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Abstract. We consider the number of partitions of n whose Young diagrams fit inside an5

m \times \ell rectangle; equivalently, we study the coefficients of the q-binomial coefficient
\bigl( m+\ell 

m

\bigr) 
q
. We6

obtain sharp asymptotics throughout the regime \ell = \Theta (m) and n = \Theta (m2), while previously sharp7

asymptotics were derived by Tak\'acs [J. Statist. Plann. Inference, 14 (1986), pp. 123--142] only in the8

regime where | n - \ell m/2| = O(
\sqrt{} 

\ell m(\ell +m)) using a local central limit theorem. Our approach is to9

solve a related large deviation problem: we describe the tilted measure that produces configurations10

whose bounding rectangle has the given aspect ratio and is filled to the given proportion. Our results11

are sufficiently sharp to yield the first asymptotic estimates on the consecutive differences of these12

numbers when n is increased by one and m, \ell remain the same, hence significantly refining Sylvester's13

unimodality theorem and giving effective asymptotic estimates for related Kronecker and plethysm14

coefficients from representation theory.15
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1. Introduction. A partition \lambda of n is a sequence of weakly decreasing nonneg-19

ative integers \lambda = (\lambda 1 \geq \lambda 2 \geq . . .) whose sum | \lambda | = \lambda 1 + \lambda 2 + \cdot \cdot \cdot is equal to n. The20

study of integer partitions is a classic subject with applications ranging from number21

theory to representation theory and combinatorics, and integer partitions with vari-22

ous restrictions on properties, such as part sizes or number of parts, occupy the field23

of partition theory [2]. The generating functions of integer partitions play a role in24

number theory and the theory of modular forms. In representation theory, integer25

partitions index the conjugacy classes and irreducible representations of the symmet-26

ric group Sn; they are also the signatures of the irreducible polynomial representation27

of GLn and give a basis for the ring of symmetric functions. More recently, parti-28

tions have appeared in the study of interacting particle systems and other statistical29

mechanics models.30

The number of partitions of n, typically denoted by p(n) but here unconvention-31

ally1 by Nn, was implicitly determined by Euler via the generating function32

\infty \sum 
n=0

Nnq
n =

\infty \prod 
i=1

1

1 - qi
.33

There is no exact explicit formula for the numbers Nn. The asymptotic formula34
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Nn := \#\{ \lambda \vdash n\} \sim 1

4n
\surd 
3
exp

\Biggl( 
\pi 

\sqrt{} 
2n

3

\Biggr) 
,(1.1)35

36

obtained by Hardy and Ramanujan [10], is considered to be the beginning of the use37

of complex variable methods for asymptotic enumeration of partitions (the so-called38

circle method).39

Our goal is to obtain asymptotic formulas similar to (1.1) for the number of40

partitions \lambda of n whose Young diagram fits inside an m\times \ell rectangle, denoted41

Nn(\ell ,m) := \#\{ \lambda \vdash n : \lambda 1 \leq \ell , length(\lambda ) \leq m\} .42

These numbers are also the coefficients in the expansion of the q-binomial coefficient43 \biggl( 
\ell +m

m

\biggr) 
q

=

\prod \ell +m
i=1 (1 - qi)\prod \ell 

i=1(1 - qi)
\prod m

i=1(1 - qi)
=

\ell m\sum 
n=0

Nn(\ell ,m)qn .44

The q-binomial coefficients are themselves central to enumerative and algebraic45

combinatorics. They are the generating functions for lattice paths restricted to rec-46

tangles and taking only north and east steps under the area statistic, given by the47

parameter n. They are also the number of \ell -dimensional subspaces of \BbbF \ell +m
q and appear48

in many other generating functions as the q-analog generalization of the ubiquitous49

binomial coefficients. Notably, the numbers Nn(\ell ,m) form a symmetric unimodal50

sequence51

1 = N0(\ell ,m) \leq N1(\ell ,m) \leq \cdot \cdot \cdot \leq N\lfloor m\ell /2\rfloor (\ell ,m) \geq \cdot \cdot \cdot \geq Nm\ell (\ell ,m) = 1,52

a fact conjectured by Cayley in 1856 and proven by Sylvester in 1878 via the repre-53

sentation theory of sl2 [26]. One hundred forty years later, no previous asymptotic54

methods have been able to prove this unimodality.55

Asymptotics of \bfitN \bfitn (\ell ,\bfitm ). Our first result is an asymptotic formula for Nn(\ell ,56

m) in the regime \ell /m\rightarrow A and n/m2 \rightarrow B for any fixed A > B > 0. This is the regime57

in which a limit shape of the partitions exists: \ell /m\rightarrow A implies the aspect ratio has a58

limit, and n/m2 \rightarrow B \in (0, A) implies the portion of the m\times \ell rectangle that is filled59

approaches a value that is neither zero nor one. By ``asymptotic formula"" we mean60

a formula giving Nn(\ell ,m) up to a factor of 1 + o(1); such asymptotic equivalence is61

denoted with the symbol \sim . By replacing a partition with its complements in an \ell \times m62

rectangle, one sees that Nn(\ell ,m) = Nm\ell  - n(\ell ,m), and it thus suffices to consider only63

the case A \geq 2B > 0.64

To state our results, given A \geq 2B > 0 we define three quantities, c, d, and \Delta .65

The quantities c and d are the unique positive real solutions (see Lemma 9) to the66

simultaneous equations67

A =

\int 1

0

1

1 - e - c - dt
dt - 1 =

1

d
log

\biggl( 
ec+d  - 1

ec  - 1

\biggr) 
 - 1 ,(1.2)68

B =

\int 1

0

t

1 - e - c - dt
dt - 1

2
=
d log(1 - e - c - d) + dilog (1 - e - c) - dilog (1 - e - c - d)

d2
,(1.3)69

70

where we recall the dilogarithm function71

dilog (x) =

\int x

1

log t

1 - t
dt =

\infty \sum 
k=1

(1 - x)k

k2
72
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for | x - 1| < 1. The quantity \Delta , which will be seen to be strictly positive, is defined73

by74

\Delta =
2Bec(ed  - 1) + 2A(ec  - 1) - 1

d2(ed+c  - 1)(ec  - 1)
 - A2

d2
.(1.4)75

76

Theorem 1. Given m, \ell , and n, let A := \ell /m and B := n/m2, and define c, d,77

and \Delta as above. Let K be any compact subset of \{ (x, y) : x \geq 2y > 0\} . As m \rightarrow \infty 78

with \ell and n varying so that (A,B) remains in K,79

Nn(\ell ,m) \sim em[cA+2dB - log(1 - e - c - d)]

2\pi m2
\sqrt{} 

\Delta (1 - e - c) (1 - e - c - d)
,(1.5)80

81

where c and d vary in a Lipschitz manner with (A,B) \in K.82

Remark. In the special case B = A/2, the parameters take on the elementary83

values84

d = 0 , c = log

\biggl( 
A+ 1

A

\biggr) 
, and \Delta =

A2(A+ 1)2

12
.85

In this case we understand the exponent and leading constant to be their limits as86

d\rightarrow 0, giving87

NAm2/2(Am,m) \sim 
\surd 
3

A\pi m2

\biggl[ 
(A+ 1)A+1

AA

\biggr] m
.88

The special case when A \rightarrow \infty , so that Nn(\ell ,m) = Nn(m) and the restriction89

on partition sizes is removed, corresponds to taking c = 0 and having d be a solution90

to an explicit equation given in Lemma 9. In this case the result matches the one91

obtained first by Szekeres [29] using complex analysis, then by Canfield [5] using a92

recursion, and most recently by Romik [21] using probabilistic methods based on93

Fristedt's ensemble [9]. These works and others are further explained in section 2.94

Unimodality. Our second result gives an asymptotic estimate of the consecu-95

tive differences of Nn. In fact our motivation for deriving more accurate asymptotics96

for Nn(\ell ,m) was to be able to analyze the sequence \{ Nn+1(\ell ,m)  - Nn(\ell ,m) : n \geq 97

1\} . Sylvester's proof of unimodality of Nn(\ell ,m) in n [26], and most subsequent98

proofs [23, 24, 19], are algebraic, viewing Nn(\ell ,m) as dimensions of certain vector99

spaces, or their differences as multiplicities of representations. While there are also100

purely combinatorial proofs of unimodality, notably O'Hara's [14] and the more ab-101

stract one in [18], they do not give the desired symmetric chain decomposition of the102

subposet of the partition lattice. These methods do not give ways of estimating the103

asymptotic size of the coefficients or their difference. It is now known that Nn(\ell ,m)104

is strictly unimodal [15], and the following lower bound on the consecutive difference105

was obtained in [16, Theorem 1.2] using a connection between integer partitions and106

Kronecker coefficients:107

Nn(\ell ,m) - Nn - 1(\ell ,m) \geq 0.004
2
\surd 
s

s9/4
,(1.6)108

109

where n \leq \ell m/2 and s = min\{ 2n, \ell 2,m2\} . In particular, when \ell = m we have s = 2n.110

Any sharp asymptotics of the difference appears to be out of reach of the algebraic111

methods in this previous series of papers. Refining Theorem 1, we are able to obtain112

the following estimate.113
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Theorem 2. Given m, \ell , and n, let A := \ell /m and B := n/m2, and define d as114

above. Suppose m, \ell , and n go to infinity so that (A,B) remains in a compact subset115

K of \{ (x, y) : x \geq 2y > 0\} and116

m - 1 | n - lm/2| \rightarrow \infty .117

Then118

Nn+1(\ell ,m) - Nn(\ell ,m) \sim d

m
Nn(\ell ,m).119

Remark. The condition m - 1 | n - lm/2| \rightarrow \infty is equivalent to m | B  - A/2| \rightarrow \infty 120

and is satisfied if and only if d, which depends onm, is not O(m - 1). It is automatically121

satisfied whenever the compact set K is a subset of \{ (x, y) : x > 2y > 0\} .122

Corollary: Asymptotics of Kronecker coefficients. Recent developments in123

the representation theory of the symmetric and general linear groups, motivated by124

applications to computational complexity theory, have realized the consecutive differ-125

ences Nn+1(\ell ,m) - Nn(\ell ,m) as specific Kronecker coefficients for the tensor product126

of irreducible Sm\ell representations (see, for instance, [15] which is also one of the uni-127

modality proofs). The Kronecker coefficient g(\lambda , \mu , \nu ) = dimHom(\BbbS \lambda ,\BbbS \mu \otimes \BbbS \nu ) is the128

multiplicity of the irreducible S| \lambda | Specht module \BbbS \lambda in the tensor product of two other129

irreducible representations. It is a notoriously hard problem to determine the values130

of these coefficients, and their combinatorial interpretation has been an outstand-131

ing open problem in algebraic combinatorics since their definition by Murnaghan in132

1938 (see Stanley [25]). In general, determining even whether Kronecker coefficients133

are nonzero is an NP-hard problem, and it is not known whether computing them134

lies in NP. See [11] and the literature therein for some recent developments on the135

relevance of Kronecker coefficients in distinguishing complexity classes on the way136

towards P \not = NP. Being able to estimate particular values of Kronecker coefficients is137

crucial to the geometric complexity theory approach towards these problems.138

Because it is known [15] that the consecutive difference Nn(\ell ,m)  - Nn - 1(\ell ,m)139

equals the Kronecker coefficient g((m\ell  - n, n), (m\ell ), (m\ell )), Theorem 2 gives the first140

tight asymptotic estimate on this family of Kronecker coefficients.141

Corollary 3. The Kronecker coefficient of Sm\ell for the (rectangle, rectangle,142

two-row) case is asymptotically given by143

g((m\ell ), (m\ell ), (m\ell  - n - 1, n+ 1)) = Nn+1(\ell ,m) - Nn(\ell ,m)144

\sim d

m
Nn(\ell ,m)145

\sim dem[cA+2dB - log(1 - e - c - d)]

2\pi m3
\sqrt{} 
\Delta (1 - e - c) (1 - e - c - d)

146

147

with constants and ranges as in Theorems 1 and 2.148

An extended abstract which mentions these results, without complete proofs,149

appeared in the proceedings of the 2019 Formal Power Series and Algebraic Combi-150

natorics conference.151

2. Review of previous results and description of methods.152

2.1. Combinatorial enumeration. Work on this problem has developed in153

two streams. First, there have been combinatorial results aimed at asymptotic enu-154

meration in various regimes. After Hardy and Ramanujan obtained an asymptotic155
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formula for Nn in [10], enumerative work focused on Nn(m), the number of partitions156

with part sizes bounded by m, or equivalently, partitions of n that fit in an m \times \infty 157

strip of growing height. In 1941, Erd\"os and Lehner [8] showed that Nn(m) \sim nm - 1

m!(m - 1)!158

for m = o(n1/3). This was generalized by Szekeres and others, culminating in asymp-159

totics of Nn(m) for all m in 1953 [29]. Szekeres simplified his arguments a number160

of times, ultimately giving asymptotics using only a saddle-point analysis, without161

needing results on modular functions; his argument has been referred to as the Szek-162

eres circle method. Canfield [5] gave an elementary proof (with no complex analysis)163

of asymptotics for Nn(m) using a recursive formula satisfied by these numbers.164

The combinatorial stream contains a few results on the asymptotics of Nn(m, \ell )165

but only in the regime where m and \ell are greater than
\surd 
n by at least a factor of166

log n. This is a natural regime to study because the typical values of the maximum167

part (equivalently the number of parts) of a partition of size n was shown by Erd\"os168

and Lehner [8] to be of order
\surd 
n log n. Szekeres [30, Theorem 1] used saddle-point169

techniques to express Nn(\ell ,m) in terms of Nn, \lambda := \pi \ell \surd 
6n

, and \mu := \pi m\surd 
6n

. If, in fact,170

\surd 
6n

\pi 

\biggl( 
1

4
+ \varepsilon 

\biggr) 
log n < \ell ,m <

\surd 
6n log n

\pi 
171

for some \varepsilon > 0, then the distributions defined by \ell and m are independent and equal,172

and Szekeres' formula simplifies to173

Nn(\ell ,m) \sim Nn exp

\Biggl[ 
 - (\lambda + \mu ) - 

\sqrt{} 
6n

\pi 

\bigl( 
e - \lambda + e - \mu 

\bigr) \Biggr] 
.174

The Szekeres circle method was recently revisited by Richmond [20]. In [12] the au-175

thors, independently and concurrently with our paper, used the generating function176

for q-binomial coefficients and a saddle point analysis to derive the asymptotics for177

Nn(m, \ell ) in the cases when m, \ell \geq 4
\surd 
n, corresponding to B \leq min\{ 1, A2\} /16 in178

our notation. Those authors express their result using the root of a hypergeomet-179

ric identity similar to (1.3); however, their methods give weaker error bounds and180

consequently cannot answer questions of unimodality.181

2.2. Probabilistic limit theorems. The second strand of work on this problem182

has been probabilistic. The goal in this strand has been to determine properties of183

a random partition or Young diagram, picked from a suitable probability measure.184

This approach goes back at least to Mann and Whitney [13], who showed that the185

size of a uniform random partition contained in an \ell \times m rectangle satisfies a normal186

distribution. Fristedt [9] defined a distribution on partitions of all sizes, weighted187

with respect to a parameter q < 1. The key property of the measure employed is188

that it makes the number Xk(\lambda ) of parts of size k in the partition \lambda drawn under189

this distribution independent as k varies; the distributions of the Xk are reduced190

geometrics2 with respective parameter 1 - qk, so that their mean is qk/(1 - qk). Fristedt191

is chiefly concerned with the limiting behavior of kXk for k = o(
\surd 
n), which rescales,192

on division by
\surd 
n, to an exponential distribution. A line of work beginning with193

Sina\u {\i} [22] uses similar methods to study convex polygons with various restrictions. In194

particular, Sina\u {\i} defines a distribution on convex polygons which is uniform on walks195

with fixed endpoints, then tunes parameters of the distribution so that a local limit196

2A random variable X supported on the natural numbers is a reduced geometric with parameter
a if \BbbP [X = k] = a(1 - a)k for all k \in \BbbN .
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theorem holds. More recent work of Bureaux [4] continues this approach to study197

partitions of two-dimensional integer vectors.198

Much of the work following Fristedt's is concerned with a description of the lim-199

iting shape of the random partition and fluctuations around that shape. The limit200

shape of an unrestricted partition was posed as a problem by Vershik and first an-201

swered in [27, 28]. In 2001, Vershik and Yakubovich [32] describe the limit shape for202

singly restricted partitions: those with m \leq c
\surd 
n. They obtain both main (strong203

law) results and fluctuation (CLT) results. It is in this paper that the probability204

measures \BbbP m used in our analysis below first arose, although we were unaware of this205

when we first derived them from large deviation principles. The limit shape for doubly206

restricted partitions in the regime m, \ell = \Theta (
\surd 
n) was first described by Petrov [17]. It207

is identified there with a portion of the curve e - x+e - y = 1, which represents the limit208

shape of unrestricted partitions. More recently, Beltoft, Boutillier, and Enriquez [3]209

obtained fluctuation results in the doubly restricted regime. The limiting fluctua-210

tion process is an Ornstein--Uhlenbeck bridge, generalizing the two-sided stationary211

Ornstein--Uhlenbeck process that gives the limiting fluctuations in the unrestricted212

case [32].213

2.3. Enumeration via probability. Strangely, we know of only one paper214

combining these two streams. Tak\'acs [31] observed the following consequence of the215

work of Fristedt and others. Begin a discrete walk at (\ell , 0) and randomly choose216

steps in the (0, - 1) or ( - 1, 0) directions by making independent fair coin flips. If217

this walk goes from (\ell , 0) to (0, - m) it takes precisely m + \ell steps and encloses a218

Young diagram fitting in an m \times \ell rectangle: see Figure 1. Let G(m, \ell ) denote219

the event that a walk of length m + \ell ends at (0, - m), and let H(m,n) denote the220

event that the resulting Young diagram has area n. Under the independently and221

identically distributed (IID) fair coin flip probability measure on paths, all paths of222

length m + \ell have the same probability 2 - (m+\ell ). Therefore, \BbbP [G(m, \ell ) \cap H(m,n)] =223

2 - (m+\ell )Nn(\ell ,m), and the problem of counting Nn(\ell ,m) is reduced to determining224

the probability \BbbP [G(m, \ell ) \cap H(m,n)].225

Tak\'acs observed that this probability is computable by a two-dimensional local226

central limit theorem (LCLT), ultimately obtaining bounds on the relative error that227

are of order (m+ \ell ) - 3. These error bounds are meaningful when n differs from m\ell /2228

by up to a few multiples of log(m + \ell ) standard deviations: if \ell = \theta (m) this means3229

230

(l , 0)

(0 , −m)

Fig. 1. The red arrows are the steps in a south and west directed simple random walk.231

3Recall that f(m) = \theta (g(m)) states that f is asymptotically upper and lower bounded by g,
meaning there exist C1, C2 > 0 such that C1g(m) \leq f(m) \leq C2g(m) for all m sufficiently large.
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that | B - A/2| m2 = \Theta (m3/2 logm). When | B - A/2| \gg m - 1/2 logm the error is much232

bigger than the main term of the Gaussian estimate provided by the LCLT, and one233

cannot recover meaningful information about Nn(\ell ,m). This is where Tak\'acs left off234

and the present manuscript picks up.235

2.4. Description of our methods. We use a local large deviation computation236

in place of an LCLT: this is possible because the restriction to an m\times \ell rectangle is a237

linear constraint. Indeed, consider now a partition \lambda = (\lambda 1, . . . , \lambda m) with at most m238

parts (so some \lambda j may be zero), and define \lambda 0 := \ell and \lambda m+1 := 0. It is convenient239

to encode a partition with respect to its gaps xj := \lambda j  - \lambda j+1, so the condition that240

\lambda be a partition of n of size at most \ell is equivalent to xj \geq 0 and241

m\sum 
j=0

xj = \ell ,

m\sum 
j=0

jxj = n .(2.1)242

243

Figure 2 gives a pictorial proof.244

Solving the large deviation problem produces a ``tilted measure"" in which the246

gaps Xj are no longer IID reduced geometrics with parameter 1/2 but are instead247

given by independent reduced geometric variables whose parameters qj = 1 - pj vary248

in a log-linear manner. Log-linearity is dictated by the variational large deviation249

problem and leads to the same simplification as before. Not all partitions have the250

same probability under the tilted measure, but all those resulting in a given value of251

\ell and n do have the same probability. Lastly, one must choose the particular linear252

function log qj =  - c - d(j/m) to ensure that \lambda being a partition of n with parts of size253

at most \ell will again be in the central part of the tilted measure, so that asymptotics254

can be read off from a local CLT for the tilted measure.255

The tilted measures \BbbP m that we employ are denoted \mu x,y in [32] and referred256

to there as the grand ensemble of partitions. That paper, however, was not con-257

cerned with enumeration, only with limit shape results. For this reason the authors258

do not state or prove enumeration results. In fact [17] is able to prove the shape259

result by estimating exponential rates only, showing rather elegantly that an \varepsilon error260

in the rescaled shape leads to an exponential decrease in the number of partitions.261

λ1
λ2

λi
λi+1

λm

ixi

1x1

xi

x1

`

m

x0

Fig. 2. The total area n of a partition is composed of rectangles of area jxj .245
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Fig. 3. Exponential growth of NBm2 (m,m) predicted by Tak\'acs' formula (blue, above) compared
to the actual exponential growth given by Theorem 1 (red, below).

275

276

The present manuscript combines the idea of the grand ensemble with some precise262

central limit estimates and some algebra inverting the relation between the log-linear263

parameters and the parameters A and B defining the respective limits of \ell /m and264

n/m2 to give estimates on Nn(\ell ,m) precise enough to also yield asymptotic estimates265

on Nn+1(\ell ,m) - Nn(\ell ,m).266

The first step of carrying this out necessarily recovers the leading exponential267

behavior for Nn(\ell ,m), which is implicit in [32] and [17], though Petrov only states it as268

an upper bound. Interestingly, Tak\'acs did not seem to be aware of the ease with which269

the exponential rate may be obtained. His result states a Gaussian estimate and an270

error term. As noted above, it is nontrivial only when the (m+\ell ) - 3 relative error term271

does not swamp the main terms, which occurs when n is close to \ell m/2 (see also [1]).272

Figure 3 shows Tak\'acs' predicted exponential growth rate on a family of examples273

compared to the actual exponential growth rate that follows from Theorem 1.274

3. A discretized analogue to Theorem 1. We now implement this program277

to derive asymptotics. With cm and dm to be specified later, let qj := e - cm - jdm/m,278

let pj := 1 - qj , and let279

Lm :=

m\sum 
j=0

log pj .280

Let \BbbP m be a probability law making the random variables \{ Xj : 0 \leq j \leq m\} inde-281

pendent reduced geometrics with respective parameters pj , meaning \BbbP m[Xj = k] =282

pj(1 - pj)
k for all k \in \BbbN . Define random variables Sm and Tm by283

Sm :=

m\sum 
i=0

Xi ; Tm :=

m\sum 
i=1

iXi ,(3.1)284

285

corresponding to the unique partition \lambda satisfying Xj = \lambda j  - \lambda j+1. We first prove a286

result similar to Theorem 1, except that the parameters c and d that solve integral287

equations (1.2) and (1.3) are replaced by cm and dm satisfying the discrete summation288

equations (3.2) and (3.3) below. These equations say that \BbbE Sm = \ell and \BbbE Tm = n.289

Writing this out, using \BbbE Xj = 1/pj  - 1 = 1/(1 - e - cm - dmj/m) - 1, gives290
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\ell =

m\sum 
j=0

1

1 - e - cm - dmj/m
 - (m+ 1),(3.2)291

n = m

m\sum 
j=0

j/m

1 - e - cm - dmj/m
 - m(m+ 1)

2
.(3.3)292

293

LetMm denote the covariance matrix for (Sm, Tm). The entries may be computed294

from the basic identity Var (Xj) = qj/p
2
j , resulting in295

Var (Sm) =

m\sum 
j=0

e - cm - dmj/m\bigl( 
1 - e - cm - dmj/m

\bigr) 2 ,(3.4)296

Cov (Sm, Tm) =

m\sum 
j=0

j
e - cm - dmj/m\bigl( 

1 - e - cm - dmj/m
\bigr) 2 ,(3.5)297

Var (Tm) =

m\sum 
j=0

j2
e - cm - dmj/m\bigl( 

1 - e - cm - dmj/m
\bigr) 2 .(3.6)298

299

Theorem 4 (discretized analogue). Let cm and dm satisfy (3.2)--(3.3). Define300

\alpha m, \beta m and \gamma n to be the normalized entries of the covariance matrix301

\alpha m := m - 1Var (Sm) ; \beta m := m - 2Cov (Sm, Tm) ; \gamma m := m - 3Var (Tm) ,302

which are O(1) as m \rightarrow \infty . Again, let A := \ell /m and B := n/m2 and \Delta m :=303

\alpha m\gamma m  - \beta 2
m. Then as m \rightarrow \infty with \ell and n varying so that (A,B) remains in a304

compact subset of \{ (x, y) : x \geq 2y > 0\} ,305

Nn(\ell ,m) \sim 1

2\pi m2
\surd 
\Delta m

exp

\biggl\{ 
m

\biggl( 
 - Lm

m
+ cmA+ dmB

\biggr) \biggr\} 
.(3.7)306

307

Proof. The atomic probabilities \BbbP m(X = x) depend only on the values of Sm and308

Tm as309

log\BbbP m(X = x) =

m\sum 
j=0

(log pj + xj log qj)310

= Lm  - 
m\sum 
j=0

\biggl( 
cm + j

dm
m

\biggr) 
xj311

= Lm  - cm

\left(  m\sum 
j=0

xj

\right)   - dm
m

\left(  m\sum 
j=0

jxj

\right)  .312

313

In particular, for any x satisfying (2.1),314

log\BbbP (X = x) = Lm  - cm\ell  - 
dm
m
n .(3.8)315

316

Three conditions are equivalent: (i) the vector X satisfies the identities (2.1); (ii)317

the pair (Sm, Tm) is equal to (\ell , n); (iii) the partition \lambda = (\lambda 1, . . . , \lambda m) defined by318

\lambda j  - \lambda j+1 = Xj for 2 \leq j \leq m  - 1, together with \lambda 1 = \ell  - X0 and \lambda m = Xm, is a319

partition of n fitting inside a m\times \ell rectangle. Thus,320
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Nn(\ell ,m) = \BbbP m [(Sm, Tm) = (\ell , n)] exp

\biggl( 
 - Lm + cm\ell +

dm
m
n

\biggr) 
321

= \BbbP m [(Sm, Tm) = (\ell , n)] exp

\biggl[ 
m

\biggl( 
 - Lm

m
+ cmA+ dmB

\biggr) \biggr] 
.(3.9)322

323

Comparing (3.7) to (3.9), the proof is completed by an application of the LCLT in324

Lemma 5.325

Lemma 5 is stated for an arbitrary sequence of parameters p0, . . . , pm bounded326

away from 0 and 1, though we need it only for pj = 1  - e - cm - dmj/m. For a 2 \times 2327

matrix M , denote by M(s, t) := [s , t]M [s , t]T the corresponding quadratic form.328

Lemma 5 (LCLT). Fix 0 < \delta < 1, and let p0, . . . , pm be any real numbers in329

the interval [\delta , 1  - \delta ]. Let \{ Xj\} be independent reduced geometrics with respective330

parameters \{ pj\} , Sm :=
\sum m

j=0Xj , and Tm :=
\sum m

j=0 jXj. Let Mm be the covariance331

matrix for (Sm, Tm), written332

Mm =

\biggl( 
\alpha mm \beta mm

2

\beta mm
2 \gamma mm

3

\biggr) 
,333

Qm denote the inverse matrix to Mm, and \Delta m = m - 4 detMm = \alpha m\gamma m - \beta 2
m. Let \mu m334

and \nu m denote the respective means \BbbE Sm and \BbbE Tm. Denote pm(a, b) := \BbbP ((Sm, Tm) =335

(a, b)). Then336

sup
a,b\in \BbbZ 

m2

\bigm| \bigm| \bigm| \bigm| pm(a, b) - 1

2\pi (detMm)1/2
e - 

1
2Qm(a - \mu m,b - \nu m)

\bigm| \bigm| \bigm| \bigm| \rightarrow 0(3.10)337

338

as m \rightarrow \infty , uniformly in the parameters \{ pj\} in the allowed range. In particular, if339

the sequence (am, bm) satisfies Qm(am  - \mu m, bm  - \nu m) \rightarrow 0, then340

\BbbP (Sm = am, Tm = bm) =
1

2\pi 
\surd 
\Delta mm2

\Bigl( 
1 +O

\Bigl( 
m - 3/2

\Bigr) \Bigr) 
.341

The following consequence will be used to prove Theorem 2.342

Corollary 6 (LCLT consecutive differences). Define the normal approxima-343

tion \scrN m(a, b) := 1
2\pi (detMm)1/2

e - 
1
2Qm(a - \mu m,b - \nu m) as in (3.10). Using the notation of344

Lemma 5,345

sup
a,b\in \BbbZ 

\bigm| \bigm| \bigm| \bigm| pm(a, b+ 1) - pm(a, b) - 
\bigl( 
\scrN m(a, b+ 1) - \scrN m(a, b)

\bigr) \bigm| \bigm| \bigm| \bigm| = O(m - 4).346

The technical but unsurprising proofs of Lemma 5 and Corollary 6 are given in347

the appendix at the end of this article.348

4. Limit shape. Suppose a Young diagram is chosen uniformly from among349

all partitions of n fitting in a m \times \ell rectangle. To simplify calculations, we imagine350

this Young diagram outlining a compact set in the fourth quadrant of the plane351

and rotate 90\circ counterclockwise to obtain a shape in the first quadrant. Let \Xi n,m,\ell 352

denote the random set obtained in this manner after rescaling by a factor of 1/m, so353

that the length in the positive x-direction is bounded by 1. Fix A > 2B > 0, and354

metrize compact sets of \BbbR 2 by the Hausdorff metric. As m \rightarrow \infty with \ell /m \rightarrow A and355

n/m2 \rightarrow B, the random set \Xi n,m,\ell converges in distribution to a deterministic set356

\Xi A,B . See Figure 4 for some examples.357
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(A,B) = (1, 1/k)
k = 2, . . . , 15

(A,B) = (5/k, 1/k)
k = 2, . . . , 15

Limit curve of (A,B) = (1, 1/3)
and random partitions of size
120, 201, and 300

Fig. 4. Limit shapes of scaled partitions as m \rightarrow \infty .358

Our methods immediately recover the distributional convergence result \Xi n,m,\ell \rightarrow 359

\Xi A,B . As previously mentioned, this limit shape was known to Petrov [17] and others.360

Petrov identifies it as a portion of the limit curve for unrestricted partitions, which361

itself was posed as a problem by Vershik and answered in [27, 28] (see also [33]).362

Because this result is already known, along with precise fluctuation information which363

we do not derive, we give only the short argument here for distributional convergence.364

We do not determine the best possible fluctuation results following from this method.365

The shape \Xi n,m,\ell is determined by its boundary, a polygonal path obtained366

from a partition \lambda by filling in unit vertical connecting lines in the step function367

x \mapsto \rightarrow m - 1\lambda \lfloor mx\rfloor . Recall that the probability measure \BbbP m restricted to the event368

\{ (Sm, Tm) = (\ell , n)\} gives all partitions counted by Nn(m, \ell ) equal probability and369

that \BbbP m gives the event \{ (Sm, Tm) = (\ell , n)\} probability \Theta (m - 2). Distributional con-370

vergence of \Xi n,m,\ell to \Xi A,B then follows from the following.371

Proposition 7. Fix A > 2B > 0. Define the maximum discrepancy by372

\scrM := max
0\leq j\leq m

\bigm| \bigm| \bigm| \bigm| \bigm| 
j\sum 

i=0

\biggl( 
Xi  - 

qi
pi

\biggr) \bigm| \bigm| \bigm| \bigm| \bigm| .373

Then for any \varepsilon > 0,374

\BbbP m [\scrM \geq \varepsilon m] = o(m - 2)375

as m\rightarrow \infty with \ell /m\rightarrow A and n/m\rightarrow B.376

Proof. This is a routine application of exponential moment bounds. By our def-377

inition of pi, in this regime there exists \delta > 0 such that pi \in [\delta , 1  - \delta ] for all i.378

Therefore, there are constants \eta , \kappa > 0 such that for \rho < \eta , the mean zero variables379

Xi  - qi/pi all satisfy \BbbE exp(\rho (Xi  - qi/pi)) \leq exp(\kappa \rho 2). Independence of the family380

\{ Xi\} then gives381

\BbbE exp

\Biggl[ 
\rho 

j\sum 
i=0

(Xi  - qi/pi)

\Biggr] 
\leq e\kappa m\rho 2

382

for all j \leq m. By Markov's inequality,383

\BbbP (| Xi  - qi/pi| \geq \varepsilon m) \leq e\kappa m\rho 2 - \rho m .384
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Fixing \rho = 1/(2\kappa ) shows that this probability is bounded above by exp( - m/(4\kappa )).385

Hence, \BbbP (\scrM \geq \varepsilon m) \leq me - m/(4\kappa ) = o(m - 2) as desired.386

To see that Proposition 7 implies the limit shape statement, let \lambda i := \ell  - (X0 +387

\cdot \cdot \cdot +Xi - 1) so that388

y(m)(i) := \BbbE m\lambda i = \ell  - 
i - 1\sum 
j=0

qj/pj .389

Proposition 7 shows the boundary of \Xi m to be within o(m) of the step function y(m)(\cdot )390

except with probability o(m - 2). Since \BbbP m restricted to the event \{ (Sm, Tm) = (\ell , n)\} 391

gives all partitions counted by Nn(m, \ell ) equal probability and \BbbP m gives the event392

\{ (Sm, Tm) = (\ell , n)\} probability \Theta (m - 2), the conditional law (\BbbP m | (Sm, Tm) = (\ell , n))393

gives the event \{ \scrM > \varepsilon m\} probability o(1) as m\rightarrow \infty with \ell /m\rightarrow A and n/m\rightarrow B.394

Thus, the boundary of \Xi m converges in distribution to the limit395

y(x) := lim
m\rightarrow \infty 

m - 1y(m)(\lfloor mx\rfloor ) .(4.1)396

397

Figure 4 shows examples of two families of the limit curve as well as a plot of the398

limit curve against uniformly generated restricted partitions for several values of m399

in the range [120, 300].400

Substituting the definition of y(m)(i) into (4.1) and evaluating the limit as an401

integral gives402

y(x) = A+ x - 
\int x

0

1

1 - e - c - dt
dt = A+ x - 1

d
ln

\biggl( 
exd+c  - 1

ec  - 1

\biggr) 
.403

After expressing c in terms of d, this may be written implicitly as404

e(A+1)d  - 1 = (ed  - 1)ed(A - y) + (eAd  - 1)ed(1 - x)
405

which simplifies to406

(1 - e - c)ed(A - y) + e - ce - dx = 1(4.2)407
408

as long as A > 2B; in the special case A = 2B one obtains simply y = A \cdot (1 - x).409

It is worth comparing this result with the limit shape derived in [17]. There the410

limit shape of the boxed partitions is identified as the portion of the curve \{ e - x+e - y =411

1\} , which is the limit shape of unrestricted partitions. The portion is determined412

implicitly by the restriction that the endpoints of the curve are the opposite corners413

of a 1 \times A-proportional rectangle and that the area under the curve has the desired414

proportion, that is, B/A of the total rectangular area. To see that this matches (4.2)415

we can calculate the given portion explicitly.416

Let x = s1, s2 be the starting and ending points of the bounding rectangle. The417

side ratio and the area requirement are, respectively, equivalent to418

log(1 - es1) - log(1 - e - s2)

s2  - s1
= A419

420

and421 \int s2

s1

 - log(1 - e - t)dt+ (s2  - s1) log(1 - e - s2) = B(s2  - s1)
2

422

423
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which simplify to424

A =
1

s2  - s1
log

\biggl( 
es2  - 1

es2  - es2 - s1

\biggr) 
,(4.3)425

B =
 - dilog (1 - e - s2) + dilog (1 - e - s1) + (s2  - s1) log(1 - e - s2)

(s2  - s1)2
.(4.4)426

Comparing these equations with (1.2) and (1.3), it is immediate that the solutions427

are given by s1 = c and s2 = c+ d. Finally, to match the curve in the second line of428

(4.2) we need the coordinate transform from the curve \gamma in the segment x = [c, c+ d]429

given by430

x\rightarrow x1 =
(x - c)

d
, y \rightarrow y1  - A =

y + log(1 - e - c)

d
431

whence x = dx1 + c and y =  - d(A - y1) - log(1 - e - c) and the curves match.432

5. Existence and uniqueness of \bfitc , \bfitd . We now show that for any A \geq 2B > 0433

there exist unique positive constants c and d satisfying (1.2) and (1.3). If A = B/2,434

then d = 0 and c can be determined uniquely, so we may assume A > 2B > 0.435

Uniqueness of c and d will follow from the next lemma (uniqueness of c and d can also436

be derived from uniqueness of the limit shape, but we prefer a more self-contained437

proof).438

Lemma 8. Let \psi denote the map taking the pair (c, d) to (A,B) defined by the two439

integrals in (1.2) and (1.3), and let K be a compact subset of \{ (x, y) : x > 2y > 0\} .440

The Jacobian matrix J := D[\psi ] is negative definite for all (c, d) \in (0,\infty )2, and all441

entries of \psi and J (respectively, \psi  - 1 and J - 1) are Lipschitz continuous on \psi  - 1[K]442

(respectively, K).443

Proof. Differentiating under the integral sign shows that the partial derivatives444

comprising the entries of D[\psi ] are given by445

JA,c =

\int 1

0

 - e - (c+dt)

(1 - e - (c+dt))2
dt,446

JA,d =

\int 1

0

 - t e - (c+dt)

(1 - e - (c+dt))2
dt,447

JB,c =

\int 1

0

 - t e - (c+dt)

(1 - e - (c+dt))2
dt,448

JB,d =

\int 1

0

 - t2 e - (c+dt)

(1 - e - (c+dt))2
dt ;449

note that each term is negative. Let \rho denote the finite measure on [0, 1] with density450

e - (c+dt)/(1 - e - (c+dt))2, and let \BbbE \rho denote expectation with respect to \rho . Then451

JA,c = \BbbE \rho [ - 1], JA,d = JB,c = \BbbE \rho [ - t], JB,d = \BbbE \rho [ - t2],452

and453

det J = \BbbE \rho [1] \cdot \BbbE \rho [t
2] - (\BbbE \rho [t])

2
= \BbbE \rho [1]

2 \cdot Var \sigma [t],454

where Var \sigma [t] denotes the variance of t with respect to the normalized measure \sigma =455

\rho /\BbbE \rho [1]. In particular, det J is positive and bounded above and below when c and d456

are bounded away from 0, implying the stated results on Lipschitz continuity. As J is457
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real and symmetric, it has real eigenvalues. Since the trace of J is negative while its458

determinant is positive, the eigenvalues of J have negative sum and positive product,459

meaning both are strictly negative and J is negative definite for any c, d > 0.460

Lemma 9. For any A > 0 and B \in (0, A/2) there exist unique c, d > 0 satisfying461

(1.2) and (1.3). Moreover, for a fixed A, when B decreases from A/2 to 0, then d462

increases strictly from 0 to \infty and c decreases strictly from log(A+1
A ) to 1. When463

B > 0 is fixed and A goes to \infty , then c goes to 0 and d goes to the root of464

d2 = B
\bigl( 
d log

\bigl( 
1 - e - d

\bigr) 
 - dilog

\bigl( 
1 - e - d

\bigr) \bigr) 
.465

Proof. Solving (1.2) for c (assuming d \geq 0) gives466

c = log

\biggl( 
e(A+1)d  - 1

e(A+1)d  - ed

\biggr) 
.467

Substituting this into (1.3) gives an explicit expression for B in terms of A and d and468

shows that for fixed A > 0 as d goes from 0 to infinity B goes from A/2 to 0. By469

continuity, this implies the existence of the desired c and d. It also shows that, for a470

fixed A, c is a decreasing function of d with the given maximal and minimal values as471

d goes from 0 to \infty .472

To prove uniqueness, we note that for x,y \in \BbbR 2 Stokes' theorem implies473

\psi (y) - \psi (x) =

\int 1

0

D[\psi ] (tx+ (1 - t)y) \cdot (x - y) dt474

so that475

(x - y)T \cdot (\psi (y) - \psi (x)) =

\int 1

0

\bigl[ 
(x - y)T \cdot D[\psi ] (tx+ (1 - t)y) \cdot (x - y)

\bigr] 
dt.476

When x \not = y, negative-definiteness of D[\psi ] implies that the last integrand is strictly477

negative on [0, 1], and \psi (y) \not = \psi (x). Thus, distinct values of c and d give distinct478

values of A and B.479

To see the monotonicity, let A be fixed, and let FB(d) = B be the equation480

obtained after substituting c = c(A, d) above in (1.3), i.e., FB(d) = \psi 2(c(A, d), d).481

Then d is a decreasing function of B and vice versa since482

\partial FB(d)

\partial d
=
JB,dJA,c  - JA,dJB,c

JA,c
=

detD[\psi ]

JA,c
< 0 .483

For the last part, the explicit formula for c in terms of A and d shows that c\rightarrow 0.484

Substitution in (1.3) gives the desired equation.485

6. Proof of Theorem 1 from the discretized result. Here we show how cm486

and dm from the discretized result are related to c, d defined independently of m. The487

proof below also shows that cm and dm exist and are unique.488

The Euler--Maclaurin summation formula [6, section 3.6] gives an expansion489

Lm

m
=

\int 1

0

log(1 - e - cm - dmt) dt+
log(1 - e - cm) + log(1 - e - cm - dm)

2m
+O(m - 2),490

=
dilog (1 - e - cm - dm) - dilog (1 - e - cm)

dm
+

log(1 - e - cm) + log(1 - e - cm - dm)

2m
491

+O(m - 2)

(6.1)

492
493



COUNTING PARTITIONS INSIDE A RECTANGLE 15

of the sum Lm in terms of cm and dm. Assume that there is an asymptotic expansion494

cm = c+ um - 1 +O(m - 2),(6.2)495

dm = d+ vm - 1 +O(m - 2)(6.3)496

as m\rightarrow \infty , where u and v are constants depending only on A and B. Under such an497

assumption, substitution of (6.2) and (6.3) into (6.1) implies498

Lm

m
=

dilog (1 - e - c - d) - dilog (1 - e - c)

d
+
uA+ vB

m
+O(m - 2)499

= log(1 - e - c - d) - dB +
uA+ vB

m
+O(m - 2).(6.4)500

501

Substituting (6.2)--(6.4) into (3.7) of Theorem 4 and taking the limit as m\rightarrow \infty then502

gives Theorem 1, as503

\Delta m \rightarrow 
\biggl( \int 1

0

e - c - dt

(1 - e - c - dt)2
dt

\biggr) \biggl( \int 1

0

t2e - c - dt

(1 - e - c - dt)2
dt

\biggr) 
 - 

\biggl( \int 1

0

te - c - dt

(1 - e - c - dt)2
dt

\biggr) 2

= \Delta .504

It remains to show the expansions in (6.2) and (6.3). For x, y > 0, define505

Sm(x, y) :=
1

m

m\sum 
j=0

1

1 - e - (x+yj/m)
 - 1 ,506

Tm(x, y) :=
1

m

m\sum 
j=0

j/m

1 - e - (x+yj/m)
 - 1

2
.507

508

Another application of the Euler--Maclaurin summation formula implies509

Sm(c, d) = A+A1(c, d)m
 - 1 +O(m - 2) ,(6.5)510

Tm(c, d) = B +B1(c, d)m
 - 1 +O(m - 2)(6.6)511

512

with513

A1 =
1

2

\biggl( 
1

1 - e - c
+

1

1 - e - c - d

\biggr) 
and B1 =

1

2(1 - e - c - d)
.514

Let \scrJ denote the Jacobian D[\psi ] of the map \psi , introduced in Lemma 8, with respect515

to c and d, and let516

(c\prime m, d
\prime 
m) = (c, d) - m - 1\scrJ  - 1 \cdot (A1  - 1, B1  - 1/2)T .517

A Taylor expansion around the point (c, d) gives518 \biggl( 
Sm(c\prime m, d

\prime 
m)

Tm(c\prime m, d
\prime 
m)

\biggr) 
=

\biggl( 
Sm(c, d)
Tm(c, d)

\biggr) 
 - 
\bigl( 
\scrJ +O

\bigl( 
m - 1

\bigr) \bigr) 
\cdot 
\biggl( 
m - 1\scrJ  - 1

\biggl( 
A1

B1

\biggr) \biggr) 
+O(m - 2)519

=

\biggl( 
A - 1/m
B  - 1/2m

\biggr) 
+O

\bigl( 
m - 2

\bigr) 
520

=

\biggl( 
Sm(cm, dm)
Tm(cm, dm)

\biggr) 
+O

\bigl( 
m - 2

\bigr) 
,521

522

where (6.5) and (6.6) were used to approximate the Jacobian of \psi m : (x, y) \mapsto \rightarrow 523

(Sm(x, y), Tm(x, y)) with respect to x and y.524



16 STEPHEN MELCZER, GRETA PANOVA, AND ROBIN PEMANTLE

The map \psi m is Lipschitz for a similar reason as its continuous analogue. Namely,525

consider the partial derivatives526

JS,x =
1

m

m\sum 
j=0

 - e - x - yj/m

(1 - e - x - yj/m)2
,527

JS,y =
1

m2

m\sum 
j=0

 - j e - x - yj/m

(1 - e - x - yj/m)2
,528

JT,x =
1

m2

m\sum 
j=0

 - j e - x - yj/m

(1 - e - x - yj/m)2
,529

JT,y =
1

m3

m\sum 
j=0

 - j2 e - x - yj/m

(1 - e - x - yj/m)2
.530

Let \rho m be a discrete finite measure on Rm := \{ 0, 1/m, 2/m, . . . , 1\} with density531

e - x - yt/(1  - e - x - yt)2 for t \in Rm and 0 otherwise, and let \BbbE \rho m
be the expectation532

with respect to \rho m. Then533

JS,x = \BbbE \rho m
[ - 1] , JT,x = JS,y = \BbbE \rho m

[ - t] , JT,y = \BbbE \rho m
[ - t2],534

and535

detD[\psi m] = \BbbE \rho m
[1]\BbbE \rho m

[t2] - \BbbE \rho m
[t]2 = \BbbE \rho m

[1]2Var \sigma m
[t] ,536

where \sigma m is the probability function \rho m/\BbbE \rho m
[1]. For any fixed m and (x, y) in a537

compact neighborhood of (A,B), both the variance and the expectation are finite538

and bounded away from 0, as is the Jacobian determinant. Moreover, the trace539

TrD[\psi ] =  - \BbbE \rho m [1 + t2] is bounded away from 0 and infinity, so the Jacobian is540

negative definite with locally bounded eigenvalues, and hence \psi m is locally Lipschitz.541

Since the norm of the Jacobian is bounded away from 0 and infinity, we have that the542

inverse map \psi  - 1
m is also locally Lipschitz in a neighborhood of \psi  - 1(A,B). Moreover,543

similarly to proof of existence and uniqueness of c and d in section 5, we have that544

there indeed are cm and dm as unique solutions of (3.2) and (3.3) since the Jacobian545

is negative semidefinite.546

The trapezoid formula implies | JS,c  - JA,c| = O(m - 1) and similar bounds for the547

other differences of partial derivatives in the continuous and discrete settings. Hence,548

the bounds for the norms and eigenvalues of D[\psi m] are within O(m - 1) of the ones for549

D[\psi ], and \psi m (and its inverse) is Lipschitz with a constant independent of m. Thus,550

O(m - 2) = \| \psi m(c\prime m, d
\prime 
m) - \psi m(cm, dm)\| \geq C - 1\| (c\prime m  - cm, d

\prime 
m  - dm)\| 551

for some constant C, so that the expansions (6.2) and (6.3) hold.552

7. Proof of Theorem 2. We will prove Theorem 2 from (3.9) and Corollary 6.553

Let pm(\ell , n) = \BbbP m[(Sm, Tm) = (\ell , n)], and let554

Lm(x, y) :=

m\sum 
j=0

log(1 - e - x - yj/m) ,(7.1)555

Am(x, y) :=

m\sum 
j=0

1

1 - e - x - yj/m
 - (m+ 1) ,(7.2)556

Bm(x, y) :=

m\sum 
j=0

j/m

1 - e - x - yj/m
 - m+ 1

2
.(7.3)557

558
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Then cm and dm are the solutions to559

Am(cm, dm) = \ell = Am , Bm(cm, dm) = n/m = Bm .560

Let c\prime m, d
\prime 
m be the solutions to Am(c\prime m, d

\prime 
m) = \ell and Bm(c\prime m, d

\prime 
m) = (n+1)/m, and let561

\Delta x = c\prime m  - cm = O(m - 2) and \Delta y = d\prime m  - dm = O(m - 2) by the Lipschitz properties562

proven in section 5. Observe that563

\partial Lm(x, y)

\partial x
= Am(x, y) and

\partial Lm(x, y)

\partial y
= Bm(x, y).(7.4)564

565

Using the Taylor expansion for Lm(c\prime m, d
\prime 
m) around (cm, dm) and the Lm partial de-566

rivatives from (7.4),567

 - Lm(c\prime m, d
\prime 
m) =  - Lm(cm +\Delta x, dm +\Delta y)568

=  - Lm(cm, dm) - \Delta xAm(cm, dm) - \Delta y Bm(cm, dm) +O(m - 3),569
570

so that571

 - Lm(c\prime m, d
\prime 
m) + (cm +\Delta x)\ell + (dm +\Delta y)(n+ 1)m - 1

572

=  - Lm(cm, dm) + cm\ell + dm(n+ 1)m - 1 +O(m - 3).573
574

To lighten notation, we now write Lm := Lm(cm, dm) and L\prime 
m := Lm(c\prime m, d

\prime 
m). Then575

Nn+1(\ell ,m) - Nn(\ell ,m) = pm(\ell , n+ 1) exp

\biggl[ 
 - L\prime 

m + c\prime m\ell +
d\prime m
m

(n+ 1)

\biggr] 
576

 - pm(\ell , n) exp

\biggl[ 
 - Lm + cm\ell +

dm
m
n

\biggr] 
577

= pm(\ell , n) exp

\biggl[ 
 - Lm + cm\ell +

dm
m
n

\biggr] \Bigl[ 
edm/m  - 1

\Bigr] 
(7.5)578

+ [pm(\ell , n+ 1) - pm(\ell , n)] exp

\biggl[ 
 - Lm + cm\ell +

dm
m

(n+ 1)

\biggr] 
(7.6)579

+ pm(\ell , n+ 1)
\Bigl( 
e - L\prime 

m+c\prime m\ell +d\prime 
m(n+1)/m  - e - Lm+cm\ell +dm(n+1)/m

\Bigr) 
.(7.7)580

581

We now bound each of these summands.582

\bullet Since dm = d+O(m - 1), (3.9) implies that the quantity on line (7.5) equals583

Nn(\ell ,m)

\biggl( 
d

m
+O(m - 2)

\biggr) 
584

as long as d /\in O(m - 1). This holds when | A - B/2| /\in O(m - 1), as d = 0 when585

A = B/2 and the map taking (A,B) to (c, d) is Lipschitz.586

\bullet By Corollary 6,587

[pm(\ell , n+ 1) - pm(\ell , n)] \leq | \scrN m(\ell , n+ 1) - \scrN m(\ell , n)| +O(m - 4)588

= O
\Bigl( 
m - 2 \cdot 

\bigm| \bigm| \bigm| 1 - e
1
2Qm(0,1)

\bigm| \bigm| \bigm| \Bigr) +O(m - 4)589

= O(m - 4),590
591

where Qm is the inverse of the covariance matrix of (Sm, Tm). Thus, the592

quantity on line (7.6) is O(m - 4 \cdot m2Nn(\ell ,m)) = O(m - 2Nn(\ell ,m)).593
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\bullet Let594

\psi m := exp

\biggl[ 
 - L\prime 

m + c\prime m\ell + d\prime m(n+ 1)m - 1  - 
\bigl( 
 - Lm + cm\ell + dm(n+ 1)m - 1\bigr) \biggr]  - 1595

= O(m - 3).596
597

As pm(\ell , n+1) = pm(\ell , n)+O(m - 4), it follows that the quantity on line (7.7)598

is599

pm(\ell , n+ 1) e - Lm+cm\ell +dm(n+1)/m \psi m600

= Nn(\ell ,m)\psi m edm/m +O
\Bigl( 
m - 4 edm/m e - Lm+cm\ell +dmn/m \psi m

\Bigr) 
601

= O
\bigl( 
m - 3Nn(\ell ,m)

\bigr) 
.602

603

Putting everything together,604

Nn+1(\ell ,m) - Nn(\ell ,m) = Nn(\ell ,m)

\biggl( 
d

m
+O(m - 2)

\biggr) 
,605

as desired.606

Appendix: Proof of the LCLT. Throughout this section, 1/2 \geq \delta > 0 is607

fixed, and \{ pj : 0 \leq j \leq m\} are arbitrary numbers in [\delta , 1  - \delta ]. The variables \{ Xj\} 608

and (Sm, Tm) are as in Lemma 5; we drop the index m on the remaining quantities609

\alpha m, \beta m, \gamma m,\Delta m, \mu m, \nu m, pm(a, b) and the matricesMm and Qm. Recall the quadratic610

form notation M(s, t) := [s , t]M [s , t]T .611

Lemma 10. The constants \alpha , \beta , \gamma and \Delta are bounded below and above by positive612

constants depending only on \delta .613

Proof. Upper and lower bounds on \alpha , \beta and \gamma are elementary:614

\alpha \in 
\biggl[ 

\delta 

(1 - \delta )2
,
(1 - \delta )

\delta 2

\biggr] 
, \beta \in 

\biggl[ 
\delta 

2(1 - \delta )2
,
(1 - \delta )

2\delta 2

\biggr] 
, and \gamma \in 

\biggl[ 
\delta 

3(1 - \delta )2
,
(1 - \delta )

3\delta 2

\biggr] 
.615

The upper bound on \Delta follows from these.616

For the lower bound on \Delta , let \~M = [ \alpha n \beta n

\beta n \gamma n
] denote M without the factors of m.617

We show \Delta is bounded from below by the positive constant (4  - 
\surd 
13)\delta /6. A lower618

bound for the determinant \Delta of \~M is | \lambda | 2, where \lambda is the least modulus eigenvalue of619

\~M ; note that | \lambda | 2 = inf\theta \~M(cos \theta , sin \theta ). We compute620

\~M(cos \theta , sin \theta ) = m - 1\BbbE 
\bigl( 
cos \theta S +m - 1 sin \theta T

\bigr) 2
621

\geq \delta m - 1
m\sum 

k=0

\biggl( 
cos \theta +

k

m
sin \theta 

\biggr) 2

622

> \delta \cdot 
\biggl( 
cos2 \theta + cos \theta sin \theta +

1

3
sin2 \theta 

\biggr) 
.623

624

This is at least 4 - 
\surd 
13

6 \delta for all \theta , proving the lemma.625

Lemma 11. Let Xp denote a reduced geometric with parameter p. For every \delta \in 626

(0, 1/2) there is a constant K such that simultaneously for all p \in [\delta , 1 - \delta ],627 \bigm| \bigm| \bigm| \bigm| log\BbbE exp(i\lambda Xp) - 
\biggl( 
i
q

p
\lambda  - q

2p2
\lambda 2
\biggr) \bigm| \bigm| \bigm| \bigm| \leq K\lambda 3 .628
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Proof. For fixed p this is Taylor's remainder theorem together with the fact that629

the characteristic function \phi p(\lambda ) of Xp is thrice differentiable. The constant K(p) one630

obtains this way is continuous in p on the interval (0, 1), therefore bounded on any631

compact subinterval.632

Proof of the LCLT. The proof of Lemma 5 comes from expressing the probabil-633

ity as an integral of the characteristic function, via the inversion formula, and then634

estimating the integrand in various regions.635

Let \phi (s, t) := \BbbE ei(sS+tT ) denote the characteristic function of (S, T ). Centering636

the variables at their means, denote \widehat S := S - \mu , \widehat T := T  - \nu , and \widehat \phi (s, t) := \BbbE ei(s\widehat S+t\widehat T )
637

so that \phi (s, t) = \widehat \phi (s, t)eis\mu +it\nu . Then638

p(a, b) =
1

(2\pi )2

\int \pi 

 - \pi 

\int \pi 

 - \pi 

e - isa - itb\phi (s, t) ds dt639

=
1

(2\pi )2

\int \pi 

 - \pi 

\int \pi 

 - \pi 

e - is(a - \mu ) - it(b - \mu )\widehat \phi (s, t) ds dt .(7.8)640

641

Following the proof of the univariate LCLT for IID variables found in [7], we observe642

that643

1

2\pi (detM)1/2
e - 

1
2Q(a - \mu ,b - \nu )(7.9)644

=
1

(2\pi )2

\int \infty 

 - \infty 

\int \infty 

 - \infty 
e - is(a - u) - it(b - v) exp

\biggl( 
 - 1

2
M(s, t)

\biggr) 
ds dt .645

646

Hence, comparing this to (7.8) and observing that e - is(a - \mu ) - it(b - \nu ) has unit modulus,647

the absolute difference between p(a, b) and the left-hand side of (7.9) is bounded above648

by649

1

(2\pi )2

\int \infty 

 - \infty 

\int \infty 

 - \infty 

\bigm| \bigm| \bigm| 1(s,t)\in [ - \pi ,\pi ]2
\widehat \phi (s, t) - e - (1/2)M(s,t)

\bigm| \bigm| \bigm| ds dt .(7.10)650

651

Fix positive constants L and \varepsilon to be specified later, and decompose the region652

\scrR := [ - \pi , \pi ]2 as the disjoint union \scrR 1 +\scrR 2 +\scrR 3, where653

\scrR 1 = [ - Lm - 1/2, Lm - 1/2]\times [ - Lm - 3/2, Lm - 3/2],654

\scrR 2 = [ - \varepsilon , \varepsilon ]\times [ - \varepsilon m - 1, \varepsilon m - 1] \setminus \scrR 1,655

\scrR 3 = \scrR \setminus (\scrR 1 \cup \scrR 2) ;656
657

see Figure 5 for details.658

Fig. 5. The regions \scrR 1 \subseteq \scrR 2 \subseteq \scrR in the proof of the LCLT.659
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As
\int 
\scrR c

2
e - (1/2)M(s,t) ds dt decays exponentially with m, it suffices to obtain the660

following estimates:661 \int 
\scrR 1

\bigm| \bigm| \bigm| \widehat \phi (s, t) - e - (1/2)M(s,t)
\bigm| \bigm| \bigm| ds dt = O(m - 5/2),(7.11)662 \int 

\scrR 2

\bigm| \bigm| \bigm| \widehat \phi (s, t) - e - (1/2)M(s,t)
\bigm| \bigm| \bigm| ds dt = O(m - 5/2),(7.12)663 \int 

\scrR 3

\bigm| \bigm| \bigm| \widehat \phi (s, t)\bigm| \bigm| \bigm| ds dt = o(m - 3).(7.13)664

665

By independence of \{ Xj\} ,666

log \widehat \phi (s, t) = m\sum 
j=0

log\BbbE ei(s+jt)(Xj - \mu j) .667

Using Lemma 11 with p = pj gives the existence of a constant K > 0 such that668 \bigm| \bigm| \bigm| \bigm| \bigm| log\BbbE ei(s+jt)(Xj - qj/pj) +
qj
2p2j

(s+ jt)2

\bigm| \bigm| \bigm| \bigm| \bigm| \leq K| s+ jt| 3 .669

The sum of (qj/p
2
j )(s + jt)2 is M(s, t); therefore, summing the previous inequalities670

over j gives671 \bigm| \bigm| \bigm| \bigm| log \widehat \phi (s, t) + 1

2
M(s, t)

\bigm| \bigm| \bigm| \bigm| \leq K

m\sum 
j=0

| s+ jt| 3 .(7.14)672

673

On \scrR 1 we have the upper bound | s+ jt| \leq | s| +m| t| \leq 2Lm - 1/2. Thus,674

m\sum 
j=0

| s+ jt| 3 \leq (m+ 1)(8L3)m - 3/2 = O
\Bigl( 
m - 1/2

\Bigr) 
.675

Plugging this into (7.14) and exponentiating shows that the left-hand side of (7.11)676

is at most | \scrR 1| \cdot O(m - 1/2) = O(m - 5/2).677

To bound the integral on \scrR 2, we define the subregions678

Sk :=
\Bigl\{ 
(x, y) : k \leq max

\Bigl( 
m1/2| x| ,m3/2| y| 

\Bigr) 
\leq k + 1

\Bigr\} 
.679

As the area of Sk is (8k + 4)m - 2,680 \int 
\scrR 2

\bigm| \bigm| \bigm| \widehat \phi (s, t) - e - (1/2)M(s,t)
\bigm| \bigm| \bigm| ds dt \leq \lceil \epsilon 

\surd 
m \rceil \sum 

k=L

\int 
Sk

\bigm| \bigm| \bigm| \widehat \phi (s, t) - e - M(s,t)/2
\bigm| \bigm| \bigm| dsdt681

\leq m - 2

\lceil \epsilon 
\surd 
m \rceil \sum 

k=L

(8k + 4) max
(s,t)\in Sk

\bigm| \bigm| \bigm| \widehat \phi (s, t) - e - M(s,t)/2
\bigm| \bigm| \bigm| .(7.15)682

683

We break this last sum into two parts and bound each part. For (s, t) \in \scrR 2, we have684

| s+ jt| \leq | s| +m| t| \leq 2\varepsilon so that685

m\sum 
j=0

| s+ jt| 3 \leq 2\varepsilon 

m\sum 
j=0

(| s| + j| t| )2 \leq (2\varepsilon \Delta  - 1)M(| s| , | t| ).686
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Comparing this to (7.14) shows we may choose \varepsilon small enough to guarantee that687 \bigm| \bigm| \bigm| \bigm| log \widehat \phi (s, t) + 1

2
M(s, t)

\bigm| \bigm| \bigm| \bigm| \leq 1

4
M(| s| , | t| ) ,688

so | \widehat \phi (s, t)| \leq e - (1/4)M(s,t). Lemma 10 shows there is a positive constant c such that689

the minimum value of M(s, t) on Sk is at least ck2. Thus, for (s, t) \in Sk,690 \bigm| \bigm| \bigm| \widehat \phi (s, t) - e - M(s,t)/2
\bigm| \bigm| \bigm| \leq \bigm| \bigm| \bigm| e - M(s,t)/4

\bigm| \bigm| \bigm| + \bigm| \bigm| \bigm| e - M(s,t)/2
\bigm| \bigm| \bigm| \leq 2e - ck2

.691

If rm := \lceil 
\sqrt{} 
(logm)/c \rceil , then692

\infty \sum 
k=rm

(8k + 4)(k + 1) max
(s,t)\in Sk

\bigm| \bigm| \bigm| \widehat \phi (s, t) - e - M(s,t)/2
\bigm| \bigm| \bigm| \leq 2

\infty \sum 
k=rm

(8k + 4)(k + 1)e - ck2

693

= O(m - 1 polylog(m))694

= O(m - 1/2),(7.16)695
696

where polylog(m) denotes a quantity growing as an integer power of logm. Further-697

more, for (s, t) \in Sk there exist constants C and C \prime such that698 \bigm| \bigm| \bigm| log \widehat \phi (s, t) +M(s, t)/2
\bigm| \bigm| \bigm| \leq C

m\sum 
j=0

| s+ jt| 3 \leq C
\Bigl( 
2(k + 1)m - 1/2

\Bigr) 3
(m+1) = C \prime k3m - 1/2.699

This implies the existence of a constant K > 0 such that for 0 \leq k \leq rm and700

(s, t) \in Sk,701 \bigm| \bigm| \bigm| \widehat \phi (s, t) - e - M(s,t)/2
\bigm| \bigm| \bigm| = \bigm| \bigm| \bigm| e - M(s,t)/2

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 1 - elog
\widehat \phi (s,t)+M(s,t)/2

\bigm| \bigm| \bigm| 702

\leq Ke - ck2

k3m - 1/2.703
704

Thus,705

rm\sum 
k=L

(8k + 4)(k + 1) max
(s,t)\in Sk

\bigm| \bigm| \bigm| \widehat \phi (s, t) - e - M(s,t)/2
\bigm| \bigm| \bigm| \leq Km - 1/2

rm\sum 
k=L

(8k + 4)(k + 1)k3e - ck2

706

= O(m - 1/2).(7.17)707708

Combining (7.15)--(7.17) gives (7.12).709

Finally, for (7.13), we claim there is a positive constant c for which | \widehat \phi (s, t)| \leq e - cm
710

on \scrR 3. To see this, observe (see [7, page 144]) that for each p there is an \eta > 0 such711

that | \phi p(\lambda )| < 1 - \eta on [ - \pi , \pi ] \setminus [ - \varepsilon /2, \varepsilon /2]. Again, by continuity, we may choose one712

such \eta valid for all p \in [\delta , 1 - \delta ]. It suffices to show that when either | s| or m| t| is at713

least \varepsilon , then at least m/3 of the summands log\BbbE ei(s+jt)(Xj - \mu j) have real part at most714

 - \eta . Suppose s \geq \varepsilon (the argument is the same for s \leq  - \varepsilon ). Interpreting s+ jt modulo715

2\pi always to lie in [ - \pi , \pi ], the number of j \in [0,m] for which s+ jt \in [ - \varepsilon /2, \varepsilon /2] is716

at most twice the number for which s+ jt \in [\varepsilon /2, \varepsilon ], hence at most twice the number717

for which s + jt /\in [ - \varepsilon /2, \varepsilon /2]; thus at least m/3 of the m + 1 values of s + jt lie718

outside [ - \varepsilon /2, \varepsilon /2], and these have real part of log\BbbE ei(s+jt)(Xj - \mu j) \leq  - \eta by choice719

of \eta . Lastly, if instead one assumes \pi \geq t \geq \varepsilon /m, then at most half of the values of720

s+ jt modulo 2\pi can fall inside any interval of length \varepsilon /2. Choosing \eta such that the721

real part of log\BbbE ei(s+jt)(Xj - \mu j) is at most  - \eta outside of [ - \varepsilon /4, \varepsilon /4] finishes the proof722

of (7.13) and the LCLT.723
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Proof of Corollary 6. In order to estimate the error terms in the approximation of724

p(a, b) we will consider the partial differences and repeat the approximation arguments725

above. Changing b to b+ 1 in (7.8) and (7.9) implies726 \bigm| \bigm| \bigm| \bigm| p(a, b+ 1) - p(a, b) - 
\bigl( 
\scrN (a, b+ 1) - \scrN (a, b)

\bigr) \bigm| \bigm| \bigm| \bigm| (7.18)727

=

\int 
[ - \pi ,\pi ]2

\bigm| \bigm| \bigm| 1 - e - it
\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \widehat \phi (s, t) - e - 1/2M(s,t)

\bigm| \bigm| \bigm| dsdt.728

729

For (s, t) \in \scrR 3, the proof of the LCLT shows that the integral in (7.18) decays730

exponentially with m. As | 1 - e - it| =
\sqrt{} 
2 - 2 cos(t) \leq | t| = O(m - 3/2) for (s, t) \in \scrR 1,731

the proof of the LCLT shows that the integral in (7.18) grows as O(m - 3/2 \cdot m - 5/2) =732

O(m - 4). Finally, since | 1  - e - it| \leq | t| \leq (k + 1)m - 3/2 for (s, t) \in Sk, following the733

proof of the LCLT shows
\int 
\scrR 2

| 1 - e - it| | \widehat \phi (s, t) - e - 1/2M(s,t)| dsdt is at most734

m - 7/2

\lceil \epsilon 
\surd 
m \rceil \sum 

k=L

(8k + 4)(k + 1) max
(s,t)\in Sk

\bigm| \bigm| \bigm| \widehat \phi (s, t) - e - M(s,t)/2
\bigm| \bigm| \bigm| = O(m - 4).735
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