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Abstract

The algebraic relations between the principal minors of an n× n matrix are some-
what mysterious, see e.g. [LS09]. We show, however, that by adding in certain almost
principal minors, the relations are generated by a single relation, the so-called hexahe-
dron relation, which is a composition of six cluster mutations.

We give in particular a Laurent-polynomial parameterization of the space of n× n
matrices, whose parameters consist of certain principal and almost principal minors.
The parameters naturally live on vertices and faces of the tiles in a rhombus tiling of
a convex 2n-gon. A matrix is associated to an equivalence class of tilings, all related
to each other by Yang-Baxter-like transformations.

By specializing the initial data we can similarly parametrize the space of Hermitian
symmetric matrices over R,C or H the quaternions. Moreover by further specialization
we can parametrize the space of positive definite matrices over these rings.

1 Introduction

A principal minor of a complex n × n matrix M is the determinant of a submatrix MA
A

where A is a subsets of [n] := {1, . . . , n} and MB
A denotes the submatrix of M obtained

by restricting rows to A and columns to B. There are 2n principal minors of M if one
includes the trivial minor detM∅

∅ := 1. Introducing an indeterminate xA for each minor,
one may ask what polynomial relations hold among the minors, that is, what polynomials
in C[xA : A ⊆ [n]] always hold. The algebraic relations between these principal minors are
somewhat mysterious. For example, when n = 4, Lin and Sturmfels [LS09] show that the
ideal of all polynomial relations is minimally generated by 65 polynomials of degree 12.

Say that detMB
A is an almost-principal minor if A,B ⊆ [n] with |A| = |B| and if the sets

differ by precisely one element: |A4B| = 1. Divide the almost-principal minors into two
classes, say odd and even, by putting MB

A in the odd class if A = S ∪ {i} and B = S ∪ {j}
with (i − j)(−1)|S| > 0. In other words, if the extra row index is greater than the extra
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column index then the parity of the minor is the same as the parity of S := A∩B, but when
the extra column index is greater than the extra row index, then the parity of the minor is
opposite to the parity of S.

Our first result concerns the relations that hold among the principal minors and the odd
almost-principal minors (by symmetry we could use even almost-principal minors instead).
We show that these are generated by a single polynomial relation, the so-called hexahedron
relation of [KP13]. The hexahedron relation is a set of four polynomial relations holding
among fourteen variables indexed by the eight vertices and six faces of a cube. For any
Boolean interval [S, S ∪ D] of rank three in the Boolean lattice Bn of rank n, the vertices
and faces may be naturally associated with the eight principal and six odd almost principal
minors of the form {detMS∪B

S∪A : A,B ⊆ D}. As [S, S∪D] vary over rank-3 Boolean intervals
in Bn, the corresponding hexahedron relations generate the ideal of all polynomial relations
among these minors. This is Theorem 4.3 below.

The hexahedron relation is a composition of six cluster mutations. This allows us ex-
plicitly to parameterize the variety of all possible collections of principal and odd almost
principal minors. One must first pick a set of variables xBA, call these the initial conditions,
to specify, and then describe the remaining variables in terms of the initial conditions. There
are many ways of choosing the set of variables for the initial conditions. It turns out that
these correspond naturally to the rhombus tilings of a 2n-gon. For any fixed tiling, the
matrix entries and all principal and odd almost principal minors turn out to be Laurent
polynomials in the initial variables associated with the chosen tiling. This is Theorem 4.4
below. The reason such a result should hold is that, in the language of cluster algebras, the
hexahedron relation is a composition of six cluster mutations. As one varies the tiling, the
associated variables are related by Yang-Baxter-like transformations preserving the Laurent
property.

In the last part of the paper we specialize the initial data to subclasses, obtaining
parametrizations for certain subclasses of matrices. We paramterize the class of Hermi-
tian matrices, and restricting to R, the class of real symmetric matrices. This is Theo-
rem 5.2 below. We also extend to a slightly non-commutative setting and parametrize the
quaternion-Hermitian matrices (Theorem 6.1 below). Moreover by further specialization we
can parametrize the space of positive definite matrices over these rings (Theorem 5.7 below).
This is a positive description in the sense that the entries are positive Laurent polynomials
in the parameters, satisfying interval constraints.
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2 Background

Let a be a function on the set of vertices and faces of a cube. Label the vertices and faces
of a cube by indices 0 thorugh 9 and 0∗, 1∗, 2∗ and 3∗ so that the values of a, denoted by
a0, . . . , a9, a

∗
0, . . . , a

∗
3 are arranged on the cube as in Figure 1.

a0
*

a1
*

a2
* a3

*

a4

a5a6

a7

a8 a9

a0

a1

a2a3

a4

a5a6

a7

a8 a9

Figure 1: The variables in the hexahedron relation.

The function a is said to satisfy the hexahedron relation on this cube if the following four
polynomial identities hold.

a∗1a1a0 = a1a2a3 + a7a8a9 + a0a4a7 (1)

a∗2a2a0 = a1a2a3 + a7a8a9 + a0a5a8 (2)

a∗3a3a0 = a1a2a3 + a7a8a9 + a0a6a9 (3)

a∗0a
2
0a1a2a3 = (a1a2a3)

2 + a1a2a3(2a7a8a9 + a0a4a7 + a0a5a8 + a0a6a9) +

+(a8a9 + a0a4)(a9a7 + a0a5)(a7a8 + a0a6). (4)

Note that the relation is symmetric under cyclic rotation around the a0a
∗
0 axis; one can

check that this relation is also “top-down” symmetric: symmetric under the reversal

a∗0 ↔ a0, a
∗
1 ↔ a1, a

∗
2 ↔ a2, a

∗
3 ↔ a3, a4 ↔ a7, a5 ↔ a8, a6 ↔ a9.

This relation was introduced in [KP13], where the cube was taken to vary over cells of the
cubic lattice Z3 and the hexadron relations taken to define translation invariant relations on
a function on vertices and faces of the cubic lattice. The relations were shown there to be
compositions of six cluster mutations. Initial conditions in this case correspond to stepped
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surfaces in the cubic lattice and the cluster structure implies that all variables are Laurent
polynomials in any set of initial variables.

In the present work, we show that the hexahedron relation is the relation satisfied by the
minors of a matrix. This requires placing the hexahedron relations on the Boolean lattice
Bn (the n-cube {0, 1}n with its natural partial order) in place of the cubic lattice Z3. We do
so by allowing the cube in Figure 1 to vary over Boolean intervals of rank 3 in the rank-n
Boolean lattice. We do this in a way that obtains the picture in Figure 2, which we now
explain.

-M13
13

-M13
23

M3
1

-M12
13

M1
1

-M123
123M3

3

-M23
23

1 -M12
12

M2
2

M2
1

-M12
23M3

2

M1
1

-M123
123M3

3

-M23
23

1 -M12
12

Figure 2: Arrangement of principal and near principal minors on B3

Fix n and an interval I := [S, S ∪D] of rank three in Bn. The order preserving bijection
α between [3] and D induces a bijection between B3 and I, explictly α∗(A) = (S ∪ α[A]).

The notation for matrix minors becomes less cluttered if we use MB
A in place of M

α∗(B)
α∗(A)

when the set S can be understood. Using this abbreviation, write the principal minor MA
A

at the element A ∈ B3. Interpreting the Hasse diagram of B3 as a cube, each of the six
faces is a rank-2 interval. If A and B are the two middle-rank elements of such an interval,
then associate with the corresponding face the almost principal minor MB

A or MA
B , choosing

whichever one of these is odd. We now have a set of eight principal and six odd almost
principal minors of M associated with the eight vertices and six faces of B3. We need to
change the signs of seven of these, namely the vertices of rank 2 and 3 and the upper faces
(spanning rank 1 to 3). Invoking the hexahedron recurrence is now a matter of matching
to Figure 1, which we do in a slightly non-intuitive manner, matching M∅

∅ to a8, M1
1 ,M

2
2

and M3
3 to a4, a0 and a6 respectively, and so on (there is only one way to extend this graph

isomorphism to the whole cube). The result is Figure 2.

Lemma 2.1. Under the correspondence between the diagrams in Figures 1 and 2, the minors
of M satisfy the hexahedron relation.
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Proof. When n = 3, the only choice for S is S = ∅ and the abbreviation and actual notation
MB

A coincide. In this case the proof is a quick algebraic verification. Muir’s law of extensible
minors [Mui83], states that “a homogeneous determinantal identity for the minors of a
matrix remains valid when all the index sets are enlarged by the same disjoint index set.”
See [BB08] for this wording and [BS83, Section 7] for a proof). Here, homogeneity means
that every monomial in the identity is a product of determinants of degrees summing to the
same value. In the first three hexahedron identities (1)–(3) every monomial has degree 4,
while in (4), every monomial has degree 8. The conclusion of Muir’s law is the conclusion of
the lemma.

3 2n-gon networks

On the cubic lattice, initial conditions are stepped surfaces, with moves from one stepped
surface to another corresponding to the addition or removal of a cube. The Boolean lattice
is a cell complex and although its dimension is not 3, addition and removal of a 3-cube still
represents a well defined family of moves between 2-chains in a family of 2-chains sharing a
common boundary. These two-chains, which correspond to initial conditions, are described
by tilings of a 2n-gon, as we now describe. One of these tilings is called the standard tiling
and is shown in Figure 3 (ignore the blue for now).

1 a

b

c
d

e
f

g h

i

jkl m

n

o p

Figure 3: The standard network. White vertices have σ(v) = −1.

Let Pn be the regular 2n-gon with unit length edges, oriented so that it has a horizontal
edge. Let v0 be the vertex of Pn which is the left endpoint of the lower horizontal edge.
Place Pn so that v0 is at the origin in R2. The polygon Pn is the projection to the plane of
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the n-cube [0, 1]n with the property that for each j ∈ [n], the basis vector ej projects to the
vector ej := eπi(j−1)/n.

The tilings of Pn we consider are tilings by translations of the set Wn of tiles, where Wn

is the set of rhombi Rjk with unit edges parallel to two distinct edges ej and ek of Pn. The

set Wn has cardinality

(
n

2

)
. Each tile in Wn occurs precisely once in each tiling. It may

not be obvious that there exist such tilings (or even that the areas of tiles in Wn sum to the
area of Pn) but the following construction of the standard tiling shows there to be at least
one such tiling. Define the standard tiling T0 by placing all rhombi Ri,i+1 with their lowest
point at the origin (in the case of R12, the leftmost lowest point). In the n− 2 gaps between
the uppermost extensions of these, place the rhombi Ri,i+2, and continue this way until the
rhombus R1n is placed, filling the last hole in P2n. This tiling has the property that the
vertices are precisely the points v0 +

∑
j∈G ej for some set G of consecutive elements of [n].

A “cube move” consists in taking three tiles of T whose union is a hexagon and replacing
them with the three same tiles in the other order, effectively “pushing” the tiling across a
3-cube. Lifting back to Bn, one sees that all the 2-chains have the same boundary, which is
the lifting of the boundary of Pn to Bn. Each vertex v of the tiling lifts to a lattice point in
Bn, which is the sum of ej for all j such that ej is on the path from the origin to v using
edges of the tiling. The space of all tilings of Pn by Wn is connected under cube moves:
see [Ken93].

Labeled tilings

A 2n-gon network is a labeled 2n-gon tiling. Formally, this means it is a pair (T, F ) where
T is a tiling and F is a real or complex function on U(T ), the set of faces and vertices of T .
(In the last section we consider quaternionic networks and matrices.)

Two networks are equivalent if one can be obtained from the other by a sequence of
cube moves, in which the tiles are replaced by a cube move and the vertex and face values
undergo a hexahedron transformation, meaning that the values on the center vertex a0 and
the faces a1, a2, a3 are transformed to a∗0, a

∗
1, a
∗
2, a
∗
3 on the new network or vice versa. We also

allow as an equivalence move multiplication of all values by a single nonzero constant; the
hexahedron relations are homogeneous, hence always preserved by such scaling. We say that
a 2n-gon network is generic if it and all equivalent networks have only nonzero labels.

Proposition 3.1. The equivalence class of a generic network contains precisely one network
for each tiling such that F (v0) = 1.

In other words, if two sequences of cube moves lead to the same tiling, then the resulting
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network does not depend on the sequence of cube moves leading to it. The proof will follow
from Theorem 4.2 below; see the remarks after the proof of that theorem.

4 Correspondence between matrices and networks

Let M∗
n(C) denote the set of generic n×n complex matrices, meaning those with only nonzero

minors. Let N denote the set of generic 2n-gon networks. In this section we describe a map
βT of the form A 7→ (T, FA,T ) and a map Ψ : N →M∗

n(C) that together establish a bijection
between M∗

n(C) and equivalence classes in N .

4.1 Matrices to networks

Let A ∈ M∗
n(C) be a matrix and T a tiling of the2n-gon. For a vertex v of T , define

σ(v) = (−1)bd/2c where d is the graph distance in the tiling from v to v0. Recall that U(T )
denotes the union of the vertices and faces of T . Define a function F = FA,T on U(T ) as
follows. Each vertex v of T is naturally associated with a point in Bn, that is, a subset
S ⊆ [n]. Let F (v) = σ(v) detASS where ASS is the principal minor of A indexed by S. On a
rhombus Rij with vertices v, v + ei, v + ei + ej, v + ej and i < j we assign the value

F (Rij) = σ(v) detK
S∪{i}
S∪{j} or σ(v) detK

S∪{j}
S∪{i} , whichever is the odd minor; (5)

here again S is the subset of [n] corresponding to v.

Theorem 4.1. For any tilings T and T ′ the networks (T, FA,T ) and (T ′, FA,T ′) are equivalent.
Consequently the map (A, T ) 7→ (T, FA,T ) induces a function Φ mapping each matrix A ∈
M∗

m(C) to the equivalence class of (T, FA,T ), which does not depend on T .

Proof. Suppose T and T ′ differ by a cube move. The functions FA,T and FA,T ′ label the
vertices and faces according to the diagrams in Figure 2 (the matrix is now named A rather
than M and we use the convention that [S, S ∪ D] is mapped in the order preserving way
to B3). By Lemma 2.1, these obey the hexahedron relations and are thus by definition
equivalent. Any two tilings are connected by a sequence of cube moves, hence (T, FA,T ) and
(T ′, FA,T ′) are equivalent for any T, T ′. Genericty of A implies FA,T is nowhere zero, which
proves genericity of the equivalence class of (T, FA,T ).

Remark. This implies Proposition 3.1 for networks in the range of Φ.
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4.2 Networks to matrices

Conversely, let us explain how to go from an equivalence class of generic networks to a matrix
in M∗

n(C). A network (T, F ) is called standard if T = T0 and F (v0) = 1. The key step is to
construct the map Ψ taking a standard network (T0, F ) to a matrix A such that FT0,A agrees
with F on U(T0).

Our strategy will be to assign matrix entries Aij in a particular order so that we can
check inductively that the assigned entries force FA,T0 to agree with F on ever larger subsets
of T0 no matter what the values of the yet unassigned entries of A. In this way we both
construct A and verify that FA,T0 = F . Visualization is easy when working with T0 because
each vertex and rhombus corresponds to a contiguous subdeterminant, the values of FA,T0
at vertices being principal minors of the form detAi,i+1,...,j

i,i+1,...,j and the values at rhombi being

odd almost-principal minors of the form Ai±1,...,j±1
i,...,j .

Before giving a formal description we illustrate with an example where n = 4. Figure 3
shows the standard tiling of P8 with vertices and rhombi labeled by indeterminates. If A
is a matrix with FT0,A = F then reading values of F on U(T0) along successive blue paths,
starting from the lower right, determines successive minors of A as follows. The first blue
path contains 1×1 minors, therefore dictating the entries A11, A21, A22, A32, A33, A43 and A44.
The second blue path, read right to left, gives the negatives of the minors A12

12, A
12
23, A

23
23, A

23
34

thereby determining A12, A23, A34, A31 and A42. The third blue path, read right to left, gives
the negatives of the minors A123

123, A
123
234 and A234

234, thereby determing A13, A24 and A41. The
last value is detA, which now determines A14, all other entries of A already having been
determined. Explicitly, in terms of the indeterminates labeling the vertices and faces in
Figure 3, the matrix is given by

a ac
b + h

b
he
bd + ace

bd + hj
bcd +

aj
bd +

hj
ci +

m
i X

b c ce
d + j

d
jg
df + ceg

df + jl
def + cl

df + jl
ek + o

k

bd
c + i

c d e eg
f + l

f

if
ce +

bdf
ce + ik

cde +
bk
ce +

ik
dj +

n
j

df
e + k

e f g


where X =

aceg

bdf
+

acl

bdf
+

ajl

bdef
+

agj

bdf
+

ajl

bek
+

ao

bk
+

hjl

bcdef
+

ghj

bcdf
+

hjl

bcek
+

ho

bck
+

egh

bdf
+

hl

bdf
+

dhjl

ceik
+

dho

cik
+

hjl

cefi
+

ghj

cfi
+

dlm

eik
+

dmo

ijk
+

lm

efi
+

gm

fi
+

mo

jn
+

p

n
.

To see why this works in general, divide U(T0) into disjoint paths, each alternating
between vertices and rhombi. The zeroth path is the vertex v0; the first path contains the
vertices at distance 1 from v0 and the rhombi Ri,i+1 between them. The jth path contains
the vertices at distance j from v0 and the rhombi between them. This partition is illustrated
by the blue paths in Figure 3.
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Vertices on the jth path, j ≥ 1, will induce assignments of elements of A on the (j − 1)st

superdiagonal, where the zeroth superdiagonal is the main diagonal. Rhombi on the jth path
will induce assignments of elements of A on the jth subdiagonal. The zeroth path always
contains the element 1, so provides no new information and does not induce an assignment.

Inductively, we check that for each vertex or rhombus, the equation that FA,T0 agrees with
F at each new face orvertex, which is the equation detMB

A = c for some A,B ⊆ [n] and some
number c, is a multilinear linear equation with precisely one unassigned variable. Indeed, for
vertices in the jth path it is a specification of a contiguous subdeterminant spanning from the
diagonal to the (j− 1)st superdiagonal while for rhombi on this path it is a specification of a
contiguous subdeterminant spanning from the first subdiagonal down to the jth subdiagonal.

One of these linear equations is degenerate if and only if the cofactor of that determinant
vanishes. The cofactor is the value of F at a position one row closer to the main diagonal.
Genericity of (T0, F ) implies that this is nonzero. This completes the induction. We conclude
there is a unique matrix A for which FA,T0 agrees with F ; we call this Ψ(T0, F ). We have
now proved the first and only nontrivial statement in the following theorem.

Theorem 4.2. If (T0, F ) is generic then there is a unique A ∈M∗
n(C) such that FA,T0 = F

on U(T0). The map A 7→ (T0, FA,T0) and the map Ψ mapping (T0, F ) to A are two-sided
inverses.

Proof. The construction always produces a matrix A such that FA,T0 agrees with the given
F . If (T, F ) and (T ′, F ′) are related by a cube move and FA,T = F then FA,T ′ = F ′ because
the hexahedron hold for the minors of A. Therefore, if (T, F ) is equivalent to (T, F ′) then
F = F ′. This proves there is only one network (T, F ) in each equivalence class, implying
Proposition 3.1, ensuring that Ψ is well defined, and proving that A 7→ (T0, FA,T0) and Ψ are
inverses.

4.3 Further properties of the correspondence

Each matrix M ∈ Mn(C) has a vector of 2n principal minors. Let V be the variety in C2n

consisting of all vectors of principal minors of matrices in Mn(C). The ideal in C[xS : S ⊆ [n]]
of polynomials vanishing on V is denoted J(V ). Similarly, let V ′ be the variety of all vectors
of principal and odd almost-principal minors of matrices in Mn(C). Its ideal J(V ′) lives in
the ring of polynomials in variables corresponding to all vertices and faces of Bn.

Theorem 4.3. The ideal J(V ′) is the radical of the ideal J generated by the hexahedron
relations on rank-3 Boolean intervals. The ideal J(V ) is the intersection of C[xA : A ⊆ [n]]
with J(V ′).
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Proof. Suppose there is a polynomial p /∈
√
J that vanishes on V ′. Then the variety defined

by J would be bigger than the Zariski closure of V ′. We have seen, however, that every
point in the variety defined by J is in the Zariski closure of the generic points of V ′, hence
by contradiction the ideal defined by V ′ is

√
J . The second fact is quite general: any

polynomial in the subring vanishing on V is a polynomial in the big ring vanishing on the
cylinder of V , and is therefore in

√
J as well as the small ring.

We have seen that the entries of A are determined by equations in the network variables,
each being linear in the new variable, hence producing a rational function of the initial
variables. In fact a Laurent property holds.

Theorem 4.4. Let A = Ψ(T0, F ) be the matrix such that FT0,A = F . Then the entries
of A are Laurent polynomials in the standard network variables, with coefficients 1. The
monomials in Mij are in bijection with domino tilings of the half-aztec diamond.

The bijection is illustrated in Figure 4. A half-aztec diamond is a region as in Figure 4
for the case n = 4. It is a triangular stack of squares; the bottom row consists of 2n squares
(numbered 1 through 2n), and successive rows have two fewer squares. To get the ij-entry
of M for i ≤ j, delete the squares on the bottom row at locations 2i − 1 and 2j. The Mij

entry enumerates the domino tilings of the resulting figure using the formula of Figure 4.

To get the ij-entry of M for i > j, delete the squares on the bottom row at locations
2i− 1 and 2j and the outer layer of squares from the left and right sides of previous figure.
The Mij entry enumerates the domino tilings of the resulting figure (a smaller half-aztec
diamond) using again the formula of Figure 4.

These tilings are also in a natural bijection with Schröder paths.

Proof. The proof uses a few facts about the combinatorics of Dodgson condensation, see
e.g. [Spe07]. Recall how Dodgson condensation works. Define m

(0)
ij = 1. Starting from an

n × n array of numbers (m
(1)
ij ) representing a matrix M . Define an pyramidal array m

(k)
ij

where i, j are integers for k odd and half-integers for k even, by the (signed) octahedron
recurrence

m
(n+1)
i,j =

m
(n)
i−1/2,j−1/2m

(n)
i+1/2,j+1/2 −m

(n)
i−1/2,j+1/2m

(n)
i+1/2,j−1/2

m
(n−1)
ij

.

Here the defined values m
(k)
ij form a pyramid called the Dodgson pyramid of the matrix M .

Its apex value is the determinant of M .

The (consecutive-index) principal minors of M occur on a slice of the pyramid: the slice
in the x = y plane (here we are thinking of the x-axis as the row coordinate and the y axis
as the column coordinate). The subprincipal minors occur on the parallel plane x = y + 1.
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Figure 4: A half-aztec diamond of order 4, and one of the domino tilings contributing to
M13. In the corresponding monomial, each variable occurs with power d− 3, where d is the
local degree at the corresponding vertex in the domino tiling. In this example, the monomial
is aj

bd
. Note that the (light gray) tiles above the line of slope −1 containing the right removed

square (dark gray) are all horizontal; removing these, we have a tiling of a truncated order-2
diamond (the top half of an aztec diamond along with the top row of its bottom half; white
in the figure).

It follows from the above that the matrix M associated to the standard network has
entries which form the base of the Dodgson pyramid of M .

Typically the octahedron recurrence (for which Dodgson condensation is a special case)
is defined by taking initial data on the z = 0 and z = 1 planes, and working upwards. We
can, however, instead take our initial data on the x = y and x = y + 1 planes, and use the
recurrence to successively define values on planes x− y = 2, 3, . . . and −1,−2, . . . . Because
the entries of the Dodgson pyramid satisfy the signed octahedron recurrence when going
upward (increasing z), they satisfy the unsigned octahedron recurrence when going in these
horizontal directions.

We can thus form the entries of M using the octahedron recurrence (with + signs) with
initial data on the planes x = y and x = y + 1, that is, with initial data consisting of the
principal and subprincipal minors of M .

By a small generalization of a result of Speyer [Spe07], the entries on the plane x = y+ j
are counted by domino tilings of truncated aztec diamonds: the entries on z = 1 are defined
by aztec diamonds truncated to remove all but the first row of the bottom half, as in the
unshaded squares in Figure 4; the entries on z = j are counted by domino tilings of aztec
diamonds from which the bottom n− j rows have been removed, that is, take the upper half
and add the first j rows of the bottom half.

To see this, extend the half-aztec diamond in the x = y plane to a full aztec diamond,
defining parameters ε−|z| for vertices at negative z values, where ε is small. Now Speyer’s
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bijection between the octahedron recurrence and tilings of the full aztec diamond shows that,
in the limit ε → 0, the desired term is counting tilings of the aztec diamond in which only
horizontal dominos occur in all rows below z = 0. These are equivalent to tilings of the
truncated aztec diamond.

5 Hermitian networks

In this section we examine the image of various subsets of M∗
n(C) under the correspondence

mapping matrices to networks. In particular, we describe the images of the set of real
symmetric matrices, the set of Hermitian matrices and the set of positive definite Hermitian
matrices. These descriptions not only parametrize the respective sets but answer the question
as to which collections of minors are possible.

Definition 5.1.

(i) A 2n-gon network (T, F ) with entries in R or C is said to be Hermitian if it satisfies
the condition that F (v) is real for all vertices v and for each face f ∈ U(T ) we have

|F (f)|2 = F (a)F (c) + F (b)F (d) (6)

where a, b, c, d lists the vertices of f in cyclic order.

(ii) A Hermitian network (T, F ) is said to be positive if for all vertices v, the sign of F (v)
is σ(v).

The following result will be proved in Section 5.2.

Theorem 5.2. The following are equivalent.

(i) The matrix A ∈M∗
n(R) is Hermitian;

(ii) The network (T, FA,T ) is Hermitian for some T ;

(iii) The network (T, FA,T ) is Hermitian for every T .

5.1 Hermitian Kashaev relation

Values a0, a4, . . . , a9 on vertices and a1, a2, a3, a
∗
1, a
∗
2, a
∗
3 on faces of a cube (as in Figure 1),

with a0, a4, . . . , a9 real, are said to satisfy the Hermitian Kashaev relation if (6) holds on
every face and
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a∗1 =
a2a3 + ā1a7

a0

(7)

a∗2 =
a3a1 + ā2a8

a0

(8)

a∗3 =
a1a2 + ā3a9

a0

(9)

a∗0 =
a0a4a7 + a0a5a8 + a0a6a9 + 2a7a8a9 + a1a2a3 + a1a2a3

a2
0

. (10)

Lemma 5.3. Let a0, . . . , a9 be complex numbers making the left-hand diagram of Figure 2
satisfy the relation (6) on each face:

a1ā1 = a0a4 + a8a9, a2ā2 = a0a5 + a7a9, a3ā3 = a0a6 + a7a8 . (11)

Then the values a∗0, a
∗
1, a
∗
2, a
∗
3 obtained from a cube move (the hexahedron relation) satisfy the

Hermitian Kashaev relations (7)–(10). Furthermore, the right-hand side will also satisfy (6)
on each face. It follows that any network equivalent to a Hermitian network is Hermitian
and that the Hermitian Kashaev relations are a special case of the hexahedron relations under
the constraint that (11) holds on any, hence every, network.

Proof. This is a simple algebraic check: see the proof in [KP13, Section 7] for real valued
networks; the same proof goes through for complex valued networks taking real values at
the vertices.

5.2 Hermitian correspondence

We begin with a proof of Theorem 5.2. By Lemma 5.3 (ii) and (iii) are equivalent. It
remains to prove that (iii)⇒ (i)⇒ (ii).

(i) ⇒ (ii): Let A be any Hermitian matrix and let (T0, F ) = (T0, FT0,A) be the standard
network associated with A. It is immediate that F (v) is real for all vertices v ∈ U(T0)
because principal minors of Hermitian matrices are real. To check (6), let f be a face of T0

with vertices v, v+ ei, v+ ei + ej and v+ ej. Let S ⊆ [n] corresond to v. The values of F at

the vertices of f are respectively (using the notation M j
i := M

S∪{j}
S∪{i} , etc.),

σ(v) detM , σ(v + ei) detM i
i , σ(v + ei + ej)M

ij
ij , σ(v + ej)M

j
j ,

while the face value is F (f) = σ(v+ei)M
i
j . Observe that the signs satisfy σ(v)σ(v+ei+ej) =

−1. Dodgson’s condensation [Dod66] states that

detM ij
ij detM = detM i

i detM j
j − detM i

j detM j
i .

13



Because M is Hermitian M j
i = M i

j . Thus we have

−F (v + e1 + e2)F (v) = F (v + e1)F (v + e2)− |F (f)|2 (12)

which means the network is Hermitian.

(iii) ⇒ (i): Let T be any tiling and let f be a face incident to v0 with sides parallel to ei
and ej. The values of F on vertices of f are

1, Aii, AiiAjj − AijAji, Ajj

while F (f) = Aji. If (T, FA,T ) is Hermitian then applying (6) at f gives

AijAij = |Aji|2 .

This means that Aij = Aji. For every i 6= j there is at least one tiling T having such a face
f . We conclude that if each (T, FA,T ) is Hermitian then so is A. �

Fixing a tiling T and assigning values of F on U(T ) arbitrarily (but generically) exactly
parametrizes generic n× n matrices. In the Hermitian case, the same is true if one restricts
to Hermitian networks (T, F ); however we would like a more explicit parametriation of this
subset of networks.

Proposition 5.4. Generic Hermitian n × n matrices are parameterized by their diagonal
entries and contiguous almost-principal minors.

Proof. We have seen that generic Hermitian matrices are parametrized by standard networks
(T0, F ) satisfying the Hermitian condition (6). It remains only to observe that these networks
are parametrized by the face variables {F (f)} together with the vertex variables {F (ej) :
1 ≤ j ≤ n} along the lowest blue path. (To see this note that the rhombi not adjacent to
v0 can be ordered so that each new rhombus has only one vertex not in the union of the
previous rhombi.) If A is the matrix corresonding to the network then the values F (ej) are
the diagonal elements of A and the face variables are the continguous minors M i±1,...,j±1

i,...,j

where the sign choice in the ± is determined by the parity of j − i but does not matter
because the the two minors are conjugates of each other.

There are in fact many other choices of parameters. Take any shortest path γ in the
tiling from v0 to the opposite vertex. We claim that the variables on the vertices of γ, along
with all face variables, parameterize all networks. To see this it suffices to show that on
either side of γ, if there is a tile (that is, if γ is not the boundary path) there is a tile having
two consecutive sides, and thus three vertices, touching γ. The value at the fourth vertex is
then a function of its face value and the values at the vertices along the path; pushing the
path across this tile and continuing, we see that all vertex values are obtained in this way.
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To find such a tile to the left (say) of γ, take any tile left of γ and follow its train tracks
(continguous tiles sharing a set of parallel edges) until they cross γ; take any new tile in the
triangular region delimited by γ and these two train tracks. γ with the train tracks of this
new tile forms a strictly smaller triangular region. Conclude by induction.

Another interesting representation of the generic Hermitian matrix is the following Lau-
rent parametrization, where the initial conditions are taken to be an arbitrary network.

Proposition 5.5. The matrix entries for a standard Hermitian network are Laurent poly-
nomials in the interior entries (face values and interior vertex values).

Proof. This follows from the essentially same argument as in the proof of Theorem 4.2. We
work outwards from the diagonal. Inductively, each new entry Mij with i < j is defined by
an equation detMB

A = c where MB
A is an odd almost-principal minor. This is a multilinear

linear equation in which Mij is the only unassigned variable; moreover the coefficient of Mij

is a principal minor. Thus Mij is a Laurent polynomial, which is an actual polynomial in
the (previously assigned) other matrix entries, with a denominator which is the parameter
assigned to a principal minor, which is an interior vertex. Finally we can define Mji =
Mij.

Example 5.6. For the standard tiling, the 4× 4 example is easy to compute. The matrix M
is given in terms of the face and interior vertex variables as follows.

M =


a x̄ x̄ȳ+u

b
xyz
bc

+ z̄u
bc

+ x̄v
bc

+ yuv
bcf

+ w̄
f

x b ȳ yz+v
c

xy+ū
b

y c z̄
xyz
bc

+ zū
bc

+ xv̄
bc

+ yuv
bcf

+ w
f

yz+v̄
c

z d

 . (13)

Examination of the matrix entries in (13) leads to the following conjecture, verified in
the 5× 5 case as well.

Conjecture 1. The matrix entries for a standard Hermitian network are Laurent polynomi-
als, with coefficient 1, whose numerators are monomials in the face variables and denomina-
tors are monomials in the interior vertex variables. The terms are in bijection with Catalan
paths on the dual network. The purported bijection is illustrated in Figure 5.
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z

v

w

y

u

xbc

f

Figure 5: This grid is the dual graph to the tiling. To a Catalan path on this grid, record
the variables at each local max and min. The vertex variables here (which are face variables
of the network) go in the numerator; the face variables in the denominator. The given path
has weight yuv

bcf
.

5.3 Positive 2n-gon networks

Recall that a positive 2n-gon network is a Hermitian network with the additional constraint
that the sign of F (v) is σ(v).

Theorem 5.7. The network associated to a positive definite Hermitian matrix is positive.
Conversely, a positive network gives rise to a positive-definite Hermitian matrix.

Proof. Suppose a network is positive. Under the network-matrix correspondence, the values
along the right-hand boundary of the network are σ(v) times the leading (upper-left princi-
pal) minors of the matrix. Sylvester’s criterion [HJ85, Theorem 7.2.5] states that positivity
of the leading minors of a Hermitian matrix (the first k rows and columns, 1 ≤ k ≤ n) is
equivalent to positive definiteness of the matrix. Thus a positive network gives rise to a
positive definite matrix.

Conversely, if a matrix is positive definite, all its principal minors are positive and there-
fore the network is positive.

How are positive networks parametrized? On the standard network, do this as follows.
We assign values on ei arbitrarily and positively. Then on ei + ei+1 we assign any negative
values larger than −F (ei)F (ei+1), so that F (ei)F (ei+1) + F (ei + ei+1) > 0. Then on ei +
ei+1 + ei+2 assign any negative value larger than

F (ei + ei+1)F (ei+1 + ei+2)/F (ei+1).

Then on ei + ei+1 + ei+2 + ei+3 assign any positive value smaller than

−F (ei + ei+1 + ei+2)F (ei+1 + ei+2 + ei+3)/F (ei+1 + ei+2),
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and so on. In each case except for the initial ei we have a bounded positive length open
interval to choose from.

Once the vertex values have been chosen, the face values are determined up to a unit real
or complex number. For R there are 2 choices of sign for each face value. Thus the space
of positive networks with nonzero face values is homeomorphic to a union of 2n(n−1)/2 open
balls each of dimension

(
n+1

2

)
. For C the argument of each face value can be chosen freely

so the space of positive Hermitian networks is homeomorphic to the product of a
(
n
2

)
-torus

with a
(
n+1

2

)
-ball (or, if you prefer, (C∗)(

n
2) × Cn).

6 The q-Hermitian case

A q-Hermitian matrix is a matrix of quaternions which satisfies Mij = (Mji)
∗, where ∗

denotes the quaternionic conjugate. The q-determinant of a q-Hermitian matrix is a real
number defined by

qdetM =
∑

cycle decomps

(−1)c+ntrMC1trMC2 . . . trMCk
(14)

where the sum is over cycle decompositions of [n] (disregarding order), c is the number of
cycles, and trMC is the trace of the product of entries in cycle C (one-half the trace for
cycles of length 1 or 2).

For example when a, b, c are real,

qdet

 a d e
d∗ b f
e∗ f ∗ c

 = abc− aff ∗ − bee∗ − cdd∗ + Tr(dfe∗).

Dyson [Dys70] showed that qdetM = Pf(ZM̃), where Z is the block-diagonal matrix

with 2×2 blocks

(
0 1
−1 0

)
and M̃ is the 2n×2n matrix obtained from M by replacing each

entry Mij = a+ bi+ cj + dk with the 2× 2 block

(
a+ ib c+ id
−c+ id a− ib

)
.

A q-Hermitian matrix is positive definite if its leading minors are all positive; equivalently
if its eigenvalues are positive [Kas13].

A q-Hermitian network is a network with face values in H; vertex values are real. In each
face with vertex values a, b, c, d the face value z satisfies zz∗ = ac+ bd.
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In the case of a H-valued Hermitian matrix, almost principal minors qdetM
S∪{i}
S∪{j} can also

be defined, as follows [Dys70]. Instead of summing over cycle decompositions as in (14),
one sums over decompositions of the indices into configurations forming a path from i to j
with the remaining indices formed into cycles. The contribution for a configuration is the
product of traces over the cycles and the product of the quaternions along the path. With
this definition we can define as above a q-Hermitian network associated to a q-Hermitian
matrix (whereas for a general matrix over H no such definition can be made.)

Theorem 6.1. The Kashaev relation (7-10) holds when a1, a2, a3 are quaternions (and
a0, a4, . . . , a9 are real), for the given order of multiplication. Theorem 5.2, Propositions
5.4, 5.5 and Theorem 5.7 hold for q-Hermitian matrices.

Proof. The first statement is a short check. This implies Lemma 5.3 via the same proof.
Theorem 5.2, Propositions 5.4 and 5.5 then follow. Sylvester’s criterion also holds for q-
Hermitian matrices, see [Kas13], and thus Theorem 5.7 holds as well.
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