`−1r`ηr−1∏
i≥2((i− 1)!ji(i− 1)jiji!)

,

so that

f ′(η) =
∑
r≥1

coeff of tr−1 in exp(rA(ηt))
r

. (43)

We will now obtain a functional equation for f ′ using Lagrange’s Inversion
formula:

Lagrange’s Inversion Formula. If g(w) is analytic at w = 0, with g(0) = a
and g′(0) 6= 0, then

h(z) =
∞∑
r=1

(
d

dw

)r−1 (
w

g(w)− a

)r∣∣∣∣
w=0

(z − a)r

r!

is the inverse of g(w) in some neighbourhood around a (thus, h(g(w)) = 1).

If g(w) = w/ϕ(w), where ϕ(w) is analytic and non-zero in some neighbour-
hood of 0, then

h(z) =
∞∑
r=1

cr−1z
r

r

is the inverse of g(w) in some neighbourhood around 0, where cj is the co-
efficient of wj in ϕ(w)j+1. Applying this with ϕ(w) = eA(ηw) we find that
g(w) = we−A(ηw) has an inverse h(z) in a neighbourhood, Γ , around 0 where

h(1) =
∑
r≥1

coeff. of zr−1 in exp(rA(ηz))
r

= f ′(η).
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We will assume that the neighbourhood Γ includes 1. Therefore, since

1 = g(h(1)) = h(1)e−A(ηh(1)) = f ′(η)e−A(ηf ′(η)),

we deduce that
f ′(η) = eA(ηf ′(η)). (44)

(Note that this can only hold for η in some neighborhood of 0 in which the power
series for f ′(η) converges.) Taking the logarithm of (44) and differentiating we
get, using the formula A′(T ) = 1−e−T

T ,

f ′′(η)
f ′(η)

= (ηf ′(η))′
1− e−ηf ′(η)

ηf ′(η)

so that f ′(η) = (ηf ′(η))′ − ηf ′′(η) = (ηf ′(η))′ e−ηf
′(η). Integrating and using

the facts that f(0) = 0 and f ′(0) = 1, we have

f(η) = 1− e−ηf
′(η). (45)

We therefore deduce that

ηf ′(η) = − log(1− f(η)) =
∑
k≥1

f(η)k

k
. (46)

Lemma 6. The coefficients of f(η) are all non-negative. Therefore |f(z)| ≤
f(|z|) so that f(z) is absolutely convergent for |z| < R if f(η) converges for
0 ≤ η < R. Also all of the coefficients of f ′(η) are non-negative and f ′(0) = 1
so that f ′(η) > 1 for 0 ≤ η < R.

Proof. Write f(η) =
∑
r≥0 arη

r. We prove that ar > 0 for each r ≥ 1, by in-
duction. We already know that a1 = 1 so suppose r ≥ 2. We will compare the
coefficient of ηr on both sides of (46). On the left side this is obviously rar. For
the right side, note that the coefficient of ηr in f(η)k is a polynomial, with posi-
tive integer coefficients (by the multinomial theorem), in variables a1, . . . , ar+1−k
for each k ≥ 1. This is 0 for k > r, and is positive for 2 ≤ k ≤ r by the induc-
tion hypothesis. Finally, for r = 1, the coefficient is ar. Therefore we have that
rar > ar which implies that ar > 0 as desired. ut

Our plan is to determine R, the radius of convergence of f(η), by determining
the largest possible R1 for which f ′(η) is convergent for 0 ≤ η < R1. Then
R = R1.

Since f ′ is monotone increasing (as all the coefficients of f ′ are positive), we
can define an inverse on the reals ≥ f ′(0) = 1. That is, for any given y ≥ 1, let ηy
be the (unique) value of η ≥ 0 for which f ′(η) = y. Therefore R1 = limy→∞ ηy.

We claim that the value of f ′(η) is that unique real number y for which
Bη(y) := A(ηy) − log y = 0. By (44) we do have that Bη(f ′(η)) = 0, and this
value is unique if it exists since Bη(y) is monotone decreasing, as

B′η(y) = ηA′(ηy)− 1/y = −e−ηy/y < 0 .
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This last equality follows since A′(T ) = (1− e−T )/T . Now A′(T ) > 0 for T > 0,
and so A(t) > 0 for all t > 0 as A(0) = 0. Therefore Bη(1) = A(η) > 0, and
so, remembering that Bη(y) is monotone decreasing, we have that a solution y
exists to Bη(y) := A(ηy)− log y = 0 if and only if Bη(∞) < 0. Therefore R1 is
precisely that value of η = η1 for which Bη1(∞) = 0. Now

Bη(y) = Bη(1) +
∫ y

1

B′η(t)dt = A(η)−
∫ y

1

e−ηt

t
dt.

so that

Bη(∞) = A(η)−
∫ ∞

1

e−ηy

y
dy .

Therefore∫ ∞
1

e−η1y

y
dy = A(η1) = A(0) +

∫ η1

0

A′(v)dv =
∫ η1

0

(1− e−v)
v

dv ,

so that ∫ η1

1

dv

v
=
∫ ∞

1

e−v

v
dv −

∫ 1

0

(1− e−v)
v

dv = −γ

(as is easily deduced from the third line of (6.3.22) in [1]). Exponentiating we
find that R1 = η1 = e−γ = .561459 . . . .

Finally by (45) we see that f(η) < 1 when f ′(η) converges, that is when
0 ≤ η < η0, and f(η)→ 1 as η → η−0 .

6.9 From Expectation to Probability

One can easily generalize Proposition 2 to prove the following result, which
implies that if E(r(B)− rank(B)) > (1 + 2ε)π(y0) then

r(B)− rank(B) > (1 + ε)π(y0) with probability 1− oε(1) .

Proposition 5. If M ∈M then

#{S ⊆ Ay0 : MS 'M} ∼ E(#{S ⊆ Ay0 : MS 'M})

with probability 1− o(1), as x→∞.

Hence, with probability 1− o(1) we have, assuming (34) is true, that∑
j: Mj∈M

r(Mj)− rank(Mj) ∼ E
( ∑
j: Mj∈M

r(Mj)− rank(Mj)
)

as x → ∞, which is why we believe that one can take J = (e−γ + o(1))J0(x)
with probability 1− o(1).
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7 Algorithms

7.1 The Running Time for Pomerance’s Problem

We will show that, with current methods, the running time in the hunt for the
first square product is dominated by the speed of finding a linear dependence in
our matrix of exponents:

Let us suppose that we select a sequence of integers a1, a2, . . . , aJ in [1, n]
that appear to be random, as in Pomerance’s problem, with J � J0. We will
suppose that the time taken to determine each aj , and then to decide whether
aj is y0-smooth and, if so, to factor it, is � y

(1−ε)/ log log y0
0 steps (note that the

factoring can easily be done in exp(O(
√

log y0 log log y0)) steps by the elliptic
curve method, according to [3], section 7.4.1).

Therefore, with probability 1 − o(1), the time taken to obtain the factored
integers in the square dependence is � y

2−ε/ log log y0
0 by (8).

In order to determine the square product we need to find a linear dependence
mod 2 in the matrix of exponents. Using the Wiedemann or Lanczos methods
(see section 6.1.3 of [3]) this takes time O(π(y0)2µ), where µ is the average
number of prime factors of an ai which has been kept, so this is by far the
lengthiest part of the running time.

7.2 Improving the Running Time for Pomerance’s Problem

If instead of wanting to simply find the first square dependence, we require an
algorithm that proceeds as quickly as possible to find any square dependence
then we should select our parameters so as to make the matrix smaller. Indeed if
we simply create the matrix of y-smooths (without worrying about large prime
variations) then we will optimize by taking

π(y)
Ψ(x, y)/x

� π(y)2µ , (47)

that is the expected number of aj ’s selected should be taken to be roughly the
running time of the matrix setp, in order to determine the square product. Here
µ, is as in the previous section, and so we expect that µ is roughly

1
ψ(x, y)

∑
n≤x,P (n)≤y

∑
p≤y: p|n

1 =
∑
p≤y

ψ(x/p, y)
ψ(x, y)

∼
∑
p≤y

1
pα
∼ y1−α

(1− α) log y
∼ log y

log log y

by (12), the prime number theorem and (11). Hence we optimize by selecting
y = y1 so that ρ(u1) � (log log y1)/y1, which implies that

y1 = y
1−(1+o(1))/ log log x
0 ,
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by Lemma 1, which is considerably smaller than y0. On the other hand, if J1 is
the expected running time, π(y1)/(Ψ(x, y1)/x) then

J1/J0 ∼
y1/ρ(u1)
y0/ρ(u0)

= exp
(
{1 + o(1)} u0 log u0

(log log x)2

)
= y

(1+o(1))/(log log x)2

0

by the prime number theorem, (3), and (22) in the proof of Lemma 2.3 in [4].

7.3 Smooth Squares

In factoring algorithms, the ai are squares mod n (as explained at the begin-
ning of section 1), which is not taken into account in Pomerance’s problem. For
instance, in Dixon’s random squares algorithm one selects b1, b2, . . . , bJ ∈ [1, n]
at random and lets ai be the least residue of b2i (mod n). We keep only those
ai that are y-smooth, and so to complete the analysis we need some idea of the
probability that a y-smooth integer is also a square mod n. Dixon [5] gives an
(unconditionally proven) lower bound for this probability which is too small by
a non-trivial factor. We shall estimate this probability much more accurately
though under the assumption of the Generalized Riemann Hypothesis.

Theorem 2. Assume the Generalized Riemann Hypothesis and let n be an inte-
ger with smallest prime factor > y, which is > 23ω(n)Lε (where ω(n) denotes the
number of distinct prime factors of n). For any n ≥ x ≥ n1/4+δ, the proportion
of the positive integers a ≤ x where a is a square mod n and coprime to n, which
are y-smooth, is ∼ Ψ(x, y)/x.

We use the following result which is easily deduced from the remark following
Theorem 2 of [9]:

Lemma 7. Assume the Generalized Riemann Hypothesis. For any non-principal
character χ (mod n), and 1 ≤ x ≤ n we have, uniformly,

∣∣∣ ∑
a≤x

a y−smooth

χ(a)−
∑
a≤x

χ(a)
∣∣∣� Ψ(x, y)(log n)3

√
y

.

Proof (of Theorem 2). Let M(x) be the number of a ≤ x which are coprime
with n, let N(x) be the number of these a which are a square mod n, and let
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N(x, y) be the number of these a which are also y-smooth. Then(
N(x, y)− Ψ(x, y)

2ω(n)

)
−
(
N(x)− M(x)

2ω(n)

)
=

=

 ∑
a≤x,(a,n)=1
a y−smooth

−
∑
a≤x

(a,n)=1


∏
p|n

1
2

{
1 +

(
a

p

)}
− 1

2ω(n)



=
1

2ω(n)

∑
d|n
d 6=1

µ2(d)

 ∑
a≤x,(a,n)=1
a y−smooth

(a
d

)
−

∑
a≤x

(a,n)=1

(a
d

)� Ψ(x, y)(log n)3
√
y

by Lemma 7. Now Burgess’s theorem tells us that N(x) −M(x)/2ω(n) � x1−ε

if x ≥ n1/4+δ, the prime number theorem that ω(n) ≤ log n/ log y = o(log x),
and (7) that Ψ(x, y) ≥ x1−ε/2 as y > Lε. Hence N(x, y) ∼ Ψ(n, y)/2ω(n). The
number of integers a ≤ x which are coprime to n and a square mod n is ∼
(φ(n)/n)(x/2ω(n)), and φ(n) = n(1 +O(1/y))ω(n) ∼ n, so the result follows. ut

7.4 Making the Numbers Smaller

In Pomerance’s quadratic sieve the factoring stage of the algorithm is sped up
by having the ai be the reduced values of a polynomial, so that every p-th ai
is divisible by p, if any aj is. This regularity means that we can proceed quite
rapidly, algorithmically in factoring the ai’s. In addition, by an astute choice of
polynomials, the values of ai are guaranteed to be not much bigger than

√
n,

which gives a big saving, and one can do a little better (though still bigger than√
n) with Peter Montgomery’s “multiple polynomial variation”. For all this see

section 6 of [3].

8 Large Prime Variations

8.1 A Discussion of Theorem 4.2 in [4] and its Consequences

Define expk(z) :=
∑k−1
j=0 z

j/j! so that limk→∞ expk(z) = exp(z), and

AM (z) :=
∫ 1

1/M

1− e−zt

t
dt so that lim

M→∞
AM (z) = A(z) =

∫ 1

0

1− e−zt

t
dt .

Recursively, define functions γm,M,k by γ0,M,k(u) := u and

γm+1,M,k(u) := u expk [AM (γm,M,k(u))]

for m = 0, 1, 2, . . . . Note that γm,M,k(u) is increasing in all four arguments.
From this it follows that γm,M,k(u) increases to γM,k(u) as m→∞, a fixed point
of the map z 7→ u expk(Am(z)), so that

γM,k(u) := u expk [AM (γM,k(u))] . (48)
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We now establish that γM,k(u) <∞ except perhaps when M = k =∞: We have
0 ≤ AM (z) ≤ logM for all z, so that u < γM,k(u) ≤Mu for all u; in particular
γM,k(u) < ∞ if M < ∞. We have A(z) = log z + O(1) so that if γ∞,k(u) is
sufficiently large, we deduce from (48) that γ∞,k(u) ∼ u(log u)k−1/(k − 1)!; in
particular γ∞,k(u) < ∞. As M,k → ∞, the fixed point γM,k(u) increases to
the fixed point γ(u) of the map z 7→ ueA(z), or to ∞ if there is no such fixed
point, in which case we write γ(u) = ∞. By comparing this with (44) we see
that γ(u) = uf ′(u). In [4] we show that this map has a fixed point if and only if
u ≤ e−γ . Otherwise γ(u) = ∞ for u > e−γ so that

∫ η
0
γ(u)
u du = ∞ > 1 for any

η > e−γ .
One might ask how the variables m,M, k, u relate to our problem? We are

looking at the possible pseudosmooths (that is integers which are a y0-smooth
times a square) composed of products of aj with j ≤ uJ0. We restrict our
attention to aj that are My0-smooth, and which have at most k prime factors
≥ y0. In the construction of our hypergraph we examine the aj selecting only
those with certain (convenient) properties, which corresponds to m = 0. Then we
pass through the aj again, selecting only those with convenient properties given
the aj already selected at the m = 0 stage: this corresponds to m = 1. We iterate
this procedure which is how the variable m arises. The advantage in this rather
complicated construction is that the count of the number of pseudosmooths
created, namely

∼ π(y0) ·
∫ η

0

γm,M,k(u)
u

du ,

increases as we increase any of the variables so that it is relatively easy to
deal with convergence issues (this is Theorem 2 in [4]). This technique is more
amenable to analysis than the construction that we give in section 6, because
here we use the inclusion-exclusion type formula (36) to determine f(η), which
has both positive and negative summands, and it has proved to be beyond us to
establish unconditionally that this sum converges.

Note that as m→∞ we have that the number of pseudosmooths created is

∼ π(y0) ·
∫ η

0

γM,k(u)
u

du ; (49)

hence if the value of this integral is > 1 then we are guaranteed that there is a
square product. If we let M and k go to ∞ then the number of pseudosmooths
created is

∼ π(y0) ·
∫ η

0

γ(u)
u

du .

The upper bound in the Conjecture follows. In terms of what we have proposed
in section 6, we have now shown that the number of pseudosmooths created is
indeed ∼ f(η)π(y0).

We remarked above that this integral is an increasing function of η and, in
fact, equals 1 for η = e−γ . Hence if η > e−γ then we are guaranteed that there is
a square product. One might expect that if η = e−γ + ε then we are guaranteed
C(ε)π(y0) square products for some C(ε) > 0. However we get rather more than
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that: if η > e−γ then
∫ η
0
γ(u)
u du = ∞ (that is f(η) diverges) and hence the

number of square products is bigger than any fixed multiple of π(y0) (we are
unable to be more precise than this).

8.2 Speed-ups

From what we have discussed above we know that we will find a square product
amongst the y0-smooth aj ’s once J = {1 + o(1)}J0, with probability 1 − o(1).
When we allow the aj ’s that are either y0-smooth, or y0-smooth times a single
larger prime then we get a stopping time of {c1 + o(1)}J0 with probability
1 − o(1) where c1 is close to 3/4. When we allow any of the aj ’s in our square
product then we get a stopping time of {e−γ + o(1)}J0 with probability 1− o(1)
where e−γ = .561459 . . .. It is also of interest to get some idea of the stopping
time for the k-large primes variations, for values of k other than 0, 1 and ∞. In
practice we cannot store arbitrarily large primes in the large prime variation,
but rather keep only those aj where all of the prime factors are ≤ My0 for a
suitable value of M – it would be good to understand the stopping time with the
feasible prime factors restricted in this way. We have prepared a table of such
values using the result from [4] as explained in section 8.1: First we determined a
Taylor series for γM,k(u) by solving for it in the equation (48). Next we found the
appropriate multiple of π(y0), a Taylor series in the variable η, by substituting
our Taylor series for γM,k(u) into (49). Finally, by setting this multiple equal to
1, we determined the value of η for which the stopping time is {η+ o(1)}J0 with
probability 1− o(1), when we only use the aj allowed by this choice of k and M
to make square products.

k M =∞ M = 100 M = 10
0 1 1 1
1 .7499 .7517 .7677
2 .6415 .6448 .6745
3 .5962 .6011 .6422
4 .5764 .5823 .6324
5 .567 .575 .630

The expected stopping time, as a multiple of J0.

What we have given here is the speed-up in Pomerance’s problem; we also want
to use our work to understand the speed-up of multiple prime variations in actual
factoring algorithms. As dicussed in section 7 we optimize the running time by
taking y1 to be a solution to (47): If we include the implicit constant c on the
left side of (47), then this is tantamount to a solution of h(uc) = log(c log log y)
where h(u) := 1

u log x+ log ρ(u). For u ≈ uc we have

h′(u) = −h(u)
u
−
(

log ρ(u)
u

− ρ′(u)
ρ(u)

)
= −1 + o(1)

by (51), (56) and (42) of section III.5 of [20]. One can show that the arguments
in [4] which lead to the speed-ups in the table above, work for y1 just as for y0;
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so if we use a multiprime variation to reduce the number of aj ’s required by a
factor η (taken from the table above), then we change the value of h(u) by log η,
and hence we must change u to u′ := u − {1 + o(1)} log η. The change in our
running time (as given by (47)) will therefore be by a factor of

∼ x 2
u′−

2
u = exp

(
2(u− u′) log x

uu′

)
= exp

(
{2 + o(1)} log η log x

u2

)
=

1
(log x){1+o(1)} log(1/η)

;

with a little more care, one can show that this speed-up is actually a factor

∼
(

2e4 + o(1)
log x log log x

)log(1/η)

.

8.3 A Practical Perspective

One approaches Pomerance’s question, in practice, as part of an implementation
of a factoring algorithm. The design of the computer, the language and the
implementation of the algorithm, all affect the running time of each particular
step. Optimally balancing the relative costs of the various steps of an algorithm
(like the quadratic sieve) may be substantially different as these environmental
factors change. This all makes it difficult to analyze the overall algorithm and
to give one definitive answer.

The key parameter in Pomerance’s problem and its use in factoring algo-
rithms is the smoothness parameter y = y1: We completely factor that part of
aj which is y-smooth. Given the origin of the aj ’s it may be possible to do this
very efficiently using a sieve method. One may obtain a significant speed-up by
employing an “early abort” strategy for the aj that have a particularly small
y2-smooth part, where y2 is substantially smaller than y = y1. The size of y also
determines the size of the matrix in which we need to find a linear dependence
– note though that the possible size of the matrix may be limited by the size of
memory, and by the computer’s ability to handle arrays above a certain size.

Suppose that aj equals its y-smooth part times bj , so that bj is what is left
after the initial sieving. We only intend to retain aj if bj = 1, or if bj has no
more than k prime factors, all of which are ≤ My. Hence the variables M and
k are also key parameters. If M is large then we retain more aj ’s, and thus
the chance of obtaining more pseudosmooths. However this also slows down the
sieving, as one must test for divisibility by more primes. Once we have obtained
the bj by dividing out of the aj all of their prime factors ≤ y we must retain
all of those bj ≤ (My)k. If we allow k to be large then this means that only
a very small proportion of the bj that are retained at this stage will turn out
to be My-smooth (as desired), so we will have wasted a lot of machine cycles
on useless aj . A recent successful idea to overcome this problem is to keep only
those aj where at most one of the prime factors is > M ′y for some M ′ that is
not much bigger than 1 — this means that little time is wasted on aj with two
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“large” prime factors. The resulting choice of parameters varies from program to
program, depending on how reports are handled etc. etc., and on the prejudices
and prior experiences of the programmers. Again, it is hard to make this an
exact science.

Arjen Lenstra told us, in a private communication, that in his experience of
practical implementations of the quadratic sieve, once n and y are large enough,
the single large prime variation speeds things up by a factor between 2 and 2.5,
and the double large prime variation by another factor between 2 and 2.5 (see,
e.g. [13]), for a total speed-up of a factor between 4 and 6. An experiment with
the triple large prime variation [12] seemed to speed things up by another factor
of around 1.7.

Factorers had believed (see, e.g. [13] and [3]) that, in the quadratic sieve,
there would be little profit in trying the triple large prime variation, postulating
that the speed-up due to the extra pseudosmooths obtained had little chance
of compensating for the slowdown due to the large number of superfluous aj s
considered, that is those for which bj ≤ (My)3 but turned out to not be My-
smooth. On the other hand, in practical implementations of the number field
sieve, one obtains aj with more than two large prime factors relatively cheaply
and, after a slow start, the number of pseudosmooths obtained suddenly increases
very rapidly (see [6]). This is what led the authors of [12] to their recent surprising
and successful experiment with the triple large prime variation for the quadratic
sieve (see Willemien Ekkelkamp’s contribution to these proceedings [7] for further
discussion of multiple prime variation speed-ups to the number field sieve).

This practical data is quite different from what we have obtained, theoret-
ically, at the end of the previous section. One reason for this is that, in our
analysis of Pomerance’s problem, the variations in M and k simply affect the
number of aj being considered, whereas here these affect not only the number of
aj being considered, but also several other important quantities. For instance,
the amount of sieving that needs to be done, and also the amount of data that
needs to be “swapped” (typically one saves the aj with several large prime factors
to the disk, or somewhere else suitable for a lot of data). It would certainly be
interesting to run experiments on Pomerance’s problem directly to see whether
our predicted speed comparisons are close to correct for numbers within compu-
tational range.
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