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1 Introduction

This paper considers a problem in extreme value theory from a computational complexity viewpoint.
Suppose that {Sn,k : n ≥ 1, k ≤ K(n)} are random variables, with K(n) growing perhaps quite
rapidly. Let Mn := maxk≤K(n) Sn,k. A prototypical classical extreme value theorem takes the form
fn(Mn) → Z, where convergence is to a constant or a distribution. When K(n) grows rapidly with
n, existence of a large value Sn,k is not the same as efficiently being able to find such a value. A
more compelling question from the computational viewpoint is: what is the maximum value of Sn,k

that can be found by an algorithm in a reasonable time?

In this paper, we will consider the 2n positions of particles in the nth generation of a binary
branching random walk. Thus K(n) = 2n and {Sn,k : 1 ≤ k ≤ K(n)} will be {S(v) : |v| = n}, where
|v| denotes the depth of a vertex v and S(v) is the sum of IID increments X(w) over all ancestors
w of v. After reviewing known results on Mn, we will give upper and lower complexity bounds for
finding a vertex v at depth n such that S(v) ≥ Mn − εn. It is allowed to query X(w) for any w,
and v is considered “found” once we can evaluate S(v), that is, once all ancestors of v have been
queried.

The problem as stated asks to maximize S(v) over vertices of a fixed depth n. A closely related
paper of Aldous [Ald92] considers the problem of how quickly one can find a vertex v, at any depth,
with S(v) ≥ n. The main results herein are the lower complexity bounds proved in Theorem 3.3 and
Theorem 3.4, with upper bounds included to illustrate when the lower bounds are sharp or nearly
sharp. The organization of the paper is as follows. In the remainder of this section we set forth
notation for branching random walks. Section 2 summarizes known limit laws for extreme values
of branching random walk. A number of these results, such as Proposition 2.1, equation (2.7), and
Propositions 2.2, 2.4 and 2.6, are used in the proofs of the lower complexity bounds. Section 3 states
the main results, Section 4 proves the upper complexity bounds and other preliminary results, and
Section 5 proves the lower complexity bounds.

Notation

The infinite rooted binary tree will be denoted T and its root will be denoted 0. Write v ∈ T when
v is a vertex of T and v ∼ w when v is a neighbor (parent or child) of w. Let |v| denote the depth
of v, that is, the distance from 0 to v. Write v < w if w is a descendant of v. By a “rooted path”
or “branch”, we mean a finite or infinite sequence (0 = x0, x1, x2, . . .) of vertices with each xi being
the parent of xi+1. Our probability space supports random variables {X(v) : v ∈ T} that are IID
with common distribution that is Bernoulli with mean p ≤ 1/2; in Proposition 3.1 below and parts
of Section 2, we allow a more general common distribution but all other notation remains the same.
Let S(v) :=

∑
0<w≤v X(w) denote the partial sums of {X(w)} on paths from the root (in particular,
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S(0) = 0). The maximal displacement Mn is defined by

Mn = max
|v|=n

S(v) .

The subtree from v is the induced subgraph on {w ∈ T : w ≥ v}, rooted at v. The subtree process
{S(w)− S(v) : w ≥ v} has the same distribution as the original process {S(w) : w ∈ T}.

Our probability space must be big enough to support probabilistic search algorithms. We will
not need to define these formally, but simply to bear in mind that there is a source of randomness
independent of {X(v) : v ∈ T}, and that there is a filtration F0,F1,F2, . . . such that Ft is “everything
we have looked at up to time t”; thus X(v(t)) ∈ Ft, where v(t) is the vertex we choose to inspect at
time t, and {X(w) : w 6= v(1), . . . , v(t)} is independent of Ft; without loss of generality, we assume
v(t) ∈ Ft−1, that is, any randomness needed to choose v(t) is generated by time step t− 1.

2 Classical extreme value results

Growth rate of Mn

Along most infinite paths, the mean of the variables will be the mean, p, of their common distribution,
but there will be exceptional paths where the nth partial sum is consistently greater than pn. Let
X1, X2, . . . be IID with the same distribution as the variables X(v) and let Sn :=

∑n
k=1 Xk denote the

partial sums. By taking expectations, P(Mn ≥ L) ≤ 2nP(Sn ≥ L). It was shown in the 1970’s that
for p < 1/2, this is asymptotically sharp (Proposition 2.1 below). Converting this to a computation
of the almost sure limiting value of Mn/n requires the following large deviation computation that is
by now quite standard; for details, see, e.g. [Dur04, Section 1.9]). This computation is valid for any
common distribution L of the variables {Xn} with exponential moments; for simplicity, since this is
all we will need, assume |X1| ≤ 1.

Let µ denote the mean of the common distribution L, and pick real numbers c > µ and λ > 0.
Let φ(t) := log EetX1 . By Markov’s inequality,

P(Sn ≥ cn) ≤ EeλSn

eλcn
= exp [n(φ(λ)− cλ)] .

It is easy to see that φ is convex and that when c is less than the essential supremum of X1, there
is a unique λ∗(c) such that this bound is minimized. Thus

1
n

log P(Sn ≥ cn) ≤ φ(λ∗(c))− cλ∗(c)

and Chernoff’s well known theorem [Che52] states that this is asymptotically sharp:

1
n

log P(Sn ≥ cn) → rate(c) := φ(λ∗(c))− cλ∗(c)
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as n →∞. The proof of this involves remarking that a certain exponential reweighting of the law L
has mean c:

dL′

dL
=

eλ∗x

Eeλ∗X1
=⇒ E′X1 = c . (2.1)

Note, for later use, that Markov’s inequality extends to imply

P(Sn ≥ cn + β) ≤ exp [n · rate(c)− λ∗(c) · β] . (2.2)

The following proposition was proved in 1975 by Kingman using analytic methods, then by Big-
gins, using an embedded branching process (see also [Kin73, Ham74] for an approach via subadditive
ergodic theory).

Proposition 2.1 ([Kin75, Theorem 6] and [Big77, theorem 3]). Let c = c(L) denote the
value such that rate(c) = − log 2. Then the maximum partial sums at each level of the binary tree
satisfy

Mn

n
→ c(p) (2.3)

in probability as n →∞. �

In particular, when {Xn} are Bernoulli(p) for 0 < p < 1/2, we have

1
n

log P(Sn > qn) = H(p, q) + o(1) (2.4)

where
H(p, q) := q log

p

q
+ (1− q) log

1− p

1− q
. (2.5)

Denoting c := c(p) := c(L), we see that c solves

c log p + (1− c) log(1− p) + c log
(

1
c

)
+ (1− c) log

(
1

1− c

)
+ log 2 = 0 . (2.6)

Also, (2.2) becomes
P(Sn ≥ c(p)n + β) ≤ 2−n exp(−λ∗(p)β) . (2.7)

Second order behavior of Mn

Fix a bounded law L and let c := c(L). More accurate large deviation bounds show that P(Mn ≥
cn) → 0, leading to two natural questions: first, estimate P(Mn ≥ cn), and secondly, what correction
gives the typical behavior for Mn? We separate into two cases, p = 1/2 and p < 1/2, which will be
seen to behave rather differently in many respects.

One reason second order results are trickier than the limit results for Mn/n is that the bounds
obtained by computing first moments are no longer sharp. For example in the case of binary
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variables, when p = 1/2, the expected number of paths of length n consisting entirely of ones is
exactly 1. However, the actual number of such paths is the number of progeny in the nth generation
of a critical branching process, which is known to be nonzero with probability of order 1/n. The
exact result is:

Proposition 2.2 ( [AN72, Theorem I.9.1]). For Bernoulli(1/2) random variables,

P(Mn = n) =
2 + o(1)

n
.

�

The typical behavior of Mn when p = 1/2 will not be of great concern here; the reader may
consult [Bra78b] to find a proof that Mn = n− C log log n + O(1).

In the case 0 < p < 1/2, the mean number of paths of length n with S(v) ≥ c(p)n is easily
shown to be Θ(n−1/2). The probability of existence of such a path is expected to be of order
n−3/2. Such a result has not been proved. An analogous result has, however, been proved for a
branching Brownian motion. Here particles move as independent Brownian motions, each particle
living for an exponential amount of time of mean one before splitting into two particles which then
evolve independently. Bramson [Bra78a] shows that the maximum Mt of a branching Brownian
motion at time t exceeds ct with probability Θ(t−3/2), where c =

√
2 is the critical slope, and that

Mt = ct− γ log t + O(1) in probability, where γ = 3/(2c) = 3/23/2. This was generalized in [CR90].
At slopes above the critical slope the large deviation probabilities decay exponentially: for λ >

√
2

one has P(Mt ≥ λt + θ) ∼ c1(λ, θ)t−1/2e−c2(λ)t; see [HHK06, Theorem 6].

Survival probability with an absorbing barrier at criticality

For the complexity questions addressed in the present article, the crucial probabilities turn out to
be absorbing barrier probabilities, where the events {Mn ≥ cn} and {Mn ≥ (c−ε)n} are replaced
by the event that along some path from the root of length n the values Sk are always at least ck

or (c − ε)k, for 1 ≤ k ≤ n. The term “barrier” refers to probability models in which particles are
killed when they hit an absorbing barrier, which is located at (c− ε)k. At the critical barrier (ε = 0)
the process dies out. Estimates of survival probabilities with a critical barrier have been published
only for branching Brownian motion (though a somewhat analogous result in the discrete setting
is implicit in [Pem92, Lemma 8]). Suppose each particle in a branching Brownian motion is killed
when its position at any time t becomes less than ct. Starting with a single particle at 1, Kesten
estimated the tails of the survival time.

Proposition 2.3 ([Kes78, Theorem 1.3]). Consider a branching Brownian motion started with
a single particle at 1, in which particles are killed when their position as a function of time becomes
less than or equal to

√
2 t (here

√
2 is the critical slope). The probability for at least one particle to

survive to time t is exp(−(3π2t)1/3 + O(log2 t)). �
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Remark. For λ >
√

2, the probabilities P(Mt ≥ λt) decay exponentially in t. In this regime, the
quantity P(Mt ≥ λt) may be estimated up to a factor of 1 + o(1); such an asymptotic formula was
proved in [HH07, Theorem 1].

Survival probability with an absorbing barrier in the supercritical regime

Relaxing the barrier ck to the barrier (c− ε)k yields a supercritical process, for which one may ask
about both finite time and infinite time survival probabilities. These are the results most intimately
connected with search times. The following notation is useful.

Definition 1 (survival probabilities). Let {X(v)} be IID bounded random variables with law L.
Let c = c(L) be the unique real number such that

1
n

log P(Sn ≥ cn) → − log 2

where Sn is the partial sum of n IID variables with law L. By Proposition 2.1, Mn/n → c in
probability. Define the survival probability ρ(L; ε, n) to be the probability that there exists a path
v0, . . . , vn of length n from the root such that for all j ≤ n, S(vj) ≥ (c − ε)j. In the case where
{X(v)} are Bernoulli with parameter p, the notation ρ(p; ε, n) will be used instead of ρ(L; ε, n).
Extend the notation to non-integral values of n by defining ρ(L; ε, n) := ρ(L; ε, bnc).

In this notation, the quantities ρ(p; 0, n) denote the tails of survival probabilities at the critical
barrier. Restating Proposition 2.2, we have ρ(1/2; 0, n) ∼ 2/n. We will be chiefly interested in the
probabilities ρ(p; ε,∞) of survival to infinity once the absorbing barrier has moved so as to make
the branching random walk slightly supercritical. For branching random walk with binary variables
and p = 1/2 there is a sharp result.

Proposition 2.4.

ρ

(
1
2
; ε,∞

)
= Θ(ε) . (2.8)

Proof: Assume without loss of generality that ε = 1/n for some integer, n. One inequality follows
from the observation that a path stays above (1−ε)k for every k < ε−1 only if it is composed entirely
of ones. Therefore, from Proposition 2.2,

ρ

(
1
2
; ε,∞

)
≤ ρ

(
1
2
; ε, ε−1 − 1

)
= ρ

(
1
2
; 0, ε−1 − 1

)
∼ 2ε .

For the other inequality, note that ρ( 1
2 ; ε,∞) is at least the probability that there exists an infinite

path 0 = v0, v1, v2, . . ., along which X(vi) = 1 unless i is a multiple of n. Let Zi count the vertices
at level i all of whose descendants w have either X(w) = 1 or n divides |w|. Then {Zi} are the
generation sizes of a branching process that is not time-homogeneous but is periodic: the offspring
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generating function is f1(z) := (1 + z)2/4 at times that are not multiples of n and f2(z) := z2 at
times that are multiples of n. Using a superscript of (k) to denote k-fold composition, we may write
the generating function

∑
k P(Zjn = k)zk as Ψ(j)(z) where

Ψ = f2 ◦ f
(n−1)
1 .

The extinction probability is the increasing limit as j → ∞ of Ψ(j)(0). Substituting u = 1 − z,
the survival probability is the decreasing limit of Ψ̃(j)(1), where Ψ̃(j+1) = g2 ◦ g

(n−1)
1 ◦ Ψ(j) and

gj(z) = 1− fj(1− z) for j = 1, 2. For u ≤ n−1 we have

u ≥ g1(u) = u− u2

4
≥ u

(
1− 1

4n

)
.

and iterating n− 1 times gives g
(n−1)
1 (u) ≥ (3/4)u. Hence,

Ψ̃(u) ≥ 2
(

3
4
u

)
−

(
3
4
u

)2

≥ u .

It follows that the decreasing limit of ˜Ψ(j)(1) is at least n−1 which is equal to ε, hence ρ

(
1
2
; ε,∞

)
≥ ε,

finishing the proof. �

Even in the binary case, when p < 1/2, estimates are quite tricky. It is believed that

Conjecture 1. For each p ∈ (0, 1/2) there is a constant βp such that as ε → 0,

log ρ(p; ε,∞) ∼ −βpε
−1/2 .

Furthermore, log ρ(p; ε, Lε−3/2) ∼ −βp,Lε−1/2 with βp,L → βp as L →∞ and βp,L → 0 as L → 0.

There is one subcase of the case of binary variables, for which such a result is known. Let pcrit

be the value of p for which c(pcrit) = 1/2. Solving (2.6) for p with c = 1/2 we find that

1
2

log pcrit +
1
2

log(1− pcrit) +
1
2

log 2 +
1
2

log 2 + log 2 = 0

which is equivalent to 16pcrit(1− pcrit) = 1, hence pcrit = (2−
√

3)/4 ≈ 0.067. Suppose we consider
only pairs (p, ε) such that c(p) − ε = 1/2. In other words, we have chosen p just a little greater
than pcrit and must compute the probability that there is a path, along which, cumulatively, the
ones always outnumber the zeros. Aldous showed that one may compute the probability of such an
infinite path by analyzing the embedded branching process of excess ones.

Proposition 2.5 ([Ald98, Theorem 6]). For c(p)− ε = 1/2,

log ρ(p; ε,∞) = −κ(p− pcrit)−1/2 + O(1)

as p ↓ p0, with

κ =
π log 1

4p0

4
√

1− 2p0
≈ 1.11 .
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Equivalently, since c(p) has a finite derivative ν at p0,

log ρ(p; ε,∞) = −c∗ε
−1/2 + O(1) (2.9)

as ε → 0 with c(p)− ε = 1/2, where c∗ = κ
√

ν. �

One way to prove Conjecture 1 without the restriction c(p)− ε = 1/2 would be to adapt Kesten’s
proof for Brownian motion to the random walk setting. Inspection of the nearly forty journal pages
in [Kes78] devoted to the Brownian result lead one to believe this would be possible but tedious.
It is worth formulating an easier but crude result bounding ρ(p; ε,∞) from above; among other
things this will clarify that the logarithms of the factors other than ρ(p, sε, ε−3/2) in the statement
of Theorem 3.4 below are asymptotically neglible; the proof is given in Section 4.

Proposition 2.6. Fix any law L with mean µ supported on [µ− 1, µ+1]. Then there is a constant,
η > 0 such that for any sufficiently small ε,

log ρ(L; ε,∞) ≤ log ρ(L; ε, ε−3/2) ≤ −ηε−1/2 .

3 Complexity results

An easy result, found in [KP83], is that a finite look-ahead algorithm can produce a path with
(c(p)−ε)n 1’s in time g(ε)n for some function g. This suggests that we focus our effective computation
question on times that are linear in n and try to find the relationship between the linear discrepancy
ε from optimality and the linear time constant g(ε).

Upper bounds for the computation time are in general easier, because finding a reasonable
algorithm is easier than proving none exists. In fact, good upper bounds are obtained using a
depth-first search. The notion of a depth-first search is quite standard; nevertheless, some details
are required in order to avoid later ambiguities. Suppose a random set W of vertices is adapted,
in the sense that the event v ∈ W is measurable with respect to F(v), the σ-field generated by
the values X(w) at all vertices w ≤ v. A depth-first search for an infinite descending path in W is
the following algorithm. Label the two children of v by v0 and v1, so vertices are labelled by finite
sequences of zeros and ones. Order the vertices lexicographically. At time 1, examine the root; if
0 /∈ W the search fails. At each subsequent time, examine the leftmost vertex v (the vertex whose
label is the least binary number) among children of vertices previously examined and found to be
in W . If v /∈ W and is composed of all 1’s, then the search fails, otherwise the search continues.
Properties of the depth-first search include the following.

1. The set of examined vertices is always a subtree.

2. The sequence of examined vertices is in lexicographic order.
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3. If the search continues for infinite time, then the set of vertices found to be in W will contain
a unique infinite path (this follows from the previous property).

Specialize now to the set W = Wε defined to be the set of vertices v such that for all w ≤ v,
S(w) ≥ (c− ε)|w|. Finding a path from the root of length n in Wε is one way to locate a witness to
Mn ≥ (c−ε)n. Although there may be many witnesses outside Wε, they are hard to find, so searching
Wε turns out to be a pretty good way to test whether Mn ≥ (c− ε)n. The only drawback is that the
search may fail. Therefore, we define the iterated depth-first search with parameter ε, denoted
by IDFS(ε), as follows. Recall that the subtree process is defined as the set {S(u)− S(v) : u ≥ v};
thus we may define a set Wε(v), which is the set Wε of the subtree process from v, to be the set of
u ≥ v such that for v ≤ z ≤ u, S(z)− S(v) ≥ (c− ε)(|z| − |v|).

IDFS:

Repeat until failing to terminate:

Let v be the leftmost among vertices of minimal depth that have not yet been
examined, and execute a depth-first search for an infinite path in Wε(v).

Thus the algorithm begins with a depth-first search for an infinite path in Wε(0). If this goes
on forever, then this is the whole IDFS. Otherwise, at each termination, the search begins again
from a vertex none of whose descendants has been examined. Therefore, the probability of success
after each termination is ρ(L; ε,∞) > 0. It follows that one plus the number of terminations is a
geometric random variable with mean ρ(L; ε,∞)−1 and in particular, will be finite, hence IDFS will
always find an infinite path in Wε(v) for some v.

The next proposition uses a depth-first search to give a general upper bound in terms of certain
survival probabilities; the proof is given at the beginning of the next section. The result was known
to Aldous [Ald92], though not proved in this form. For this result, binary random variables are not
required.

Proposition 3.1. Let {X(v)} be IID with any bounded distribution L. Fix any r < 1 and ε > 0.
As n →∞, the probability goes to 1 that IDFS(rε) finds a vertex v with |v| = n and S(v) ≥ (c− ε)n.
The time it takes to do this is at most ρ(L; rε,∞)−1n + o(n) in probability.

Remark. The appearance of ρ in this bound explains why the quantities ρ(p; ε,∞) are relevant to
the complexity problem.

The upper bound in the critical case follows directly from this proposition.

Corollary 3.2 (upper complexity bound when p = 1/2). Let p = 1/2. There is a C > 0 and
an algorithm which produces a path of length n having at least (1− ε)n 1’s, in time at most Cnε−1,
with probability tending to 1 as n →∞.
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Proof: By (2.8) of Proposition 2.4, we know that ρ(1/2; rε,∞) ≥ c1rε for some c1 ≥ 0. By
Proposition 3.1, for any δ > 0 there is an n0 such that for n > n0, IDFS(rε) produces the desired
path by time ((c1rε)−1 + δ)n with probability at least 1 − δ. This proves the lemma for any
C > (c1rε)−1. �

The first main result of this paper is the corresponding lower bound.

Theorem 3.3 (lower complexity bound when p = 1/2). Let p = 1/2. For any search algorithm
(see the discussion at the end of Section 1), for any κ < 1/2, and for all sufficiently small ε

(depending on κ), the probability of finding a path of length n from the root with at least (1− ε)n 1’s
by time κε−1n is O(1/n), uniformly in the search algorithm.

When p < 1/2, lack of understanding of ρ(p; ε,∞) prevents us from stating an upper bound
beyond what is inherent in Proposition 3.1. In the special case that c(p) − ε = 1/2, we may put
Proposition 2.5 together with Proposition 3.1 to see that IDFS finds a witness to Mn ≥ (c(p)− ε)n
by time n exp(Cε−1/2) for some C > 0. If Conjecture 1 is true, then for all p and ε the IDFS is
likely to succeed in time O(n exp(Cε−1/2)). The second main result of this paper is a corresponding
lower complexity bound. Because this is stated in terms of ρ it is a reasonably sharp converse to
Proposition 3.1.

Theorem 3.4 (lower complexity bound when p < 1/2). Fix p ∈ (0, 1/2) and s > 1. For any
algorithm, the probability of finding a path of length n with at least (c(p)− ε)n 1’s by time

s− 1
4(1− c(p))

ε11/2ρ(p, sε, ε−3/2)−1 n

is O(ε−1n−1).

Remarks. If the asymptotics for ρ are as expected, then one could take s = 1 + o(1) as ε → 0 in
such a way that

log
[

s− 1
4(1− c(p))

ε11/2ρ(p; sε, ε−3/2)−1 n

]
∼ log

[
ρ(p; ε, ε−3/2)−1 n

]
.

This would require a regularity result on ρ which is not proved. Note also, that it is expected
(Conjecture 1) that

log ρ(p; ε, Lε−3/2) ∼ −CLε−1/2

but that the constant should depend on L, so Theorem 3.4 is at best sharp up to a constant factor
in the logarithm. Finally, we note that as ε → 0 with n fixed, the search time ceases to grow
once ε < 1/n, which is reflected in the fact that the probability upper bound Cε−1n−1 becomes
uniformative when ε is this small.
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4 Proofs of preliminary results and upper complexity bounds

Proof of Proposition 3.1: Say that a vertex v is good if there is an infinite descending path
x0, x1, x2, . . . from v (a path where each xj+1 is a child of xj) such that S(xn)−S(v) ≥ (c− rε)n for
all n. Such a path is called a good path. If IDFS(rε) ever examines a good vertex v, then it will
never leave the subtree of v. Not every vertex on a good path is necessarily good. However, if the
search algorithm encounters infinitely many good vertices v(1), v(2), . . ., then, since each must be in
the subtree of the previous one, these must form a chain of descendants and the sequence v(t) : t ≥ 1
must converge to a single end of the tree (an infinite descending path).

Since each vertex examined by the depth-first search has no descendants previously examined,
we have

P(v(t) is good | Ft−1) = ρ(L; rε,∞)

for all t. By the conditional Borel-Cantelli Lemma (e.g., [Dur04, Theorem 4.4.11]), the number of
good vertices among v(1), . . . , v(n) is almost surely ρ(rε)n + o(n). Hence, after the time τn that the
nth good vertex is examined, the path from v(τ1) to v(τn) has the property that any vertex w on
the path has

S(w)− S(v(τ1)) ≥ (c− rε)(|w| − |v(τ1)|) .

Recalling that r < 1, we see there is a random N such that for all vertices v on the infinite path
chosen by the algorithm, if |v| ≥ N then S(v) ≥ (c−ε)|v|. The conclusion of the proposition follows.
�

By Brownian scaling, for a mean-zero, finite variance random walk {Sn}, we have log P(S1, . . . , Sn ∈
[−L,L]) ∼ −Cn/L2. It is convenient to record a lemma giving an explicit constant for the upper
bound, uniform over all walks with a given variance.

Lemma 4.1. Let {Sn} be a random walk whose increments are bounded by 1 and have mean zero
and variance σ2 > 0. Then for L ≥ 1, the probability of the walk staying in an interval [−L, L] up
to time N is bounded above by

P(S1, . . . , SN ∈ [−L,L]) ≤ exp
(
− σ2N

36eL2

)
provided that the exponent is less than −1/4, that is, N > 9eL2/σ2.

Proof: For any n ≤ N , the event that S1, . . . , SN ∈ [−L,L] implies that for each j ≤ k ≤ j + n,
|Sk − Sj | ≤ 2L. Breaking into bN/nc time blocks of size n, plus a possible leftover segment,
independence of the increments implies that

P(S1, . . . , SN ∈ [−L, L]) ≤ P (S1, . . . , Sn ∈ [−2L, 2L])bN/nc
. (4.1)

10



Later, we will choose

n =
⌈

8eL2

σ2

⌉
. (4.2)

For now, we let n and α be arbitrary and we let τα := inf{k : |Sk| ≥ α
√

n} be the time for the
random walk to exit the interval [−α

√
n, α

√
n]. Let us obtain an upper bound on P(τα > n). Clearly,

ES2
τα∧(n+1) ≤ (α

√
n + 1)2 because Sτα∧(n+1) ∈ [−1− α

√
n, 1 + α

√
n]. Hence,

(α
√

n + 1)2 ≥ ES2
τα∧(n+1) ≥

n∑
j=0

σ2P(τα > j) ≥ σ2(n + 1)P(τα > n) .

Choosing α = σ/
√

2e and using (a + c)2 ≤ 2(a2 + c2) now gives

P(τ(2e)−1/2σ > n) ≤ ((2e)−1/2σ
√

n + 1)2

σ2n
≤ e−1 +

2
σ2n

≤ e−1/2 (4.3)

once σ2n ≥ 8e. Now, choosing n as in (4.2) implies that α
√

n = σ
√

n/
√

2e ≥ 2L and hence by (4.1)
and (4.3),

P(S1, . . . , SN ∈ [−L,L]) ≤ exp
(
−1

2

⌊
N

n

⌋)
.

The proof is finished by observing that dne ≤ 9eL2/σ2 (because L2 > 1 > σ2) and hence that⌊
N

n

⌋
≥

⌊
Nσ2

9eL2

⌋
≥ Nσ2

18eL2

once Nσ2 ≥ 9eL2. �

Proof of Proposition 2.6: We need to find a constant η > 0 such that

ρ(L; ε, ε−3/2) < exp(−ηε−1/2) . (4.4)

This is a standard “squeezing” argument: the probability space is broken into two parts. One
has small measure because some particle is found at a position that is greater by αε−1/2 than it
should be, for some constant α > 0; conditioning on the complement of this event squeezes the path
below c(L)k + αε−1/2 but above (c(L)− ε)k at each level k; the chance of a random walk trajectory
remaining in such a tube is small enough to make the expected number of such trajectories small.

To make this precise, begin by letting c = c(L) and λ∗ be as in Proposition 2.1. For any positive
integer N , denote by G(N, ε, α) the event

{∃v : |v| ≤ N and S(v) ≥ c(L)|v|+ αε−1/2} .

Applying (2.2) to S(v) for each of 2n vertices v at each generation n ≤ N , we see that

P[G(N, ε, α)] ≤ N exp
(
−λ∗αε−1/2

)
. (4.5)
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Next, set N := αε−3/2 where α ≤ 1 is a positive parameter that will be specified later. Let L
denote the common law of the Bernoulli(p) variables {Xn}, let L′ denote the law of a Bernoulli(c(L))
variable and L′′ denote the law of a compensated Bernoulli(c(L)) variable. Let Q (respectively
Q′,Q′′) denote the law of a sequence {Xn} that is IID with law L (respectively L′ , L′′). Let σ2 be
the common variance of L′ and L′′ and let c1 denote the constant −σ2/(36e) from Lemma 4.1. Let
H denote the event that |Sn − c(L)n| ≤ αε−1/2 for 1 ≤ n ≤ N . Applying Lemma 4.1 to the law L′′

we see that

Q′(H) = Q′′(|Sn| ≤ αε−1/2 for all n ≤ N)

≤ exp
(
−c1

α
ε−1/2

)
. (4.6)

For any measures ν and π and any event A, we have ν(A) ≤ π(A) · supω∈A(dν/dπ)(ω). We
may therefore use (2.1) to convert (4.6) into an estimate for Q(H): plugging β = −αε−1/2 and
rate(c) = log(1/2) into (2.1) gives

Q(H) ≤ sup
x≥c(L)n−αε−1/2

Eeλ∗X1

eλ∗x
Q′(H)

≤ 2−N exp
(
λ∗αε−1/2

)
exp

(
−c1

α
ε−1/2

)
.

As α ↓ 0, the quantity λ∗α − c1/α converges to −∞, hence we may pick α ∈ (0, 1) such that
λ∗α− c1/α ≤ −λ∗α. Fixing this value of α and denoting η := λ∗α, we have

Q(H) ≤ 2−N exp
(
−ηε−1/2

)
.

We apply this to the variables {S(w) : w ≤ v} for the branching random walk on the binary
tree, where v is any vertex at depth N . There are 2N such vertices, whence the probability that
some path 0 = v0, . . . , vN satisfies |S(vn) − c(L)n| ≤ αε−1/2 for all n ≤ N is bounded above by
exp(−ηε−1/2). Combining this with (4.5) shows that

ρ
(
L; ε, αε−3/2

)
≤ (N + 1) exp

(
−ηε−1/2

)
.

Choosing a slightly smaller value of η, we may absorb the factor of N + 1. Because α is at most 1
and ρ(L; ε,N) is decreasing in N , the proof is finished. �

5 Proofs of lower complexity bounds

An easy lemma needed at the end of each of the two proofs is the following.
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Lemma 5.1. Let {Xt : t = 1, 2, 3, . . .} be adapted to the filtration {Ft} and have partial sums
St :=

∑t
k=1 Xk. Suppose there are numbers βt and αt such that for all t,

E(Xt | Ft−1) ≤ βt ;

E(X2
t | Ft−1) ≤ αt .

Let βt := t−1
∑t

s=1 βs and αt := t−1
∑t

s=1 αs. Then for any T and any β′ > βT ,

P(ST > Tβ′) ≤ αT

(β′ − βT )2
T−1 .

In the special case βt ≡ β, αt ≡ α, this becomes

P(ST > Tβ′) ≤ α

(β′ − β)2
T−1 . (5.1)

Proof: Let µt =
∑t

k=1 E(Xk | Fk−1). Then {St − µt} is a martingale and

E(St − µt)2 =
t∑

k=1

Var (Xk | Fk−1) ≤
t∑

k=1

E(X2
k | Fk−1) ≤ tαt .

Using the inequality µt ≤ tβt, we then have, by Chebychev’s inequality,

P(ST > β′T ) ≤ P(ST − µT ≥ (β′ − βT )T ) ≤ TαT

(β′ − βT )2T 2
.

�

Proof of Theorem 3.3: It suffices to prove the result when ε = 1/(2b) is the reciprocal of an even
integer and n is even. For such values of ε and n, divide the vertices of T into two classes. Label v

as good if there is a path of length b descending from v on which the labels are all equal to one; label
all other vertices bad. Suppose γ = (x0, . . . , xn−1) is a path of length n− 1 from the root and that
at most εn vertices v ∈ γ have X(v) = 0. Then at most b ε n + b vertices v ∈ γ are bad, because if
xj is bad for j < n− b then at least one of xj , . . . , xj+b must be labeled with a zero. It follows that
least n/2− b of the vertices in γ are good.

Say that our search algorithm does not jump if each successive vertex inspected is a neighbor
of the root or of a vertex previously inspected. These algorithms have the property that whenever
you peek at a vertex you know nothing about its descendant tree.

Conjecture 2. No algorithm finds a path with at least (1− ε)n 1’s in a shorter average time than
the best algorithm that does not jump. (See [Ald92, Conjecture 5.1] for a similar conjecture.)

If the conjecture is true, then the proof of the theorem is very short: each new vertex we peek at
has probability O(1/n) of being good, independent of the past; in time o(n2), we can therefore find
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only o(n) good vertices, and in particular, we cannot find n/2 good vertices. In absence of a proof
of the conjecture, the proof of the theorem continues as follows.

Given a search algorithm producing a sequence {v(t) : t ≥ 1} of examined vertices, define sets
A(t) as follows. A vertex x is in A(t) if all of the following hold:

(i) x /∈
⋃

s<t A(s) ;

(ii) x = v(t) or x is an ancestor of v(t) and |x| > |v(t)| − b;

(iii) there is a descending path from x of length b, passing through v(t), all of whose vertices w

have X(w) = 1.

In other words, x ∈ A(t) if t is the first time a vertex v is peeked at that lies on a path of length
b of 1’s descending from x. Think of A(t) as an accounting scheme which marks good vertices as
“found” as soon as their subtree is explored. To avoid confusion, note that A(t) is not measurable
with respect to Ft: good vertices “found” at time t are not known to be good until much later. If
a path γ = (x0, . . . , xn−1) has at most εn zeros on it, and this whole path has been found by our
search algorithm by time t, then there are at least n/2 − b values of j such that X(xj) = · · · =
X(xj+b−1) = 1. For these values of j, the vertex xj is good and is in A(s) for some s ≤ t. Thus
finding γ by time t implies ∣∣∣∣∣∣

⋃
s≤t

A(s)

∣∣∣∣∣∣ ≥ n

2
− b . (5.2)

Now we bound the conditional mean and variance of |A(t)| given Ft−1. Let yj(t) denote the ances-
tor of v(t) going back j generations. The possible elements of A(t) are v(t) = y0(t), y1(t), . . . , yb−1(t).
The event yj(t) ∈ A(t) is contained in the intersection of the events Gj := {X(yj(t)) = · · · =
X(y0(t)) = 1}, G′

j := {yi /∈ A(s) ∀0 ≤ i ≤ j, 0 < s < t} and the event Hj that if j < b − 1 then
there is a descending path of length b − 1 − j from a child of v(t) labeled by 1’s and disjoint from⋃

s<t A(s). Clearly G′
j ∈ Ft and on G′

j , P(Gj | Ft−1) = 2−j−1. Also, on G′
j , Proposition 2.2 and the

definition of ρ(p, ε, n) implies that for j < b− 1,

P(Hj | Ft−1, Gj) = ρ(1/2, 1, b− 1− j) ∼ 2
b− j

as b− j →∞, independently of t. Putting this together gives

E (|A(t)| | Ft−1) ≤
b−1∑
j=0

2−j−1 2 + u(b− 1− j)
b− j

for some function u tending to zero. Since 2/b = 4ε, the jth term is 2−j−1(4ε + o(ε)) uniformly in t

and summing the last expression gives

E (|A(t)| | Ft−1) ≤ 4ε + o(ε)
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uniformly in t as ε → 0.

To bound the second moment, compute

E
(
|A(t)|2 | Ft−1

)
≤

∑
0≤j,k≤b−1

P(yj , yk ∈ A(t) | Ft−1)

≤
b−1∑
j=0

(2j + 1)P(yj ∈ A(t) | Ft−1) .

The probability on the right-hand side is the probability each of the vertices y0, . . . , yj being marked
with a 1, and simultaneously, of the existence of a path of length b − 1 − j of vertices descending
from v(t) also all bearing 1’s. This probability is equal to

b−1∑
j=0

2j + 1
2j+1

2 + u(b− 1− j)
b− j

,

which is asymptotic to 4ε
∑∞

j=0(2j + 1)/2j+1 = 12ε as ε → 0. Now fix κ < 1/2 and use Lemma 5.1
with Xt = |A(t)|, β = 4ε + o(ε), α = 12ε + o(ε), T = κnε−1/4 and

β′ =
n/2− b

T
= 4

n/2− ε−1/2
κnε−1

= 4
1/2− ε−1/(2n)

κε−1
=

4ε

2κ
+ O

(
1
n

)
uniformly in ε. The conclusion, recalling (5.2), is that the probability of finding a path γ of length
n with at most εn zeros on it by time T , is at most

P

∣∣∣∣∣∣
⋃

s≤4κnε−1

A(s)

∣∣∣∣∣∣ ≥ n

2
− b

 ≤ P

 ∑
s≤4κnε−1

|A(s)| ≥ n

2
− b

 ≤ θ(ε, n)n−1 (5.3)

where
θ(ε, n) :=

α

(β′ − β)2
(nT−1) .

Computing θ(ε, n) we have

β′ − β = 4ε
(

1
2κ

− 1
)

+ o(ε) + O

(
1
n

)
and hence

θ(ε, n) = 4
(12 + oε(1))ε

ε2
(

1
2κ − 1 + oε(1) + O

(
1
nε

))2 κ−1ε

→ 48κ(
1
2 − κ

)2

as ε → 0 and nε → ∞. In particular, for sufficiently small ε > 0 and all n, we see that θ(ε, n) is
bounded and the conclusion of the theorem follows from (5.3). �
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Proof of Theorem 3.4: It suffices to prove the theorem when ε = b−2/3 for some integer b. Fix
p < 1/2 and s > 1. The strategy is again to show that one must find a lot of good vertices and that
a good vertex is hard to find. This time, the set of good vertices is the set R(p; ε, b) of vertices v for
which there is a descending path x0, . . . , xb from v such that for each 1 ≤ j ≤ b,

j∑
i=1

X(xi) ≥ (c(p)− ε) · j .

Observe that P(v ∈ R(p; ε, b)) = ρ(p; ε, b) for all v.

Lemma 5.2 (must find good vertices). Let s > 1 and suppose that γ = γ(ε, n) = (x0, . . . , xn)
is a path of length n from the root with at least (c(p)− ε) · n ones. Then there are 0 < ε0 < n0 < ∞
such that for ε ≤ ε0 and n ≥ n0, the number of vertices in γ(ε, n) ∩R(p, s ε, b) is at least⌊

s− 1
2(1− c(p))

nε5/2

⌋
.

Remark. Again, the proof finds this many good vertices that are not only elements of γ ∩R, but for
which the values values of X(v) for v ∈ γ are a witness to this.

Proof: Color the vertices of γ red and blue under the following recursive rule. Let τ0 = 0.
Recursively define τj+1 to be τj + k where k is the least positive integer less than b for which

S(xτj+k) ≤ S(xτj ) + k(c(p)− sε)

if such an integer exists, and is equal to b otherwise. Let J be the least j for which τj ≥ n. All vertices
in the list xτj+1, . . . , xτj+1 receive the same color. The color is red if τj+1 < n and τj+1 < τj + b and
blue otherwise. Denote the set of red and blue vertices by red and blue respectively; see figure 1 for
an example of this.

t

t=n

εS(v(t)) −  (c(p) −    )  t

b b

Figure 1: times τj are marked by hollow dots; red segments are dashed, blue segments are solid

The sum S
red

:=
∑

v∈red X(v) is equal to the sum over all j for which τj+1 < n ∧ (τj + b) of
S(τj+1)− S(τj). The sum over each such segment of X(v) is at most (τj+1 − τj)(c(p)− sε), whence

S
red

≤ |red|(c(p)− sε) .
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On the other hand, for each j such that the vertices xτj+1, . . . , xτj+1 are blue, either τj > n− b

or xτj ∈ γ ∩ R(p; sε, b). Thus the number of blue vertices is at most b(|γ ∩ R(p; s ε, b)| + 1). Using
|red|+ |blue| = n and S

blue
≤ |blue|, we have the inequalities

(c(p)− ε) n ≤ S(xn)

≤ (n− |blue|)(c− sε) + |blue|

= n(c(p)− sε) + |blue|(1− c(p) + sε)

≤ n(c(p)− sε) + (b(|γ ∩R(p; s ε, b)|+ 1))(1− c(p) + sε) .

Solving and plugging in b = ε−3/2 yields

|γ ∩R(p; s ε, b)| ≥ nε5/2

[
s− 1

1− c(p) + sε
− 1

nε

]
.

When ε is sufficiently small and nε is sufficiently large, the quantity in square brackets is at least
half of (s−1)/(1−c(p)), as desired. This finishes the proof of the lemma because the result is trivial
when ε5/2n < 2(1− c(p))/(s− 1). �

Continuation of Proof of Theorem 3.4: Because we don’t care about factors that are poly-
nomial in ε, the count is not as delicate as in the proof of Theorem 3.3. Define A(t) to be the set of
vertices x such that there is a descending path from x of length b, passing through v(t), such that
for all j ≤ b, the initial segment of length j has at least (c(p)− sε)j 1’s, and such that t is minimal
for this to hold. Formally, x ∈ A(t) if

(i) x /∈
⋃

s<t A(s);

(ii) there is a descending path x = y0, y1, . . . , yb−1 from x containing v(t);

(iii) for all j ≤ b,
∑j−1

i=0 X(yi) ≥ (c(p)− sε)j.

Again, given Ft−1, the possible elements of A(t) are the ancestors of v(t) back b− 1 generations.
For each ancestor y, P(y ∈ A(t) | Ft−1) is bounded above by ρ(p; sε, b). Therefore,

E(|A(t)| | Ft−1) ≤ bρ(p; sε, b) .

For the second moment, it suffices to note the upper bound:

E(|A(t)|2 | Ft−1) ≤ b E(|A(t)| | Ft−1)

≤ b2 ρ(p; sε, b) .

Let N =
⌊

(s− 1)
2(1− c(p))

nε5/2

⌋
. By Lemma 5.2, for any T > 0,

P (finding a witness to Mn ≥ (c(p)− sε)n by time T ) ≤ P

| ⋃
s≤T

A(s)| ≥ N

 . (5.4)
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Let α = bρ(p; sε, b), β = b2ρ(p; sε, b), β′ = 2β and T = N/β′. Applying equation (5.1) of Lemma 5.1
bounds the right-hand side of (5.4) from above by

α

(β′ − β)2
1
T

=
bρ(p; sε, b)

b4ρ(p; sε, b)2
2b2ρ(p; sε, b)

N

=
2

b N
.

This goes to zero as n →∞; in fact, b−1N−1 = ε3/2N−1 = O(ε−1n−1). It follows that the probability
of finding a witness to Mn ≥ (c(p) − ε)n by time T is O(ε−1n−1). Using the fact that bxc ≥ x/2
once x ≥ 1 the proof is finished by observing that, once N ≥ 1,

T =
N

2β
≥ s− 1

4(1− c(p))
nε5/2

2ε−3ρ(p; sε, ε−3/2)
=

s− 1
4(1− c(p))

ε11/2ρ(p; sε, ε−3/2)−1n .

�
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