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ASYMPTOTICS OF MULTIVARIATE SEQUENCES, PART I: SMOOTH POINTS OF

THE SINGULAR VARIETY

ROBIN PEMANTLE AND MARK C. WILSON

Abstract. Given a multivariate generating function F (z1, . . . , zd) =
∑

ar1,... ,rd
z

r1

1 · · · z
rd

d , we determine
asymptotics for the coefficients. Our approach is to use Cauchy’s integral formula near singular points of
F , resulting in a tractable oscillating integral. This paper treats the case where the singular point of F

is a smooth point of a surface of poles. Companion papers will treat singular points of F where the local
geometry is more complicated, and for which other methods of analysis are not known.

1. Introduction

The generating function F (z) :=
∑∞

r=0 arz
r for the sequence a0, a1, a2, . . . is one of the most useful

constructions in combinatorics. If the function F has a simple description, it is usually not too hard to
obtain F as a formal power series once one understands a recursive or combinatorial description of the
numbers {ar}. One may then analyze the analytic properties of F in order to obtain asymptotic informa-
tion about the sequence {ar}. While still part art and part science, this latter analytic step has become
quite systematized. Stanley (1997) in his introduction to enumerative combinatorics gives the example

of the function F (z) = exp(z + z2

2 ), from which he says “it is routine (for someone sufficiently versed in

complex variable theory) to obtain the asymptotic formula ar = 2−1/2rr/2e−r/2+
√

r−1/4.” Routine, in this
case, means a single application of the saddle point method. When F has singularities in the complex
plane, the analysis is often more direct: the location of the singularities and the behavior of F near these
determine almost algorithmically the asymptotic behavior of the sequence {ar}. For those not sufficiently
versed in complex variable theory, two useful sources are Henrici (1977) and Odlyzko (1995). The transfer
theorems of Flajolet & Odlyzko (1990) encapsulate much of this knowledge in a very useful way; see also
Wilf (1994) for an elementary introduction.

When the sequence a0, a1, a2, . . . is replaced by a multidimensional array {ar1,... ,rd
}, things become

much more hit and miss. Let us use boldface to denote vectors in C
d or N

d, and use multi-index notation,
so that ar denotes the multi-index ar1,... ,rd

and zr denotes the product zr1

1 · · · zrd

d which we will sometimes

write in expanded form for clarity. The generating function F : C
d → C is defined analogously to the

one-dimensional generating function by

F (z) =
∑

r∈Nd

arz
r.

Surprisingly, techniques for extracting asymptotics of {ar} from the analytic properties of F were, until
recently, almost entirely missing. In a survey of asymptotic methods, Bender (1974) says:
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2 ROBIN PEMANTLE AND MARK C. WILSON

Practically nothing is known about asymptotics for recursions in two variables even when a
generating function is available. Techniques for obtaining asymptotics from bivariate generating
functions would be quite useful.

In the intervening 25 years, some results have appeared, addressing chiefly the case where the array {ar}
obeys a central limit theorem. Common to all of these is the following method. Treat {ar} as a sequence
of (d − 1)-dimensional arrays indexed by rd; show that the nth (d − 1)-dimensional generating function
is roughly the nth power of a given function; use this approximation to invert the characteristic function
and obtain a Central Limit Theorem. We refer to these methods as GF-sequence methods. The other
body of work on multivariate sequences, which we will call the diagonal method, is based on algebraic
extraction of the diagonal, as found in Hautus & Klarner (1971) ( see also Furstenberg (1967) and later
Lipshitz (1988) for an algebraic description of the scope of this method; variants are described in Stanley
(1999) and Pippenger (2000)).

The most fundamental GF-sequence result is probably Bender & Richmond (1983), with extensions
appearing in later work of the same authors. Flajolet & Sedgewick (1997) present a version of the
same idea which holds in much greater generality. Gao & Richmond (1992) go beyond the central limit
case, using the transfer theorems of Flajolet & Odlyzko (1990) to handle functions that are products of
powers with powers of logs. Recent work of Bender and Richmond (Bender & Richmond 1996, Bender &
Richmond 1999) extends the applicability of the central limit results to many problems of combinatorial
interest; see also (Hwang 1995, Hwang 1998b), where more precise asymptotics are given, and Hwang
(1998a), which extends some results to the combinatorial schemes of Flajolet & Soria (1993). This does
not exhaust the recent work on the problem of multivariable coefficient extraction, but does circumscribe
it.

The present paper, together with forthcoming companion papers, takes aim at a large class of multivari-
able coefficient extraction problems, for which a fair amount of information can be read off in a systematic
way. An ultimate goal (not our only goal) is to systematize the extraction of multivariate asymptotics
sufficiently that it may be automated, say in Maple. Everything we do, we do with complex contour
integration. In this regard, our methods are most similar to those of Bertozzi & McKenna (1993), who,
as we do, provide a general framework for harnessing the multivariable theory of residues for exact and
series computation of coefficients. A more detailed description of our method will be given in Section 3,
but here is an outline.

(1) Use the multidimensional Cauchy integral formula to represent ar as an integral over a
d-dimensional torus inside C

d.
(2) Expand the surface of integration across a point z where F is singular, and use the

residue theorem to represent ar as a (d− 1)-dimensional integral of one-variable residues. The
choice of z determines the directions in which asymptotics may be computed.

(3) Put this in the form of an integral
∫

exp(λf(z))ψ(z) dz for which the large-λ asymptotics
can be read off from the theory of oscillating integrals.

In the rest of this introductory section, we describe the scope of our methods. Figure 1 depicts a
classification of generating functions and illustrates the remainder of this paragraph. If a formal power
series is nowhere convergent, analytic methods are useless. Among those power series converging in some
neighborhood of the origin, there are three possibilities: a function may be entire, may have singularities
around which analytic continuations exist, or it may be defined only on some bounded subset of C

d. Our
methods are tailored to the second class. The third class, although in some sense generic, seldom arises
in any problem for which the generating function may be effectively described. Incomplete asymptotic
information is available via Darboux’ method; details of this method in the univariate case are given in
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Figure 1. Classification of generating functions

Henrici (1977) and Odlyzko (1995). The first class can and does arise frequently. Our methods are simply
not equipped to handle entire functions, and systematizing the asymptotic analysis of coefficients of entire
generating functions remains an important open problem.

For the remainder of this paper, we will assume that the formal power series F converges in a neigh-
borhood of the origin and may be analytically continued everywhere except a set V of complex dimension
d − 1 which we call the singular variety. The point z in step 2 is an element of V, and the behavior of
V near z greatly affects the subsequent analysis in step 3. This paper addresses the case where z is a
smooth point of V at which F has a pole. The forthcoming companion papers will address cases where z
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is a multiple point or a cone point. We do not know whether cases where z is a cusp of V arise, but if so,
the subsequent analysis has mostly been carried out in the work of Arnol’d, Gusĕın-Zade & Varchenko
(1988).

The chief purpose of this study is to give a solution to the problem of asymptotic evaluation of coef-
ficients that is as general as possible. An important part of this is re-derivation in a general setting of
results obtainable via GF-sequence or ad hoc methods. We show in Section 6 how unifying these results
allows us to show that our method successfully finds asymptotics for every function in a certain large class.
Familiar examples from this class include: lattice path counting, various known generating functions for
polyominos and stacked balls, enumeration of Catalan trees by number of components or surjections by
image cardinality (see Flajolet & Sedgewick (1997), stopping times for certain random walks (see Larsen
& Lyons (1999)), as well as the examples given in the GF-sequence papers of Bender (1973) and Bender
& Richmond (1983): ordered set partitions enumerated by number of blocks, permutations enumerated
by rises, and Tutte polynomials of recursive sequences of graphs.

Nevertheless, our pursuit of this problem was also motivated by some specific applications which we
mention briefly now and discuss more thoroughly later. These are cases where known methods do not
suffice to obtain complete asymptotic information. There is a class of tiling enumeration problems for
which an explicit three variable rational generating function may be obtained. This class includes the
Aztec Diamond domino tilings of Cohn, Elkies & Propp (1996). Asymptotics in the so-called region of
fixation are obtained from analysis of the smooth points of V (Theorem 3.5 below), while asymptotics
in the region of positive entropy are derived from analysis of the cone point. Cohn& Pemantle (2000)
applies a cone point analysis to a tiling enumeration problem for which the only previous results are some
pictures via simulation (http://www.math.harvard.edu/˜cohn/picture.gif) . Another motivation has been
to solve the general multivariable linear recursion. Depending on whether one allows forward recursion in
some of the variables, one obtains either rational or algebraic generating functions. The general rational
function may have any of the types of singularities mentioned above: smooth points, nodes, cones, cusps,
branchpoints, etc. Even the simple rational generating function 1/(3−3z−w+z2) of Example 3.4 requires
two separate analyses in order to get asymptotics in all directions. We will see that Theorem 3.1 gives
asymptotics in one region, while Theorem 3.3 is required for other directions.

Asymptotics derived near smooth pole points nearly always exhibit central limit behavior. Smooth
pole points are the topic of this first paper, and are exactly the case to which existing methods may
apply. While one function of this paper is to lay foundations for the cases in which the singularity is more
complicated, there are several ways in which it improves upon available analyses of the smooth case.

First, most of the existing results assume that the singular point z ∈ V has positive real coordinates,
and that it is strictly minimal in a sense defined in the next section. This assumption often holds when
the coefficients {ar} are nonnegative reals, though it will fail if, for example, there is any periodicity. The
assumption always fails when the coefficients {ar} have mixed signs, as is the case for example with the
generating functions (1 − zw)/(1 − 2zw + w2) and 1/(1 − 2zw + w2) for the Chebyshev polynomials of
the first and second kinds (Comtet 1974, page 50). GF-sequence methods may be adapted to some of
these situations. Indeed, the presentation of these methods by Flajolet & Sedgewick (1997, Theorem 9.7)
accomplishes this adaptation in great generality. But certainly there are cases such as the rational
generating function 1/(1 − z − w + βzw), where the points z with given moduli form a continuum and
standard GF-sequence methods are not sufficient.

Second, our methods obtain automatically a full asymptotic expansion of ar1,... ,rd
in decreasing powers

of the indices rj . This is certainly not inherent in the existing results, whose relatively short proofs involve
inversion of the characteristic function (see however Hwang (1995) and Hwang (1996) for something in
this direction). The expansion to n terms is completely effective in terms of the first n partial derivatives
of 1/F at z, as is the error bound.

http://www.math.harvard.edu/~cohn/picture.gif
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Third, these results explicitly cover the case where the pole at z has order greater than 1. The behavior
in this case is not according to the central limit theorem. The only existing work addressing this case is
Gao & Richmond (1992), and they require nonnegativity assumptions, as mentioned above. In the case
where F = Gk is an exact power, one could attempt first to solve the problem for G and then to take the
k-fold convolution. This is much harder than the present approach, as may be seen by the rather involved
computation in Cohn et al. (1996).

Fourth, the potential for increasing the scope to new applications seems greater for contour methods
than for GF-sequence methods. The contour method reduces the asymptotic problem to the problem of an
oscillating integral near a singularity, which can almost certainly be done. By contrast, the GF-sequence
method requires first an understanding of the sequence of (d− 1)-dimensional generating functions aris-
ing from the given d-dimensional generating function, and then another result in order to transfer this
information to asymptotics of the coefficients ar.

Fifth, although our results in the case of smooth pole points are often similar to those obtained by
GF-sequence methods, our hypotheses are quite different. In Section 6 we show how our hypotheses may
be universally established for functions that generate nonnegative values and are meromorphic through
their domain of convergence.

Finally, we compare our method to recent results from the diagonal method. It is known (Lipshitz 1988)
that the diagonal sequence an,n,... ,n of a multivariate sequence with rational generating function has a
generating function satisfying a linear differential equation over rational functions. Much is known about
how to compute this equation (see for example Chyzak & Salvy (1998)). If one wants asymptotics on the
diagonal, or in any direction where the coordinate ratios are rational numbers with small denominators,
then these methods give results that are in theory at least as good as ours. The method, however, is
inherently non-uniform in the direction, so there is no hope of extending it to larger sets of directions,
which is what we accomplish in the present work.

The remainder of the paper is organized as follows. In the next section we set forth notation and define
the terms necessary to state the main results of the paper. The main results are stated in Section 3,
and examples are given. The next section contains a proof of these results, modulo the computation of
some oscillating integrals. This computation is carried out in Section 5. Section 6 outlines some details
of taxonomy and discusses universality of the method of complex contour integration. The final section
states some open problems.

2. Notation and Preliminaries

The main results of this paper give asymptotics valid under certain geometric assumptions on V and
computable from some quantities that are in turn effectively computable from the generating function F .
Thus in addition to setting out basic notation, we need to define some terms related to the geometry of
V and some quantities associated with F .

2.1. Notation. Throughout the paper, F =
∑
arz

r will denote a function on C
d analytic in a neighbor-

hood of the origin. The (open) domain of convergence of the power series will be denoted D. For z ∈ C
d,

let T (z) denote the torus consisting of points w with |wj | = |zj | for 1 ≤ j ≤ d and let D(z) denote the
closed polydisk of points w with |wj | ≤ |zj | for 1 ≤ j ≤ d. Recall (see Hörmander (1990)) that the domain
D is a union of tori T (z) and is logarithmically convex, that is, the set

logD := {x ∈ R
d : (ex1 , . . . , exd) ∈ D}

is a convex subset of R
d and is an order ideal, that is, it is closed under ≤ in the coordinatewise partial

order.



6 ROBIN PEMANTLE AND MARK C. WILSON

We assume throughout that F = G/H, where both G and H are analytic in a neighborhood of D(z)
for some point z. In particular, every meromorphic function satisfies this condition 1. The set where H
vanishes will be denoted V. Many of our examples will be in dimension 2, in which case we will often use
z and w in place of z1 and z2, use (z,w) in place of z, and use (r, s) in place of (r1, r2). We sometimes
need to treat C

d as C
d−1 × C (although symmetry of the coordinates is preserved most of the time).

Accordingly, when the dimension is greater than 2, we use ẑ to denote (z1, . . . , zd−1). Partial derivatives
will be denoted H1 for ∂H

∂z1
and so forth; in dimension 2 we will also use Hz and Hw.

As is usual for asymptotic analyses, we let f ∼ g denote f/g → 1, with the limit taken at infinity
unless otherwise specified. The function f is said to be rapidly decreasing if f(x) = O(x−N ) for every N ,
and is said to be exponentially decreasing if f(x) = O(e−cx) for some c > 0. We also use the symbol “∼”
to denote asymptotic expansion. Thus

f ∼
∑

bngn

is normally taken to mean that f −∑N
n=0 bngn = o(bNgN ), where bn ∈ C and {gn} is a fixed sequence of

functions such that gn+1 = o(gn) for each n. We broaden this to allow bn = 0 when n 6= 0, so that the
remainder term need only be o(gn) and not o(bngn). In particular, if

f(x) ∼ g(x) ·
∞∑

n=0

cnx
−n

with c0 = 1, then we say we have obtained a full asymptotic expansion for f in decreasing powers of x
with leading term g.

2.2. Geometry of V. As in the one-dimensional case, the points of V nearest the origin are the most
important. Accordingly we define a point z ∈ V to be minimal if V ∩D(z) ⊆ T (z); we say that z is locally
minimal if the analogous relation holds with V replaced by a neighborhood of z in V. Divide the minimal
points of V into three types. Say that z is strictly minimal, finitely minimal or toral, according to whether
the cardinality of V ∩D(z) is 1, finite, or infinite. When infinite, the intersection must be uncountable.
If z is a minimal point of V then the interior of D(z) is contained in D, so the assumption that G and H
are analytic on a neighborhood of D(z) is just a little stronger than what is true automatically.

A simple pole of F is a point z ∈ V where H vanishes to order 1. Equivalently, the gradient ∇H does
not vanish. Let z be a simple pole of F and assume for specificity that Hd is nonzero at z. By the implicit
function theorem, there is a neighborhood of z where V may be parametrized by zd = g(z1, . . . , zd−1) for
some analytic function g. We will always use g to denote this parametrization.

We will see later (in the proof of Theorem 6.3) that under some hypotheses on F , minimal points of V
are always found in the positive real orthant. A relation true in complete generality is the following.

Lemma 2.1. Let z be a simple pole of F and suppose that zdHd does not vanish there. If z is locally
minimal then for all j < d, the quantity zjHj/(zdHd) is real and nonnegative.

Proof. Given θ and j, let z(θ) be the result of varying z by multiplying the jth coordinate by eiθ and
adjusting the last coordinate so as to remain on V (that is,

z
(θ)
d = g(z1, . . . , zj−1, zje

iθ, zj+1, . . . , zd−1)). Differentiating the relation H(z(θ)) = 0 implicitly with

1The greater generality allows us to cover examples such as the generating function for self-avoiding random walks (Chayes
& Chayes 1986) or percolation paths in the subcritical regime (Campanino, Chayes & Chayes 1991). In these cases, all the
work is in showing the function is meromorphic in a neighborhood of D(z). Without further knowledge, the authors then
conclude central limit behavior.
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respect to θ at 0 yields

izjHj +Hd
dz

(θ)
d

dθ
= 0.(2.1)

By minimality of z, we know that the modulus of z
(θ)
d has a minimum at θ = 0, hence (dz

(θ)
d /dθ)/zd is

purely imaginary. Plugging this into (2.1) proves that zjHj/(zdHd) is real. If zjHj/(zdHd) = −β < 0

then V has a tangent vector at z in the direction −zjej − βzded, where ej is the jth coordinate vector.
This contradicts minimality. Hence zjHj/(zdHd) ≥ 0.

Definition 2.2. Define dir(z) to be the equivalence class of (complex) scalar multiples of the vector
(z1H1, . . . , zdHd), defined whenever zjHj does not vanish for all j. By the previous lemma, when z is a

minimal pole of F with nonzero coordinates, dir(z) is a well defined element of RP
d−1.

The importance of dir is that analysis of F near z yields asymptotic information about ar with r ∈
dir(z). The function dir appears in GF-sequence method literature as m. When z ∈ ∂D is on the
boundary of the domain of convergence, dir(z) is the normal to the support hyperplane of the convex set
logD at the point (log |z1|, . . . , log |zd|).

We now define a few more quantities associated with F and g. Again, we will reserve the names of
these functions, so as not to burden the notation with subscripts and arguments. If z is a simple pole of
F with zdHd not vanishing there, define a function ψ on a neighborhood of ẑ by

ψ(ŵ) = − lim
w→g(ŵ)

(w − g(ŵ))
F (ŵ, w)

w
.(2.2)

Suppose now that ŵ ∈ T (ẑ) and write wj = zje
iθj . For fixed r with rd 6= 0, define a function f on a

neighborhood of ẑ in T (ẑ) by

f(ŵ) = log

(
g(ŵ)

g(ẑ)

)
+ i

d−1∑

j=1

rj
rd
θj .(2.3)

We will be parametrizing integrals over T (ẑ) by θ, so we will want the above function expressed

in terms of θ̂. We therefore compose with the map M taking θ̂ to ŵ defined by M(θ1, . . . , θd−1) =

(z1e
iθ1 , . . . , zd−1e

iθd−1), and define the functions g̃ := g ◦M, f̃ := f ◦M, ψ̃ := ψ ◦M .

Although it is not obvious yet, f̃ will always vanish at 0 to at least two orders (Lemma 4.2 below), and

the hypothesis Q 6= 0 in Theorem 3.1 is equivalent to f̃ having nonvanishing quadratic term. For ease of
reference, Table 2.2 summarizes the foregoing definitions, stratified by how many times the given data G
and H have been manipulated.

3. Statement of results, with examples

Before going on, we pause to state a prototype of our results in the simplest possible setting, namely
where the number of variables is 2, the functions G and g are as nondegenerate as possible, and only the
leading term asymptotic is given. The proof is in Section 4.

Theorem 3.1. Let F = G/H be a meromorphic function of two variables, not singular at the origin.
Define

Q(z,w) := −w2H2
wzHz − wHwz

2H2
z − w2z2

(
H2

wHzz +H2
zHww − 2HzHwHzw

)
.

Then

ar,s ∼
G(z,w)√

2π
z−rw−s

√
−wHw

sQ
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Table 1. Reserved notation in remainder of this article

Given information:
the function F in the form G/H

First level:
g parametrizes the zero set, V of H
dir(z) is the coordinatewise product (∇H) · (z) in projective space

Second level:
ψ is the residue in zd of F/zd at points (ẑ, g(ẑ))
f is log g, plus a term linear in log zj and depending on r.

Third level:

ψ̃, g̃ and f̃ are ψ, g and f expressed in terms of θ

uniformly as (z,w) varies over a compact set of strictly minimal, simple poles of F on which Q and G
are nonvanishing, and (r, s) ∈ dir(z,w).

Remarks: Usually the expression in the radical will be positive real, as will the coefficients ars. The result
is true in general, though, as long as the square root is taken to be −wHw times the principal root of
Q/(−wH3

w). Also note that when (r, s) ∈ dir(z,w) then the expression wHw/s is coordinate-invariant,
that is, equal to zHz/r. Thus the given expression for ar,s has the expected symmetry.

Example 3.2 (Lattice paths).

Let ar,s be the number of nearest-neighbor paths from the origin to (r, s) moving only north, east
and northeast; these are sometimes called Delannoy numbers Stanley (1999, page 185). The generating
function is F (z,w) = 1/(1−z−w−zw). The zero set V of H = 1−z−w−zw is given by w = (1−z)/(1+z),
and the minimal points of V are those where w ∈ [0, 1]. With the help of relations that hold when z ∈ V
we may compute as follows.

Hz = −1 − w

−zHz = 1 − w

Q = (1 − z)(1 − w)(1 − zw)

zHz

wHw
=

1 − w

1 − z
=

1 − w2

2w

with Hw and −wHw given by reversing z and w. As z varies over [ε, 1 − ε], the functions Q and G := 1

do not vanish. The minimal pair (z,w) that solves (r, s) ∈ dir(z,w) is given by z = (
√
r2 + s2 − s)/r and

w = (
√
r2 + s2 − r)/s. Theorem 3.1 then gives

ars ∼
(√

r2 + s2 − s

r

)−r(√
r2 + s2 − r

s

)−s√
1

2π

√
1 − z

s

1

1 − zw

=

(√
r2 + s2 − s

r

)−r(√
r2 + s2 − r

s

)−s√
1

2π

√
rs

(r + s−
√
r2 + s2)2

√
r2 + s2

,
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uniformly when r/s and s/r remain bounded. In particular, when r = s = n, this gives the following
formula for the nth diagonal coefficient (which may alternatively be obtained by computing the diagonal

generating function (1 − 6s+ s2)−1/2 according to the method given in Stanley (1999, Section 6.3):

(
√

2 − 1)−2n

√
1

2π

2−1/4

2 −
√

2
.

The computations in Theorem 3.1 in terms of the values and derivatives of G and H are explicit. As
we state more general theorems, it becomes cumbersome and in fact obfuscating to give formulae for the
expansion coefficients directly in terms of derivatives of G and H. This is one reason we have already
introduced the functions in Table 2.2. It should be emphasized, however, that while we use higher level
quantities in the statements of subsequent theorems, each expansion coefficient can be computed from
finitely many derivatives of G and H. We begin with a relatively explicit computation for the general
two-variable case.

For k at least 2, we define constants

A+(k, l) :=
1

k
Γ

(
l + 1

k

)
(3.1)

A(k, l) :=
1

k
Γ

(
l + 1

k

)(
1 + esgn Arg(ck)iπ(l− l+1

k
)
)

if k is odd,(3.2)

A(k, l) :=
2

k
Γ

(
l + 1

k

)
if k, l are even,(3.3)

A(k, l) := 0 if k is even and l is odd.

Let

y(x) = f(x)1/k = c
1/k
k x

(
1 +

f(x) − ckx
k

ckxk

)1/k

,

where ck is the first nonvanishing Taylor coefficient of f(x) =
∑∞

j=k cjx
j and the argument of c

1/k
k is

taken between −π/(2k) and π/(2k). Let η denote the inverse function to y and let {bj} be the Taylor

coefficients of (ψ̃ ◦ η) · η′. Clearly each {bj} is determined by finitely many partial derivatives of G and

H, and the index l0 of the first nonvanishing bl is the same as the order of vanishing of ψ̃ at 0. The
coefficients bl are easily computed from the coefficients b̃j := ψ̃(j)(0)/j! and cj := f̃ (j)(0)/j!; in particular,

if f̃ ∼ ckx
k near 0 then

bl0 = b̃l0c
−1/k
k .(3.4)

Theorem 3.3. Let F = G/H =
∑
arsz

rws have a strictly minimal, simple pole at (z,w). Let k be the

order of vanishing of f̃ at 0. Let l0 be the order to which G vanishes near (z,w) on V, that is, the largest
l such that G(z′, w′) = O(|z − z′|l + |w − w′|l) as (z′, w′) → (z,w) in V. Then there is a full asymptotic
expansion

ar,s ∼
1

2π
z−rw−s

∑

l≥l0

A(k, l)bls
−(l+1)/k ,(3.5)

where A(k, l) denotes A(k, l) if Im{ck} ≥ 0 and A(k, l) otherwise. The expansion is uniform as (z,w)
varies over a compact set of strictly minimal poles with (r, s) ∈ dir(z,w) and k and l0 not changing.
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Figure 2. V for Example 3.4

Example 3.4 (Cube root asymptotics). Let F (z,w) = 1/(3 − 3z − w + z2). The set V is the set {w =
z2 − 3z + 3} and g(z) = z2 − 3z + 3. The point (1, 1) is in V, indicating that the maximal exponential
growth rate will be zero. Indeed, for directions above the diagonal, Theorem 3.1 or 3.3 may be used at
the minimal points {(z, g(z)) : 0 < z < 1}, while each direction below the diagonal corresponds to a pair
of complex minimal points fitting the hypotheses of Corollary 3.7; the result is that the coefficients decay
exponentially at a rate that is uniform over compact subsets of directions not containing the diagonal.

The interesting behavior is near the diagonal. The relevant minimal point is (1, 1), where zrws ≡ 1

and the decay is sub-exponential. Computing f̃ ′′(0) via equation (4.8) below gives

f̃ ′′(z) = −3
z(z2 − 4z + 3)

(z2 − 3z + 3)2
.

This vanishes when z = 1, and computing further, we find that f̃ vanishes to order exactly 3 here, with
c3 := f̃ ′′′(0)/3! = i. Along with ψ̃(0) = 1, this then results in an asymptotic expansion whose leading
term is given by

ar,r ∼ 1

2π
A(3, 0)i−1/3(1 + e−iπ/3)r−1/3 =

Γ(2/3)

6
√

3π
r−1/3 .

In Section 7 we discuss the question of computing asymptotics “in the gaps” so as to be able to conclude

that lim sup log ar/ log |r| = −1/3 or even lim sup |r|1/3ar = Γ(2/3)

6
√

3π
.

For more than two variables a result holds similar to the two-variable result.
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Theorem 3.5. Let F = G/H =
∑
arz

r have a strictly minimal, simple pole at z. Suppose zdHd does

not vanish. If the Hessian of f̃ at z is nonsingular, then there is an expansion

ar ∼ z−r
∑

l≥l0

Clr
(1−d−l)/2
d

where l0 is the degree to which G vanishes on V near the point z . When G does not vanish at z then
l0 = 0 and

C0 = (2π)(1−d)/2 H−1/2 G(z)

zdHd

where H is the determinant of the Hessian at z.

Example 3.6 (Domino tilings). Random perfect tilings of planar regions by dominos have been a subject
of some interest, since the analysis by Fisher (1961) of this model for dimer packing uncovered an exact
expression for the partition function of the ensemble. A generating function is given in Cohn et al. (1996)
which allowed the authors to determine, after some cumbersome analysis, which parts of a diamond-
shaped region (a union of lattice squares approximating the region |x| + |y| ≤ k) were asymptotically
deterministic and which contained randomness in the limit as the edge size of the diamond grew.

An easier analysis in the region of non-randomness is available via Theorem 3.5 together with a slightly
more informative generating function than was used by Cohn et al. (1996). In particular, let

F (x, y, z) =
∞∑

t=0

∑

|r|+|s|≤t

ar,s,tx
ryszt

be the generating function for the probability ar,s,t that the tile covering position (r, s) of a random
diamond of size t will be horizontal. For brevity, we omit formal descriptions of the diamond and its
indexing. We remark that the use of negative indices (for each fixed t, the sum

∑
|r|+|s|≤t is a polynomial

in x, x−1, y and y−1) does not require any alterations in the theory (see Cohn & Pemantle (2000) for
justification), and that the natural way to parametrize directions is by the pair (r/t, s/t) which varies
over the diamond |r/t| + |s/t| = 1. From Cohn et al. (1996) or from the generation algorithm in Gessel,
Ionescu & Propp (1995), one finds

F (x, y, z) =
z/2

1 − (x+ x−1 + y + y−1)z/2 + z2
.

Cohn & Pemantle (2000) show that whenever (r, s, t) satisfy

t =

√
r2 + s2 + 2

√
r2 + 1

√
s2 + 1 − s ,

then there is a smooth minimal point (x, y, z) on the pole manifold of F for which (r, s, t) ∈ dir(x, y, z),
yielding exponential decay in the direction (r, s, t). The set of directions so parametrized turns out to be
the region between the diamond |r/t|+ |s/t| = 1 and the inscribed circle (r/t)2 +(s/t)2 = 1/2. Thus they
recover the description of the region of non-randomness as the complement of the inscribed circle. They
also obtain descriptions of the region of fixation for related tiling problems in which no other analysis has
been carried out.

The extension of all of the above results to finitely minimal points is routine.

Corollary 3.7. Suppose z is a finitely minimal point of V with V ∩ T (z) = {z1, . . . , zn}. Then

ar ∼
n∑

j=1

Ej(r)
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where Ej(r) is the asymptotic expression given by the previous theorems with z = zj . In other words, if
there are finitely many points on V ∩T (z), then sum the contributions as if each were strictly minimal.

Example 3.8 (Chebyshev polynomials). Let F (z,w) = 1/(1 − 2zw+w2) be the generating function for
Chebyshev polynomials of the second kind (Comtet 1974); of course asymptotics for these are well known
and easy to derive by other means. To use Corollary 3.7, first find the minimal points for the direction

(r, s), which are (i(β − β−1)/2, iβ) for β = ±
√

s−r
s+r . Computing Q = 4a2(1 − a2) and summing the two

contributions then gives

ars ∼
√

2

π
(−1)(s−r)/2

(
2r√
s2 − r2

)−r (√s− r

s+ r

)−s√
s+ r

r(s− r)

when r + s is even and zero otherwise, uniformly as r/s varies over compact subsets of (0, 1).

4. Proofs of main results

Half of each theorem is easy and follows directly from Cauchy’s formula

ar =

(
1

2πi

)d ∫

T
w−r−1F (w) dw(4.1)

where the multi-exponent r−1 means (r1−1, . . . , rd−1). Indeed, if z is a minimal point of V then letting
T approach T (z) from the inside, we see that |zr|ar does not increase exponentially. If, furthermore, the
hyperplane through (log |z1|, . . . , log |zd|) normal to r is not a support hyperplane for logD, then some
x ∈ logD has x · r > (log |z1|, . . . , log |zd|) · r, and integrating on the torus T (ex) shows that |zr|ar
decreases exponentially. All the work, therefore, is in showing the converse, namely that when the
hyperplane normal to r is a support hyperplane, then z−r does give the right exponential order for ar.
This is done by evaluating ar.

Theorems 3.1–3.5 all begin with the reduction of an iterated Cauchy integral to an oscillating integral
in one fewer dimension.

Lemma 4.1. Let z be a strictly minimal simple pole of F = G/H. Assume that zdHd 6= 0. For a

neighborhood Ñ of 0 in R
d−1 define a quantity

Ξ := (2π)1−dz−r

∫

Ñ
exp(−rdf̃(θ̂))ψ̃(θ̂) dθ̂.(4.2)

Then the quantity
|zr| |ar − Ξ|

decreases exponentially as Ñ remains fixed and r → ∞.

Proof. For ε ∈ (0, |zd|), let T be the torus T (z) shrunk in the last coordinate by ε, that is, the set of w

for which |wj | = |zj |, j < d and |wd| = |zd| − ε. Write Cauchy’s formula as an iterated integral

ar =

(
1

2πi

)d ∫

T (ẑ)
ŵ−r̂−1

[∫

C1

w−rd

d F (w)
dwd

wd

]
dŵ .(4.3)

Here C1 is the circle of radius |zd| − ε. Let K ⊆ T (ẑ) be a compact set not containing ẑ. For each
fixed ŵ ∈ K, the function F (ŵ, ·) has radius of convergence greater than |zd|. Hence the inner integral
in equation (4.3) is O(|zd| + δ)−rd for some δ > 0. By continuity of the radius of convergence,we may
integrate over K to see that

|zr|
∫

K×C1

w−r−1F (w) dw



ASYMPTOTICS OF MULTIVARIATE SEQUENCES I 13

decreases exponentially. Thus if N is any neighborhood of ẑ in T (ẑ), the quantity

|zr|
∣∣∣∣∣ar −

(
1

2πi

)d ∫

N
ŵ−r̂−1

[∫

C1

F (w)

wrd+1
d

dwd

]
dŵ

∣∣∣∣∣

decreases exponentially. Thus we have reduced the problem to an integral over a neighborhood of ẑ.
Near z there is a parametrization wd = g(ŵ) of V. Let C2 be the circle of radius |zd|+ ε. Then when N

is sufficiently small compared to ε, the image of N under g is disjoint from C2. Fix such a neighborhood.
For any ŵ ∈ N , the function F (ŵ, ·) has a single simple pole in the annulus bounded by C1 and C2,
occurring at g(ŵ). The residue in the last variable of F at g(ŵ) is equal to

R(ŵ) := −ψ(ŵ)g(ŵ)−rd(4.4)

where ψ is defined in (2.2). Therefore, for each fixed ŵ ∈ N ,
∫

C1

F (w)

wrd+1
d

dwd =

∫

C2

F (w)

wrd+1
d

dwd − 2πiR(ŵ).

But |zr
∫
C2
F (w)dwd/w

r+1| is bounded by a constant multiple of (1 + ε/|zd|)−rd (the constant depending

on the maximum of F on C2) and hence |zr||ar −X| is exponentially decreasing, where

X = (2πi)1−d

∫

N
(ŵ)−r̂−1g(ŵ)−rdψ(ŵ) dŵ(4.5)

= (2πi)1−dz−r

∫

N

ŵ−r̂

ẑ−r̂

dŵ
∏d−1

j=1 wj

(
g(ŵ)

g(zd)

)−rd

ψ(ŵ)

Changing variables to wj = zje
iθj and dwj = iwjdθj turns the quantity X into

(2π)1−dz−r

∫

Ñ

d−1∏

j=1

e−irjθj ψ̃(θ̂)

(
g(ŵ)

g(ẑ)

)−rd

dθ̂

and plugging in the definitions of f and f̃ at (2.3) above yields

(2π)1−dz−r

∫

Ñ
exp(−rdf̃(θ̂))ψ̃(θ̂) dθ̂

which is none other than Ξ.

Remark. It is possible to compute from Cauchy’s integral formula in a more coordinate-free way as follows.
There is a unique holomorphic (d − 1)-form ωF on V for which ω ∧ dH = Gdz1 ∧ · · · ∧ dzd. Let Ω be a
(d+1)-manifold that is a homotopy from a small torus to a torus at infinity. Then M := Ω∩V is a (d−1)-
manifold and ar = (2πi)−d

∫
M w−r−1dF in the sense of currents, which is none other than

∫
M wr−1ωF .

See Kenyon & Pemantle (2000) for a more thorough discussion of the foregoing. The manifold M is
any member of a certain homology class in V with the coordinate axes removed, and choosing M to
pass through the stationary phase point for the integrand replicates the selection of z with r ∈ dir(z).
Although more canonical, the coordinate-free method is less suitable for explicit computation, so we do
not pursue it further here. Suffice it to point out that the conclusion of Theorem 3.5 may of course be
written in terms more evidently symmetric, as was done in Theorem 3.1.

Equation (4.2) is easily recognized as the standard form for an oscillating integral. The only unusual
feature is that the phase is neither real nor purely imaginary. This presents no difficulties, but it does
necessitate the statement of a result in Section 5 that is a little different from the usual results on purely
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oscillating integrals, found in, for example, Stein (1993) or Bleistein & Handelsman (1986). We first

establish that θ̂ = 0 is a stationary phase point for the function f̃ when r ∈ dir(z).

Lemma 4.2. The quantity f̃(0) always vanishes. If r ∈ dir(z) then ∇ f̃(0) = 0 and the real part of f̃
has a strict minimum at 0.

Proof. The first statement is immediate. To prove the second, let j ≤ d − 1 and see from the definition
of f that

rdfj(ẑ) =
rdgj(ẑ)

g(ẑ)
+
rj
zj
.

By definition of dir, the ratio rj/(zjHj) is some constant c independent of j, hence

c−1rdf(z) = gj(z)Hd(z) +Hj(z).

The right hand side of this is the derivative ofH(w1, . . . , wd−1, g(ŵ)) with respect to wj at ẑ. By definition

of g this vanishes, and hence fj(ẑ) = 0. But f̃j(0) = izjfj(z), so the gradient of f̃ must vanish at 0.

Finally, observe that Re{f̃(θ̂)} = − log |g̃(θ̂)/zd|. By strict minimality of z, the modulus of g(ŵ) = g̃(θ̂)
is greater than |zd| for any ŵ ∈ T (ẑ).

We now prove Theorems 3.1, 3.3 and 3.5 in reverse order. We see from Lemma 4.1 that proving any
of these theorems amounts to evaluating the quantity Ξ in equation (4.2). From Lemma 4.2 we see that

0 is a stationary point for the function f̃ as long as r ∈ dir(z). The function f̃ is in general complex
valued, but we will see in Theorem 5.4 that it may be treated as if it were real valued, given the strict
minimality of the zero guaranteed by Lemma 4.2 and the nonsingularity hypothesis. In particular the

leading term of the integral in (4.2) is (2π)(d−1)/2ψ̃(0)r
(1−d)/2
d divided by the product of the square roots

of the eigenvalues of the Hessian. Once we have identified ψ̃(0) = ψ(0) as G(0)/(zdHd), the theorem
follows directly from Theorem 5.4.

Theorem 3.3 follows from the more explicit asymptotic development given in Corollary 5.3. Finally,
to prove Theorem 3.1, it remains to compute the quantity f̃ ′′(0) in terms of the partial derivatives of H.
First we compute the derivatives of g.

Lemma 4.3. In a neighborhood of (z,w), ψ and the derivatives of g are as follows.

g′(z) = −Hz

Hw
(4.6)

g′′(z) = − 1

Hw

[
Hzz − 2

Hz

Hw
Hzw +

H2
z

H2
w

Hww

]
.(4.7)

ψ(z) =
G(z,w)

−wHw(z,w)
.

Proof. Differentiate the equation H(z, g(z)) = 0 to get Hz + g′(z)Hw = 0 which is the same as (4.6).
Differentiate again to get

Hzz + 2g′Hzw + g′′Hw + (g′)2Hww = 0

and use (4.6) to eliminate g′, giving (4.7). The formula for ψ follows from the definitions of ψ and of the
partial derivative.
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Proof of Theorem 3.1 via direct computation: We know from Lemma 4.2 that f̃ vanishes to order
at least two at 0. To compute f̃ ′′(0), observe first that f̃ ′′ − log g̃ is linear in θ, so f̃ ′′ = (log g̃)′′. When
Z = zeiθ, we have (d/dθ) = iZ(d/dZ), so

f̃ ′′ = iZ
d

dZ

(
iZ
d log g

dZ

)
= −Z d

dZ

(
Zg′

g

)
.

Expanding this yields

f̃ ′′ = −Z g
′ + Zg′′

g
+
Z2(g′)2

g2
.(4.8)

By our assumption, G does not vanish at (z,w), so as long as f̃ ′′(0) 6= 0, we may use Theorem 3.3 to
conclude that the leading term asymptotic for ar,s is the k = 2, l = 0 term of (3.5). The term b0 there is
equal to

ψ̃(0)η′(0) = ψ(z)

√
2/f̃ ′′(0) =

G(z,w)

−wHw(z,w)

√
2

f̃ ′′(0)
.

Thus from Theorem 3.3,

ar,s ∼
A(2, 0)

2π
z−rw−s G(z,w)

wHw(z,w)

√
2

sf̃ ′′(0)
.

Now evaluate this using the value A(2, 0) =
√
π and equation (4.8) along with (4.6) and (4.7) to obtain

ar,s ∼
1√
2π
z−rw−s G(z,w)

wHw(z,w)

√
(−wHw(z,w))3

sQ

where

Q = (−wHw(z,w))3 f̃ ′′(0) = (−wHw(z,w))3z
−g′(z) − zg′′(z)

g(z)
+
z2(g′(z))2

(g(z))2
.

With the help of Lemma 4.3 we see (using g(z) = w) that

Q = (−wHw)3
[
−z Hz

−wHw
− z2 1

−wHw

(
Hzz − 2

Hz

Hw
Hzw +

H2
z

H2
w

Hww

)
+
z2H2

z

w2H2
w

]
,

evaluated at (z,w), which simplifies to the expression in Theorem 3.1. We see also that the nonvanishing

hypotheses on Q is enough to guarantee f̃ ′′(0) 6= 0, which finishes the proof of Theorem 3.1.

5. Some oscillating integrals

The oscillating integrals we require are integrals over a neighborhood of zero in R
d of the complex-valued

integrand: ∫

N
exp(−λf(x))ψ(x) dx

where f(0) = 0,∇ f(0) = 0 and Re{f} ≥ 0. They are not difficult to compute, but since the standard
references assume f is either real or purely imaginary, we sketch the development of these results. We
mostly follow the exposition of Stein (1993), adapting it to complex-valued phase functions and simplifying
it to take advantage of the decay of the magnitude of the integrand in this case.

We begin with one-dimensional results. Let C∞
0 denote the class of smooth functions with compact

support. The following proposition is a well known consequence of Watson’s Lemma (see, for example,
Wong (1989, Ch. 2, Theorem 1)).
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Proposition 5.1. Let ψ ∈ C∞
0 (R) and denote bj = ψ(j)(0)/j!. Then as λ → ∞, there is an asymptotic

development ∫ ∞

0
exp(−λxk)ψ(x) dx ∼

∞∑

l=0

A+(k, l)blλ
−(l+1)/k,

where, as in (3.1),

A+(k, l) := k−1Γ

(
l + 1

k

)
.

We extend this to more general one-sided integrals by a complex change of variables. Given any
analytic, complex-valued function f on an interval [0, B], suppose that f(0) = 0, that f ′ 6= 0 on (0, B],

and let k ≥ 1 be the minimal so that f (k)(0) 6= 0. Let ψ ∈ C∞
0 vanishing to order l ≥ 0 at 0. Denote

cj = f (j)(0)/j! and bj = ψ(j)(0)/j!. The real part of ck is necessarily nonnegative. Define a function y on
[0, B] by

y(x) = f(x)1/k = c
1/k
k x

(
1 +

f(x) − ckx
k

ckxk

)1/k

,

where the argument of c
1/k
k is between −π/(2k) and π/(2k). The quantity f(x) − ckx

k is O(xk+1) near
zero, so y is analytic near 0, and, in particular, is a diffeomorphism between [0, B] and a contour γ from
0 to some B∗. Let F invert y. The derivatives of F at 0 are easy to compute formally and the first j + 1
starting from the kth depend only on the first j coefficients of f starting at ck. Define

ψ∗ = (ψ ◦ F ) · F ′ ;

b∗j = ψ∗ (j)(0)/j! .(5.1)

Theorem 5.2. Let f be analytic (complex-valued) on an interval [0, B]. Assume that f(0) = 0, that

f ′ 6= 0 on (0, B], and Re{f} has a strict minimum at 0. Let k ≥ 2 be minimal such that f (k)(0) 6= 0

and m be minimal so that the real part of f (m)(0) does not vanish. Let ψ ∈ C∞
0 , let l be minimal such

that ψ(l)(0) 6= 0, and denote cj := f (j)(0)/j!, bj := ψ(j)(0)/j!. Define b∗j as in (5.1). Then there is an
asymptotic development

∫ B

0
exp(−λf(x))ψ(x) dx ∼

∞∑

j=l

A+(k, j)b∗jλ
−(j+1)/k.(5.2)

The constant in the O(λ−(N+1)/k) term depends continuously (only) on the derivatives of f and ψ up to
(N + 1)m/k − 1.

Proof. Changing variables to y = f(x)1/k, the integral becomes
∫

γ
exp(−λyk)ψ∗(y) dy;

the curve γ is the image of [0, B] under y, so γ′(0) = c
1/k
k and γ remains in the right half plane, strictly

except at 0. For 0 < N < M write ψ∗ as PM + yM+1RM , where PM is a polynomial of degree M and
RM is bounded; this can be done since ψ∗ may be approximated by a degree M polynomial to within
O(yM+1) at 0.

First, evaluate ∫

γ
exp(−λyk)PM (y) dy
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by moving the contour. Replace γ by two line segments, the first of which goes along the positive real
axis to some distance ε and the second of which is strictly in the right half plane (we assumed Re{f} > 0
except at 0). The integral along the second segment is exponentially small since the integrand is. Hence
the combined contribution is the series (5.2) out to the j = M term.

Next, bound ∣∣∣∣
∫

γ
exp(−λyk)yM+1RM (y) dy

∣∣∣∣ .

With C representing different constants in different lines, we now observe that on γ we have Re{−yk} <
−C|y|m. Thus, parametrizing γ by arc-length, an upper bound is given by

∫ ∞

0
exp(−λCtm)tM+1C|RM (γ(t))| dt.

This is easily seen to be bounded above by Cλ−(M+2)/m where C depends on the first M derivatives of
f and ψ. Choosing M ≥ m(N + 1)k − 1 we have a remainder term that is O(λ−(N+1)/k), proving the
theorem.

The value of a two-sided integral follows as a corollary.

Corollary 5.3. Assume the hypotheses of Theorem 5.2, with f now defined on an interval [−B,B]. Then
there is an asymptotic development

∫ B

−B
exp(−λf(x))ψ(x) dx ∼

∞∑

j=l

A(k, j)b∗jλ
−(j+1)/k.(5.3)

with A(k, j) given by (3.2) and (3.3). The bounds on the remainder terms each depend continuously on
finitely many derivatives of f and ψ on [−B,B].

Proof. The two-sided integral is the sum of two one-sided integrals on intervals [0, B] and [−B, 0]. The
integral over [−B, 0] may be written as an integral over [0, B] of the function exp(−λf(−x))ψ(−x) dx.
With b∗l still denoting the coefficients resulting form the application of Theorem 5.2 to the first integral,

let b̌∗l denote the coefficients when Theorem 5.2 is applied to the second integral. In order to add the two

integrals, we write b̌∗l in terms of b∗l by means of the following routine computation.

Let ck := ckeiα with c > 0 and |α| ≤ π/2 and define the analytic quantity R so that

y(x) =
[
ckx

k(1 +R(x))k
]1/k

= ceiα/kx(1 +R(x)).

If k is odd, then then the hypothesis Re{f} ≥ 0 implies that ck is purely imaginary. We have

y̌(x) =
[
−ckxk(1 +R(−x))k

]1/k
= ce−iα/kx(1 +R(−x)) = −y(−x)e−2iα/k.

Writing η for the inverse function to y and η̌ for the inverse function to y̌ we then have

η̌(x) = −η(−e2iα/kx) .

Hence, letting Cl[·] denote the coefficient of yl,

b̌∗l = Cl

[
ψ(−η̌(x)) · η̌′(x)

]

= Cl

[
ψ(η(−e2iα/kx)) · e2iα/k · η′(−e2iα/kx)

]

and thus
b̌∗l = (−1)le2iα(l+1)/kb∗l .
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When k is even, the computation is similar but easier, resulting in

b̌∗l = (−1)lb∗l .

Now observe that if k is odd, hence ck is purely imaginary, then e2iα(l+1)/k = e±iπ(l+1)/k accord-
ing to the sign of the argument of ck. Setting A(k, l) = (1 + (−1)l)A+(k, l) if k is even and (1 +

esgn Arg(ck)iπ(l+1)/kA+(k, l) if k is odd, we recover the definition in (3.2) and (3.3) and prove the Corol-
lary.

Theorem 5.4. Let f be a smooth complex-valued function on a neighborhood of 0 in R
d such that

Re{f} ≥ 0 with equality only at 0. Suppose further that ∇ f(0) = 0, and that the Hessian (matrix
of second partials) of f has eigenvalues with positive real parts. Let H denote the Hessian determinant at
0. Then for ψ ∈ C∞

0 , there is an asymptotic expansion
∫

exp(−λf(x))ψ(x) dx ∼
∑

j≥l

Cjλ
−(l+d)/2

where l is the degree of vanishing of ψ at 0. If l = 0 then C0 = ψ(0)(2π)d/2 H−1/2. The choice of square

root is determined by H−1/2 =
∏d

j=1 µ
−1/2
j where µj are the eigenvalues of the Hessian and the principal

square root is taken in each case.

Proof. Let Q =
∑d

i,j=1 qi,jzizj be the quadratic form determined by the Hessian at the origin. Denote

the eigenvalues of Q by {µj : 1 ≤ j ≤ d} and note that each µj has nonnegative real part.
Step 1: change coordinates to make f exactly equal to the quadratic form Q. Indeed since f(x) =

Q(x)/2+O(|x|3), and the Hessian is nondegenerate, there is a locally smooth change of variables {xj(z) :
1 ≤ j ≤ d} such that f(z) = Q(x(z))/2 and the Jacobian at the origin is 1.

Step 2: normalize by H1/2. For any quadratic form Q there is a linear change of variables y(x) such

that Q(x) =
∑d

j=1 y
2
j . The change of variables matrix P satisfies PP T = M(Q), the symmetric matrix

representing Q. Changing variables to y introduces an integrating factor of detP which is a square root
of H since M(Q) is just the Hessian. Let N ′ be the region of integration over which y varies when z

varies over an appropriately small neighborhood of 0.
Step 3: Expand ψ̃ into monomials. The function ψ has now become ψ̃, where ψ̃(0) = H−1/2 ψ(0)

and the sign of the square root will be chosen later. We may expand ψ̃ into monomials, using the same
argument as in the proof of Theorem 5.2 to show the remainder term can be made O(|y|N ) for any N . It
remains to evaluate the integral over the region of integration, N ′ of

∫

N ′

exp(−λ
d∑

j=1

y2
j )ψ̃(y) dy

when ψ̃ is a monomial.
Step 4: move the region of integration to the real d-space. Let N ′′ be the projection of N ′ onto

R
d by setting the imaginary part to zero. We claim that changing the region of integration from N ′

to N ′′ alters the integral by an amount rapidly decreasing in λ. To show this, let Ω be the region
{Re{x} + it Im{x} : x ∈ N ′, t ∈ [0, 1]}. The boundary of Ω (as a manifold) is composed of N ′,N ′′

(with opposite signs) together with S := {Re{x} + it Im{x} : x ∈ ∂N ′, t ∈ [0, 1]}. For any d-form ω,∫
Ω dω =

∫
∂Ω ω. When ω = exp(−λ∑d

j=1 µjy
2
j )y

rdy1 ∧ · · · ∧ dyd is a holomorphic d-form, we see that dω

vanishes (being the sum of ∂/∂zj terms) so that
∫

N ′

ω =

∫

N ′′

ω +

∫

S
ω.
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We know that Re{∑j µjy
2
j} is bounded away from 0 on ∂N ′, and its minimal value on S lies on ∂N ′,

hence the integral over S decays exponentially.

Step 5: evaluate the integral. Factoring
∫
N ′′ y

r exp(−λ∑d
j=1 y

2
j ) into one-dimensional integrals and

plugging into Proposition 5.1 yields an asymptotic expansion whose leading term (when l = 0) is equal to

(2π)d/2ψ(0)H−1/2. When f(z) is the function
∑d

j=1 z
2
j , then the positive square root is taken. The choice

of square root must be continuous in the analytic topology on functions having nondegenerate Hessians
and having eigenvalues with positive real parts, and the only such choice is the product of the principal
square roots of the eigenvalues of the Hessian.

6. Classification of cases

For purposes of classification some natural questions are:

(i) what are all possible local geometries of minimal points of V?
(ii) which of these can be handled by variants of the methods in this paper?
(iii) are these sufficient to yield a good approximation to ar no matter what the direction, r/|r|, and no

matter which generating function in the class, say, of functions meromorphic in a neighborhood of
their domain of convergence?

To make the last question more concrete, consider the simplest possible example, namely binomial coef-
ficients, where F = 1/(1− z−w) and V is a complex line. There are no singular points here, but how do
we know that as (z,w) varies over minimal points of V, the direction dir(z,w) will cover all of RP

1?
This question will be answered by Theorem 6.3, but first we need to add some detail to the geometric

discussion begun in Section 2.2. It will be evident that quite a few cases need to be considered, some
of which require new tools and some of which require only minor modifications. Accordingly, the results
will appear in several papers, currently under preparation. In other words, a discussion of taxonomy will
necessarily refer to results not yet published, and we will indicate to the best of our knowledge which ones
are expected to be routine.

Given a point z ∈ V, we extend the definition of dir(z) to mean the set of limits of dir(y) as y → z

along smooth points. When z is minimal, this is just the set of normals to support hyperplanes of logD at
the point (log |z1|, . . . , log |zd|), so this is consistent with the old definition. As we will see shortly, dir(z)

may be a (d− 1)-dimensional subset of RP
d−1 when z is a critical point of V.

When H has a repeated factor, the residue computation in equation (4.4) must be replaced by one
involving the derivative. The remainder of the computation proceeds without a hitch as before. Details
are given in Pemantle & Wilson (2000b). For the remainder of the taxonomy, we assume H to be square-
free. Toral smooth points may be handled by methods exactly the same as strictly minimal points. The
inner integrand in (4.3) will in this case have its maximal modulus on a set of dimension larger than zero.
A modification of the necessary oscillating integral computation that works in this case is also given in
Pemantle & Wilson (2000b).

If z ∈ V is not smooth, all the first partials vanish. The expansion of H(x) near z is then a sum of
terms of degrees 2 and higher. We call z a homogeneous point of degree k if this expansion contains terms
(xj − zj)

k for each j = 1, . . . , d, and contains no terms of total degree less than k.

Lemma 6.1. If z is a locally minimal point of V with nonzero coordinates, and F is meromorphic in a
neighborhood of z then z is homogeneous.

Proof. Passing to F (z1x1, . . . , zdxd) if necessary, we may assume z = 1. Setting xj = 1 for all but one
index j, we cannot obtain the zero function (by minimality), and so some term in the expansion around
1 is a pure power of (xj − 1), and we denote the minimal degree such term by cj(xj − 1)kj . If z is not
a homogeneous point, then there is some j for which some monomial has total degree lower than kj .
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Assume without loss of generality that j = d. The function F (x, x, . . . , x, y) then has a minimal degree
pure y− 1 term c0(y − 1)k, k := kd, and some term c′(x− 1)a(y− 1)b with a+ b < k. In other words, the
Newton Polygon of F (x, . . . , x, y) around (1, 1) has a support line passing through (0, k) with slope −p/q
in lowest terms, and p > q. It is well known that we may describe the solutions y(x) of the equation

F (1 + x, . . . , 1 + x, 1 + y) = 0

as follows. Write

H := (y − 1)k(c0 + c1(y − 1)−p(x− 1)q + c2(y − 1)−2p(x− 1)2q + · · · + cs(y − 1)−sp(x− 1)sq)

for the polynomial collecting all the terms on this support line. Then for each qth root of unity, ω, and
each root λ of

∑
cs−jλ

j = 0, there is a solution y = λ1/pxq/p(ω + o(1)) as x→ 0. A proof may be found
in Brieskorn & Knörrer (1986).

Varying x over the set |π− arg(x)| ≤ π/4, we see that the solutions y(x) must sometimes be in this set
as well. For those x, the points (1+x, . . . , 1+x, 1+ y) will be in V ∩D(1) \T (1), violating minimality of
1. By contradiction, we have shown that no monomial in the expansion around 1 has lower total degree
than any pure power term, hence 1 is minimal.

Continuing the taxonomy, suppose that z is a homogeneous point of V of degree k ≥ 2. We say that z is
a multiple point if V is locally the union of k analytic surfaces. Algebraically, this means that the leading
(order k) terms in the expansion of H near z factors into linear pieces. If the homogeneous point z is not
a multiple point, we say it is a cone point. When d = 2 there are no cone points, since any homogeneous
polynomial in 2 variables factors completely over C.

Our understanding of cone points is not yet complete, but an analysis involving cone points is underway
in Cohn & Pemantle (2000). For multiple points, most of the story is given in Pemantle & Wilson (2000a).
In particular, the following theorem is proved there.

Theorem 6.2 (Pemantle & Wilson (2000a)). Let z be an isolated, minimal, multiple point of V with

multiplicity k. Let S ⊆ RP
d−1 be the set of outward normals to support hyperplanes to logD at the point

(log |z1|, . . . , log |zd|). Then there is an integer p ≥ 0 and a polynomial function φ : S → R such that the
asymptotic expansion

ar ∼ z−rφ(r)
∑

j

Cj(rd)
k−p/2−j/2(6.1)

holds uniformly as r varies over compact subsets of the interior of S.

The extension to toral multiple points is given in Pemantle & Wilson (2000b). If a multiple point is
not isolated or toral, then the degree of multiplicity, k, must be less than the dimension, d. This cannot
happen of course when d = 2, but does happen when d ≥ 3. The method for handling this case, toral
or otherwise, is given in Pemantle & Wilson (2000b). That paper will also contain some subcases of the
isolated multiple point case, namely when the sheets of V intersect non-transversely.

Having more or less completed the taxonomy, we now discuss when we can guarantee that our methods
yield asymptotics in all directions.

Theorem 6.3. Let F = G/H =
∑
ar,sz

rws be the quotient of analytic functions G,H : C
2 → C. Suppose

that the coefficients ar,s are all nonnegative, and that F (z, 0) and F (0, w) are not entire. Then for every

direction α ∈ RP
1 there is a minimal z ∈ V with α ∈ dir(z).

Proof. Let (x, y) be any point on the boundary of logD. For u < ex and v < ey the power series for F is
convergent at (u, v). As u ↑ ex and v ↑ ey therefore, F (u, v) is finite and increasing. On the other hand,
the power series for F is not absolutely convergent on T (ex, ey), since we know F to have some singularity
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on this torus. Hence F (u, v) ↑ ∞ as (u, v) ↑ (ex, ey). Since F is meromorphic, it must have a pole at
(ex, ey), hence (ex, ey) ∈ V and is a minimal point of V. As (x, y) varies over the boundary of logD, we
let γ ⊆ V denote the curve traced out by this minimal point.

Pick any α ∈ RP
1. The convex set logD has horizontal and vertical support hyperplanes (by non-

entirety of F (z, 0) and F (0, w)), and therefore has a support hyperplane normal to α; let (x, y) be a point
of intersection of this support plane with logD. We have just seen that z(α) := (ex, ey) is a minimal point
of V. If z is a smooth point of V then α ∈ dir(z): either z is finitely minimal, in which case Theorem 3.3
applies, or it is toral, in which case the toral version of this theorem from Pemantle & Wilson (2000b)
applies.

Assume now that z is not a smooth point. By Lemma 6.1, z is a homogeneous point, and since d = 2,
z is a multiple point. Theorem 6.2 then shows that α ∈ dir(z) in this case as well. This finishes the
proof.

7. Further details and open questions

The theorems in this and subsequent papers give estimates that are uniform away from the boundary of
the domain in which they are valid. In order for all of these to be patched together so as to give estimates
valid now matter how r → ∞, one must determine the bandwidth around the boundary for which the
boundary estimates on either side hold. For instance, suppose (z,w) is a multiple point of degree 2 and
that dir(z,w) is the set of slopes between 1/2 and 2. It appears that the asymptotic estimate in Pemantle
& Wilson (2000a) holding near the line {s = 2r} can be written so it is valid out to s = 2r + c

√
r. If the

estimate for the region s/r > 2 + ε can be widened so it holds to s = 2r + c
√
r and a description given

that is valid in the regime (s− 2r)/
√
r → c, then the estimates will patch together completely.

Another natural question is the universality of the method when the coefficients have mixed signs. We
conjecture that Theorem 6.3 still holds, in the sense that for every direction there is point z ∈ V for which
integration near z yields correct asymptotics. What we know is that z may no longer be minimal. For
example, if G = 1 and

H = (1 − (2/3)w − (1/3)z)(1 + (1/3)w − (2/3)z)

then the point (3/2, 3/4) is not minimal but yields asymptotics in the diagonal direction; one sees this
by integrating along a deformed torus rather than along T (3/2, 3/4). In fact we conjecture that such a
deformation always exists, but the topology seems not transparent enough to yield an easy proof.

The class of algebraic functions is in some ways almost as nice as the set of rational functions, and nicer
than the meromorphic functions. For one thing, an algebraic function is determined by a finite amount
of data, and may thus easily be input into a symbolic math package. Gao & Richmond (1992) give an
analysis of algebraic and logarithmic singularities, but sometimes the relevant singularities for algebraic
functions are poles. For example, in Larsen and Lyons’ analysis (Larsen & Lyons 1999) of merge times
for coalescing particles, they find an algebraic function of the form

F (z,w) =
χ(z,w)

w − 1 −
√

1 − z

with χ analytic. The branch of the square root is chosen so that at the origin the denominator is 2, not
0. There is a branchline at z = 1, but for all directions in RP

1, there is a smooth pole on the curve
w = 1 +

√
1 − z yielding asymptotics in the desired direction. It is natural to ask when this will happen,

and how one can tell effectively. Some questions of effectiveness are addressed in Pemantle & Wilson
(2000a) and Pemantle & Wilson (2000b), but there is probably substantial room for improvements on an
algorithmic level.
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