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ABSTRACT:

Knuth [Knu98] shows that iterations a random function perform poorly on average as a

random number generator and proposes a generalization in which the next value depends

on two or more previous values. This note demonstrates the equally poor performance of a

random instance in this more general model.
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1 Introduction

In the introduction to his second volume, Knuth [Knu98] discusses the computer genera-

tion of pseudo-random numbers. He gives several cautionary tales about poor methods of

generating these, including a function whose description is so complicated that it mimics

iterations of a function chosen at random from all functions from {1, . . . , 1010} to itself. The

exercises (see Exercises 11–15 on page 8 of [Knu98]) then lead one through an analysis of a

model where a function from [m] := {1, . . . ,m} to itself is chosen uniformly at random. The

poor performance of this pseudo-random number sequence is related to the cycle structure

of a random map and is well understood. In particular, one may see readily that the average

length of the cycle of numbers produced from a random seed is of order
√
m and the cycle

length from the best seed is not much longer.

Knuth then proposes the following generalization [Knu98, Problem 19, page 9, labeled

M48]. A function f is chosen uniformly from among the m(mk) functions from [m]k to [m].

Given an initial vector of values in [m]k for (X1, . . . , Xk), an infinite sequence of values is

produced by the rule

Xn+k = f(Xn, . . . , Xn+k−1) . (1.1)

The problem is to determine the average length of the period of this eventually periodic

sequence if the initial k seeds are chosen at random, and to answer as well some related

questions: what is the chance that the eventual period has length 1, what is the average

maximum cycle length over all seeds, what is the chance that there is no seed giving a cycle

of length 1, and what is the average number of distinct eventual cycles as the seed varies?

A thumbnail computation shows that one might expect equally poor performance from

this multiple dependence model. Let Wn ∈ [m]k denote (Xn, . . . , Xn+k−1) and let µ < τ

be such that Wτ−k+1 = Wµ−k+1 but the values of W up to Wτ−k are distinct; thus the

eventual period is τ − µ and the length of the sequence of X values before repeating is

τ − k. Although the values {Wn : n ≥ 0} are no longer independent in the generalized

model, one may hope that they are nearly independent, so that the value of the random

quantity τ is well approximated by the number of IID uniform draws from a population of
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size mk needed to obtain the first repeated value. This is the classical “birthday problem”

(see Example (3d) on page 33 and the discussion on page 49 of [Fel50]). It is known that the

mean of τ is of order
√
mk and that the distribution of m−k/2τ converges to an exponential.

The purpose of this note is to show that the thumbnail computations are correct. All of

the questions posed in Knuth may be correctly answered using the independence heuristic.

The arguments are quite straightforward, but since the discussion in [Knu98] implies these

were not known as of 1998, rigorous arguments are presented here in the hope of re-kindling

analyses of more realistic random models of pseudo-random number generation. In order

to illustrate the range of available techniques for this kind of analysis, two different proofs

will be presented. The first is a direct, combinatorial analysis and will be presented for the

case k = 2 (as is stated in Problem 16 to be the first interesting generalization), though it

can easily be generalized to larger k. The second uses the Poisson approximation machinery

of [AGG89], which relies on some technical lemmas of [BE83] and concepts developed by

Chen and Stein. Although the proofs are not therefore elementary, the application of this

machinery is straightforward.

2 Time before repetition when k = 2

Given any sequence X := {X1, X2, . . .} of values in [m], we define the positive integer

τ = τ(X) as above to be minimal so that Wτ−k+1 = Wµ−k+1 for some k ≤ µ < τ (where Wj

are sub-words of length k of the X vector, as in the introduction). When the X vector is

random, we let Fn denote the σ-field σ(X1, . . . , Xn). Compare the distributions of the vector

(τ,X1, . . . , Xτ ) under two different measures for X: (a) when X satisfies the recursion (1.1)

with X0, . . . , Xk−1 IID uniform on [m] and (b) when X is an IID sequence of uniform draws

from [m]. Under both (a) and (b), the conditional probability of Xn+1 = j given Fn is

1/m as long as τ > n. The vector (τ,X1, . . . , Xτ ) therefore has the same distribution

under either law on X. The main subject of our analysis it the distribution of τ and other

quantities measurable with respect to Fτ . We will therefore assume throughout that X is

an infinite IID uniform sequence.
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Let m be given. In the remainder of this section, the dependence length, k, is fixed at

two; thus τ is minimal so that (Xτ−1, Xτ ) = (Xµ−1, Xµ) for some µ < τ .

Theorem 2.1 τ2

2m2 converges in distribution as m → ∞ to an exponential of mean 1.

Furthermore, all moments of τ2

2m2 converge to the moments of the exponential.

The proof of this is an elementary chain of asymptotic equalities. Letting E(1) denote

an exponential of mean 1, we will show that

E(1) D= hazard ≈ linearized hazard ≈ τ2

2m2
.

The first equality relies on a form of the hazard rate lemma. In this lemma, τ can be any

stopping time.

Lemma 2.2 Let τ > 0 be a stopping time on a probability space (Ω,P) with respect to a

filtration {Fn : n ≥ 0} and let h(k) be the random variable defined by h(k) = − log(1−Ak)
on the event that τ > k and arbitrarily otherwise, where

Ak := P(τ = k + 1 | Fk) .

Let

h = h∗ +
τ−2∑
j=0

h(j)

where h∗ is a random variable, whose conditional distribution given h(τ−1) = x is a mean 1

exponential conditioned to be less than x. Suppose
∑
h(j) = ∞ almost surely. Then h is

distributed exactly as a mean 1 exponential.

Proof: Given x > 0, let Gn be the event that
∑n−2

j=0 h(j) < x ≤
∑n−1

j=0 h(j). Then

Gn ∈ Fn−1 and

P(h ≥ x) =
∞∑
n=1

P(h ≥ x,Gn)
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=
∞∑
n=1

EP(h ≥ x,Gn | Fn−1)

=
∞∑
n=1

E1GnP(h ≥ x | Fn−1)

=
∞∑
n=1

E1Gn

n−2∏
j=0

e−h(j)

 e−(x−
Pn−2
j=0 h(j))

=
∞∑
n=1

E1Gne
−x

= e−x

since
∑

j h(j) =∞ implies
∑

n 1Gn = 1. �

The remainder of the proof of Theorem 2.1 involves combinatorial specification of the

hazard rate. Apply the hazard rate lemma to the quantity τ in the statement of Theorem 2.1,

resulting in quantities h(k) and h satisfying h D= E(1). Define Yk to be the number of j < k

for which Xj = Xk. An easy lemma is:

Lemma 2.3 As m→∞, m−1/2 max{Yk : k ≤ τ} → 0 in probability.

Proof: Keep a tally of how many times each value has been seen in the sequenceX1, X2, . . ..

Since these are independent draws, it is evident that with probability O(e−cε
√
m) for some

cε > 0, no value is taken on ε
√
m times before every value is taken on ε

√
m/2 times. At

a time Tε when every value has been taken on ε
√
m/2 times, the hazard function h is at

least c(ε)m, where c(ε) is a constant not depending on m. It follows for fixed ε > 0 that

the probability of τ > Tε is exponentially small in m, and consequently that the probability

of max{Yk : k ≤ τ} exceeding ε
√
m is at most the sum of two probabilities that are

exponentially small in
√
m, and hence that it tends to zero as m→∞. �

Recast the definition of Ak in terms of Yk,

Ak = P(τ = k + 1 | Fk) =
Yk
m
,

to obtain the following immediate consequence.
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Corollary 2.4 For every ε > 0 there is a cε > 0 such that∣∣∣∣∣∣h−
τ−1∑
j=0

h(j)

∣∣∣∣∣∣ ≤ εm−1/2

with probability at least 1− c−1
ε (exp cε

√
m).

Proof: By the definition of h,

0 ≥ h−
τ−1∑
j=0

h(j) ≥ −h(τ − 1) = log(1− Yτ−1

m
) . (2.1)

By Lemma 2.3 this is at most εm−1/2 except on a set of measure tending to zero exponen-

tially in
√
m for each fixed ε. �

The cumulative linearized hazard rate

H(k) :=
k∑
j=1

Aj

is close to
∑k

j=0 h(j) but easier to work with. We will see that

k∑
j=0

h(j) ≈ Hk ≈
(
k
2

)
m2

.

To quantify the last approximation, for j ≤ m, let Tk(j) be the number of i ≤ k for which

Xi = j. Then, counting pairs of occurrences of each value, an alternate definition of H(k)

is:

H(k) =
m∑
j=1

(
Tk(j)

2

)
m

.

Lemma 2.5 If k2/m→∞, then
Hk(
k
2

)
/m2

→ 1

in probability.
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Proof: Denote the first moment, second moment and variance of Hk by µk, Sk and Vk

respectively. We may compute these as follows. µk = E
(
Tk(1)

2

)
. We compute µk as the

expected number of pairs (i, j) of indices at most k for which Xi = Xj = 1. Clearly then

µk =

(
k
2

)
m2

.

Compute m2Sk as mETk(1)2 + m(m − 1)ETk(1)Tk(2). Counting ordered pairs of un-

ordered pairs for which Xu = Xv = 1 and Xw = Xx = 2, we see that

ETk(1)Tk(2) =

(
k
2

)(
k−2

2

)
m4

.

In a similar way, allowing for (w, x) to have two, one or zero elements in common with

(u, v), we get that

ETk(1)2 =

(
k
2

)
m2

+

(
k
2

)
2(k − 2)
m3

+

(
k
2

)(
k−2

2

)
m4

.

Summing gives

Sk =
(
k

2

)(
k − 2

2

)
(
m(m− 1)

m6
+

m

m6
) +

(
k
2

)
2(k − 2)
m4

+

(
k
2

)
m3

.

Then

Vk = Sk − µ2
k =

(
k
2

)
m3
−
(
k
2

)
m4

and
Vk
µ2
k

=
m− 1(

k
2

) .

The lemma now follows from Chebyshev’s inequality. �

Remark: In order to prove convergence of all moments, one must estimate EH(k)p for

integers p > 2. There is an expansion analogous to the equation m2Sk = mETk(1)2 +

m(m− 1)ETk(1)Tk(2). Say that a descending vector of positive integers is a partition of m

if λ = (λ1, . . . , λ#λ) and
∑#λ

j=1 λj = m. Let T λk denote the product
∏#λ
j=1 Tk(j)

λj . Then

mp
EH(k)p =

∑
λ

m#λ(1 +O(m−1))ET λk
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where the sum runs over partitions of m. Here, the multiplier m#λ(1 +O(m−1)) gives the

number of ways of choosing distinct j1, . . . , j#λ. When λ is the partition (1, . . . , 1), the

leading term of the sum is

mp

∏p−1
j=0

(
k−2j

2

)
m2p

leading to a contribution of (1 + O(m−1))(k2/(2m2))p. For any other λ, ET λk is a sum of

terms of the form O(k/m)a with 1 ≤ a ≤ p. Each of these terms appears in EH(k)p with

the multiplier m#λ−p, which is O(m−1). The total number of these terms is bounded, so it

follows that when k/m > ε,

EH(k)p = (1 +O(m−1))
(
k2

2m2

)p
. (2.2)

In other words, for k/m ≥ ε, 2m2Hk/k
2 converges to 1 in each Lp as m→∞, uniformly in

k.

Proof of Theorem 2.1: Convergence in distribution will follow from a comparison of

H(k) and
∑k

j=0 h(j). From the definitions,

k∧τ−1∑
j=0

h(j) =
k∧(τ−1)∑
j=1

− log(1−Ak)

=
k∧(τ−1)∑
j=1

Ak +O(Ak)2

= H(k ∧ (τ − 1))
(

1 +O

(
max

j≤k∧(τ−1)
Aj

))
= H(k ∧ (τ − 1))

(
1 +O

(
max

j≤k∧(τ−1)

Yj
m

))
. (2.3)

By Lemma 2.3, this shows that
∑τ−1

j=1 h(j)/H(τ − 1)→ 1 in probability as m→∞. Since

τ2/m→∞ in probability as m→∞, Lemma 2.5 may be applied to show that

2n2

τ2

τ−1∑
j=0

h(j)→ 1 (2.4)

in probability as m→∞. Together with Corollary 2.4, this implies that

2m2

τ2
h→ 1
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in probability as m→∞, and convergence in distribution of τ2/(2m2) to E(1) then follows

from the hazard rate lemma.

To extend this to convergence of higher integral moments, argue as follows. We know

that

E(1) D= h . (2.5)

Let || · ||p denote the Lp norm. From Corollary 2.4 we see that

|| h∑τ−1
j=0 h(j)

||p → 1 (2.6)

as m → ∞. Let G be the event that max{Yk : k < τ} is at most m−1/2. It was shown

in the proof of Lemma 2.3 that the probability of Gc decays exponentially in
√
m. It was

already shown in (2.3) that ∣∣∣∣∣
∑τ−1

j=0 h(j)
H(τ − 1)

∣∣∣∣∣ = 1 +O(m−1/2)

on G, which, together with the decay of P(Gc) faster than any polynomial, leads to

||
∑τ−1

j=0 h(j)
H(τ − 1)

||p → 1 (2.7)

as m → ∞. Finally, the estimate (2.2) in the case k2/m ≥ ε together with convergence of

τ2/m to ∞ in probability and monotonicity of H(k) in k imply that

||H(τ − 1)
τ2/(2m2)

||p → 1 (2.8)

as m→∞. The chain (2.5)–(2.8) of asymptotic equivalences in Lp proves the last statement

of the theorem. �

3 Analysis of Xn+k = f(Xn, . . . , Xn+k−1) for any k ≥ 2 via Pois-

son approximation

The following generalization of distributional convergence in Theorem 2.1 to arbitrary k

will be proved in this section.
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Theorem 3.1 For any fixed k and x, as m→∞,

P(
τ2

2mk
≥ x)→ exp(−x) .

Let N := b
√

2mkxc. Then τ2/(2mk) ≥ x if and only if the values of Wn for 0 ≤ n ≤ N
are distinct. Let Z be the number of pairs (i, j) for which 0 ≤ i < j ≤ N and Theorem 3.1

is an immediate consequence of:

Lemma 3.2 The total variation distance between the law of Z and a Poisson of mean x is

o(1) as m→∞.

Proof: For the duration of this proof, α and α′ will be shorthand for (i, j) and (i′, j′)

respectively. Let S denote the set of α for which 0 ≤ i < j ≤ N . Let Gα denote the event

that Wi = Wj . Define pα = P(Gα) and pαα′ = P(Gα ∩Gα′).

Let B(α) be the set of α′ for which |x − x′| < k for some x ∈ {i, j} and x′ ∈ {i′, j′}.
Note that for α′ /∈ B(α), the event Gα′ that Wi′ = Wj′ is measurable with respect to

{Xs : |s− i|, |s− j| ≥ k}. Therefore,

Gα is independent of σ(Gα′ : α′ /∈ B(α)) . (3.1)

Define

b1 :=
∑
α

∑
α′∈B(α)

pαpα′ ; (3.2)

b2 :=
∑
α

∑
α 6=α′∈B(α)

pαα′ . (3.3)

The quantities b1 and b2 are quantities appearing under the same name in [AGG89, The-

orem 1]; their quantity b3 is zero due to the independence relation (3.1). The conclusion

of [AGG89, Theorem 1] is that |P(Z = 0)− exp(EZ)| < b1 + b2. It remains to identify EZ

and to bound b1 and b2 from above.

Observe first the claim that for any α, pα = m−k. This is obvious for |i − j| ≥ k. But

in fact for any i and j, Gα occurs if and only if Xi+r = Xj+r for 0 ≤ r < k. For j = i + s
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with 0 < s < k, the values of Xi, . . . , xi+s−1 may be chosen arbitrarily, and there will be

precisely one set of values of Xi+s, . . . , Xi+s+k−1 for which Gα occurs, proving the claim.

It follows that

λ := EZ =
∑
α

pα = m−k
(
N

2

)
= (1 + o(1))x . (3.4)

Observe next that the cardinality of B(α) is at most 8kN , since the number of pairs

(i′, j′) with i′ within k of i is at most 2kN , and similarly for the other three possibilities.

It follows immediately that

b1 ≤ (
∑
α

pα)(8kN)m−k ≤ (8
√

2 + o(1))kx3/2m−k/2 . (3.5)

Finally, we bound b2 from above. Let B0(α) denote the set of α′ for which both of i′

and j′ are within k of either i or j. Then |B0(α)| < (4k)2.

Claim: for α 6= α′ ∈ B0(α),

pα,α′ ≤ m−k−1 .

Assume without loss of generality that j < j′, since the other cases, j > j′, i < i′ and i > i′

are similar. Then

pα,α′ ≤ pαP(Gα′ |Xn : n < j′) ≤ m−km−1 ,

proving the claim.

For α′ /∈ B0(α), one conditions on {Xs : |s − i| < k or |s − j| < k} to see that pαα′ =

m−2k. One then has

b2 =
∑
α

 ∑
α′∈B0(α)

pαα′ +
∑
α

∑
α′∈B0(α)

pαα′


≤

∑
α

[
16k2m−k−1 + (8kN)m−2k

]
≤ 8k2N2m−k−1 + 4kN3/2m−2k

= (1 + o(1))(16k2λm−1 + (423/4λ3/2km−k) (3.6)

as m → ∞. Combining (3.4) - (3.6) establishes that b1 + b2 = o(1) and EZ − x = o(1),

which completes the proof of Theorem 3.1. �
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4 Further discussion

Let U and E(1) be independent with U uniform on [0, 1] and E(1) exponential of mean 1.

The following extension of the distributional convergence results may be proved. Recall

that µ is the index for which Xµ, . . . , Xτ−1 is the first full period of the eventually periodic

sequence of pseudo-random numbers.

Theorem 4.1 As m→∞, the pair (µ, τ) converges in distribution to (UE(1), E(1)).

Complete proof of the extensions in this section will not be given, but the argument,

along the lines of the first analysis, is as follows. Fix an integer r and break the hazard rate

for the occurrence of τ into r components. The jth component at time n is the hazard rate

for the occurrence of τ = n+ 1 and (j− 1)/r ≤ µ < j/r. A lemma analogous to Lemma 2.5

shows that the r hazards accumulate at asymptotically equal rates, and a lemma analogous

to the hazard rate lemma then shows the asymptotic uniform distribution of µ/τ over the

r bins given br τc. Sending r to infinity completes the argument.

An analysis of the probability of landing in a cycle of length 1 is easiest along the lines of

the Poisson approximation. Indeed, the number of occurrences of Wn of the form (j, . . . , j)

for some j ≤ m by time k is well approximated by a Poisson of mean km1−k; the number

of these followed by one more j is then nearly a Poisson of mean km−k. Since τ is of order

mk/2, one sees that the mean number of these occurrences by time τ is Θ(m−k/2), so this

gives the order of magnitude of the chance of being caught in a cycle of length 1. On the

other hand, the probability that some seed results in a cycle of length 1 is the chance that

one of the m words (j, . . . , j) maps to itself, which rapidly approaches 1− e−1 as m→∞.

An upper bound on the maximum value of τ over all seeds is obtained as follows. In the

spirit of Theorems 2.1 and 3.1, the probability that τ2 > 2(1 + ε)mk(k logm) can be shown

to be close to exp(−(1+ε)k logm). Indeed, while Theorems 2.1 and 3.1, as written, compute

P(τ2 > (2mk)x) only when x is fixed, the arguments are sufficient to handle poly-logarithmic

growth of x, that is x ≤ (logm)p. Specifically, the four chains in the asymptotic equalities

when x grows at this rate are: the exact equality h D= E(1) as before; the difference between
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h and
∑τ−1

j−0 h(j) small in every Lp; the linearization error in replacing h by H changes the

likelihood of exceeding a hazard of x from e−x to e−x+o(x), and the ratio between H(k) and

its deterministic counterpart k2/(2m2) is small as long as x is not too small (as before).

One may then extend the estimate to slowly growing x:

P(τ2 > 2(1 + ε)kmk logm) ∼ m−(1+ε)k .

Since there are mk seeds, this gives

P

[
τ∗ >

√
b kmk logm

]
→ 0

for any b > 2, where S is the supremum over seeds of the value of τ for a fixed random f .

A modest amount of work should suffice to make this analysis more precise and give a

sharper estimate. In particular, after k seeds have been tried, leading to Θ(k
√
m) values

of f computed, the probability is only Θ(1/k) that a new cycle will form without jumping

into the set of previously computed values. Thus one expects Θ(logm) distinct cycles.

The maximum of r independent exponentials is Θ(log r) with a standard deviation that is

o(log r); thus in the present case, one expects a maximum length of Θ(mk/2 log logm) and

a concentration result for the maximum cycle length. Thus a natural problem is:

Problem: Let S(m, k) be the supremum over all seeds of the value of τ for iterations of

one random function f : [m]k → [m]. Show that

S(m, k)
2mk/2 log logm

→ 1

in probability.

Since iterations of random functions of k arguments perform poorly as pseudo-random

number generators, another problem is to find simple random pseudo-random sequences

whose performance is better that that of the iterates of a random functions, and for which

rigorous results may be obtained.
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