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Capturing large-scale behavior of combinatorial objects
can be difficult but very revealing. Consider Figure 1, for
instance, which illustrates the behavior of random objects
of large size in two combinatorial classes inspired by quan-
tum computing and statistical mechanics.
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Notices

Figure 1. ACSV has been used to determine the shape of large
random quantum random walks [3] (left) and cube groves [5]
(right).

Perhaps surprisingly, complex analysis, algebraic ge-
ometry, topology, and computer algebra are important
ingredients in such results, combining to form the rela-
tively new field of analytic combinatorics in several variables
(ACSV). ACSV builds on classic generating function tech-
niques in combinatorics to provide new tools for the study
of sequences and discrete objects. Applications previously
studied in the literature include queuing systems, bioinfor-
matics, data structures, random tilings, special functions,
and integrable systems. Ongoing research efforts from the
combinatorial side concern an evolving study of lattice
paths [8] and objects from representation theory and al-
gebraic combinatorics [14].

The purpose of this note is to give a brief overview of
ACSV and its history to drive interest among those in any
of the diverse areas touched by the topic. A large collection
of worked examples can be found in [15] and a detailed
treatment of ACSV in [16].
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Analytic Combinatorics

The use of analytic techniques in combinatorics and prob-
ability theory has a long history, dating back to the
eighteenth-century work of Laplace [12] and contempo-
raries such as Stirling [18] and de Moivre [9]. In mod-
ern times, the use of real and complex analysis to derive
asymptotic behavior is the domain of analytic combina-
torics [ 11], a field which finds application in many areas of
mathematics, computer science, and the natural sciences.
The key idea behind such results is that important prop-
erties of a sequence (f,) = (fy, fi,...) of real or complex
numbers are easily deduced from the generating function

F(z):anz":fo+flz+---.

nx0

Although much can be deduced treating F only as a for-
mal series [20], when f,, grows at most exponentially as n
goes to infinity then F defines a complex-analytic function
at the origin. The powerful methods of complex analysis
can then be used to study properties of f,,, including its
asymptotic behavior.

Indeed, the Cauchy integral formula implies that for ev-
ery natural number n the coefficient f,, can be represented
by a contour integral

fom = f F(z)z-"-1dz,

27 e

where C is a positively oriented circle sufficiently close to
the origin. The singularities of the generating function play
a crucial role in determining sequence asymptotics: the do-
main of integration € can be deformed without changing
the value of the Cauchy integral as long it does not cross
any singularities of F. Setting some technicalities aside,
each singularity of F gives a “contribution” to asymptotics
of f,, depending on its location in the complex plane and
the local behavior of F near the singularity. This approach
is powerful enough to be completely automated for large
classes of generating functions, such as rational and al-
gebraic functions, and is flexible enough to extend as re-
quired by applications. A thorough development of this
univariate theory and a survey of its applications can be
found in the fantastic text of Flajolet and Sedgewick [11].

ACSV

In contrast to the well-developed univariate theory, until
recently there was no general framework for the study of
multivariate generating functions. To rectify this gap in the
literature, over the last two decades the theory of ACSV has
been developed [16]. Here we focus on a rational function
F(z) = F(zy,...,2z4) in d > 1 variables with power series
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F(z)= Y, fiz'= 3 fi.ig?l 24 -
iend iend

Given r € N9, the r-diagonal of F(z) is the sequence (f,,).
Many mathematical sequences arise naturally as diagonals
of explicit rational functions. Furthermore, coefficient se-
ries for all algebraic functions may be embedded as gen-
eralized diagonals of rational functions [17]. It is conjec-
tured that the same is true of all globally bounded D-finite
functions [7, Conjecture 4].

Example 1. A key step in Apéry’s proof [19] of the ir-
rationality of {(3) is determining asymptotics of the se-

quence
m N (n+ k)
n n
n = k k

Because it is a sum of nonnegative terms, saddle point ap-
proximations will produce the desired asymptotics.

Such sums with mixed signs are notoriously difficult to
estimate. However, any binomial sum sequence regardless
of signs can automatically be written as the 1-diagonal of
a rational function [6]. For instance, Apéry’s sum is the
1-diagonal of the four-variable rational function

1
1-t1+x)A+y)A+z2)A+y+z+yz+xyz)
The methods of ACSV determine asymptotics of b,, com-
pletely automatically [13].

Although the r-diagonal of a fixed rational function is
defined only when r has integer coordinates, ACSV shows
that asymptotics along most' directions r € R%, can be
well defined by a limiting procedure.

Multivariate Analysis and Singularity Theory

As in the univariate setting, the methods of ACSV start
from a Cauchy integral formula

fo= ﬁ fe F@)z~™dz, - dzy ,
where € is now a product of positively oriented circles suf-
ficiently close to the origin. The singularities of F(z) again
play a crucial role in asymptotics. If F(z) = G(z)/H(z) is a
rational function with coprime numerator G and denomi-
nator H, then the singularities of F form theset V = {z €
cd : H(z) = 0}.

Once the dimension is greater than 1, the singular set V
is no longer discrete but is an algebraic variety of positive
dimension. In the geometrically simplest case, when V

1Asymptotics of the r-diagonal vary smoothly with r inside open cones of Rgo.
The boundaries of these cones form (d — 1)-dimensional sets where asymptotics
can sharply change.
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forms a smooth manifold, one searches for a (generically
finite) set of critical points near which the Cauchy integral
can be approximated by saddle-point integrals which are
easy to estimate asymptotically. When some of these crit-
ical points lie on the boundary of the generating function
domain of convergence and other mild conditions hold,
asymptotics can be computed using explicit formulas. In
the absence of critical points on the boundary of conver-
gence or when the geometry of this domain is difficult to
establish, topological techniques may be applied to deter-
mine which critical points are responsible for the coeffi-
cient asymptotics. This was carried out in two dimensions
in [10]; generalizing to higher dimensions is an open prob-
lem.

Without restricting the geometry of V, recent work [4]
has shown how stratified Morse theory helps determine
the deformations of € in C%\ V which yield integrals of the
type analyzed in classic works on singularity theory [1, 2].
The techniques of ACSV thus rely on an interesting mix
of computer algebra, singularity theory, algebra, geome-
try, and topology. By asking different questions, ACSV pro-
motes new work in these areas. For example, any advances
in the automatic computation of singular integrals can be
applied back to the wavelike partial differential equations
for which purpose singularity theory was developed in the
1970s and 1980s. Indeed this development may already be
ripe for a resurgence as it couples with modern computer
algebra methods.

AMS Math Research Community

Being a new and rapidly growing field which incorporates
techniques from diverse corners of mathematics, ACSV has
arich collection of problems accessible to early researchers
in many areas. Some of these problems are computational
in nature, including the development of computer algebra
tools for asymptotics under varying assumptions. Others
are topological at heart, such as computing intersection
and linking numbers of attachment cycles which arise in
the Morse theoretic constructions discussed above. Many
relate to asymptotic computations of saddle-point asymp-
totics in degenerate settings which appear in combinato-
rial applications. Of course, after developing such tools
there is also a need for combinatorialists to apply them to
problems of differing scope. Most of the advances in ACSV
have come from combinatorial problems just beyond the
reach of existing techniques.

We thus encourage early-career mathematicians with ex-
perience in any one of the areas of combinatorics, com-
putational algebra, analysis, algebraic topology, singular-
ity theory, or hyperbolic partial differential equations to
apply to our upcoming Math Research Community. Our
hope is to have participants from a wide variety of fields
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interacting with each other to develop this exciting area of
mathematics.
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