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Abstract

We show that the longest k-alternating substring of a random permutation

has length asymptotic to 2(n− k)/3.

Introduction

An alternating permutation is a permutation π ∈ Sn satisfying π(1) < π(2) > π(3) <

π(4) > · · · . Alternating permutations have been well studied and enumerated (see

e.g. [S3]). Let Ln be the length of the longest alternating subsequence of a permutation

chosen at random uniformly from Sn. Motivated by the study of longest increasing
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subsequences, Stanley computed the mean and variance of Ln :

ELn =
4n+ 1

6
(1)

VarLn =
8n

45
− 13

180
(2)

for all n > 4 [S2] (see also [S1, Rom]). In fact, the distribution is asymptotically

normal with these parameters [Wid] (see also [HR, Theorem 2.1]).

A k-alternating permutation is a permutation π ∈ Sn such that (−1)j(π(j)−π(j+

1)) > k for all j ∈ {1, . . . , n−1}. In other words, π must be alternating and its jumps

|π(j + 1) − π(j)| must all be at least k. For k = 1 we get the ordinary alternating

permutations. We learned of k-alternating permutations from D. Armstrong [Arm],

who attributes the definition to R. Chen (personal communication, inspired by a 2011

talk by R. Stanley).

Let π be a uniformly chosen random permutation in Sn and let Ln,k = Ln,k(π)

denote the length of the longest k-alternating subsequence of π. Armstrong [Arm]

made the following conjecture, and verified it via exact computation for certain small

values of n and k.

Conjecture 1 (Armstrong, 2014). For all n > 2 and k ∈ {1, . . . , n− 1}, we have:

ELn,k =
4(n− k) + 5

6
. (3)

In this note we use probabilistic methods to prove the following asymptotic version

of the conjecture.

Theorem 2.

ELn,k =
2(n− k)

3
+O(n2/3) .

This is proved via the related notion of x-alternation for x ∈ (0, 1), cf. [ACSS]. A

vector y = (y1, . . . , yn) ∈ [0, 1]n is called x-alternating if (−1)n(yj − yj+1) > x for all

1 6 j 6 n− 1. Let µ denote product Lebesgue measure on [0, 1]n. Let Ψ be the map

taking y ∈ [0, 1]n to the element π ∈ Sn defined by

π(j) = #{i 6 n : yi 6 yj} .
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A well known fact attributed to Rényi (see [Res]) says that if y has law µ then

Ψ(y) is uniformly distributed on Sn. Let Ln,x(y) denote the length of the longest x-

alternating subsequence of y. No confusion can result between this and the definition

of Ln,k above, provided that we restrict x to [0, 1) and k to positive integral values.

Theorem 2 is a consequence of the following results.

Lemma 3. Let Z be a binomial random variable with parameters n and 1− x. Then

Ln,x(y)
D
= LZ,1 .

In other words, the law of the longest x-alternating subsequence may be exactly sim-

ulated by choosing Z ∼ Bin(n, 1 − x), choosing π uniformly on SZ, and taking the

longest alternating subsequence of π.

Corollary 4.

ELn,x =
2

3
n(1− x) +

1

6
(4)

VarLn,x = (1− x)(2 + 5x)
4n

45
(5)

Proof: Taking expectations in (2) gives ELn,x = (2/3)EZ + 1/6, proving (4). The

identity Var (Y ) = EVar (Y |Z) + VarE(Y |Z) applied to Y = Ln,x gives

Var (Ln,x) = E
8Z

45
− 13

180
+ Var

(
2

3
Z +

1

6

)

=
8n(1− x)

45
− 13

180
+

4

9
nx(1− x)

=
8n(1− x) + 20nx(1− x)

45

and proves the corollary. �

Lemma 5. Let y be random with law µ. Denote

x1(k, n) := k/n− n−1/3

x2(k, n) := k/n+ n−1/3

Then the following two implications hold with probability 1− o(1) as n→∞.
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(i) For all subsequences y′ of y, if y′ is x2-alternating then π′ := Ψ(y′) is k-

alternating.

(ii) For all subsequences y′ of y, if y′ is not x1-alternating then π′ := Ψ(y′) is not

k-alternating.

Consequently, with probability 1− o(1),

Ln,x2(y) 6 Ln,k(Ψ(y)) 6 Ln,x1(y) . (6)

Proof of Theorem 2. The theorem follows from Corollary 4 and Lemma 5. Taking

expectations in (6) we find that

ELn,x2 6 ELn,k 6 ELn,x1 .

Corollary 4 then sandwiches ELn,k between two quantities both of which are asymp-

totic to (2/3)(n− k):

ELn,xj =
2

3
n(1− xj) +

1

6

=
2

3
(n− k) +O(n2/3) ,

where j ∈ {1, 2}. �

Proof of Lemma 5

Let F̂ denote the empirical distribution of the values of y: F̂ (t) := n−1
∑

j 1yj6t. If (i)

fails then there are i, j 6 n with |yi−yj| > x2 and |π(i)−π(j)| < k, where π = Ψ(y).

Letting t denote the minimum of yi and yj, this implies that F̂ (t+ x2)− F̂ (t) < k/n.

Because

F̂ (t+ x2)− F̂ (t) =
(
F̂ (t+ x2)− (t+ x2)

)
−
(
F̂ (t)− t

)
+ x2

it follows that

|F̂ (s)− s| > 1

2

(
x2 −

k

n

)
=

1

2
n−1/3

the electronic journal of combinatorics 22 (2015), #P00 4



either for s = t or s = t + x2. Similarly, if (ii) fails then there are i, j 6 n with

|yi − yj| < x1 and |π(i)− π(j)| > k, leading to

|F̂ (s)− s| > 1

2

(
k

n
− x1

)
=

1

2
n−1/3

for some s ∈ (0, 1). In either case,

sup
s∈[0,1]

|F̂ (s)− s| > 1

2
n−1/3 .

But
√
n sups∈[0,1] |F̂ (s) − s| converges in distribution to the Kolmogorov-Smirnov

statistic (the law of the maximum of a Brownian bridge). Because n−1/3/n−1/2 →∞,

this implies that

P

(
sup
s∈[0,1]

|F̂ (s)− s| > 1

2
n−1/3

)
→ 0

proving the lemma. �

Proof of Lemma 3

We begin with another well known fact, attributed to M. Bóna in [S1]: for π ∈ Sn,

one alternating subsequence (π(i) : i ∈ A) of maximal length is obtained by selecting

i ∈ A if and only if i is a peak or a valley, that is, π(i − 1) < π(i) > π(i + 1) or

π(i − 1) > i < π(i + 1), except that we select 1 if and only if π(1) < π(2) (see the

proof in [HR, §2]). This generalizes to k-alternating subsequences via the following

algorithm which selects the index set A of a k-alternating subsequence of a given

permutation s ∈ Sn.

GREEDY PROVISIONAL ACCEPTANCE:

Initialize i := 1, j := 2, state := up, A := empty.

While j <= n do:

IF (state = up) and s(i) < s(j) < s(j) + k THEN j := j+1 ELSE

IF (state = up) and s(i) > s(j) THEN i := j , j := j+1 ELSE

IF (state = up) THEN
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A := A union {i}, i := j, j := j+1, state := down ELSE

IF s(i) > s(j) > s(j) - k THEN j := j+1 ELSE

IF s(i) < s(j) THEN i := j, j := j+1 ELSE

A := A union {i}, i := j, j := j+1, state := up

In other words, when it is time for an upward step, if the next value goes up

but not by k ignore it, if it goes up by k or more, accept it as the new provisional

value, and if it goes down, replace the old provisional down step by the new value.

The pointer i points to the provisional value at any time, and when a new provisional

value is accepted (rather than replacing and old one), the old one becomes permanent.

Lemma 6. Let s ∈ Sn. Then the subsequence (s(i) : i ∈ A) defined by the foregoing

algorithm is a k-alternating subsequence of maximal length.

Proof: Regarding s as a word of length n, let s′ denote the word of length n − 1

obtained by removing the initial element of s and let s′′ denote the word of length

n − 1 obtained by removing the second element of s. Let L∗n,k denote the length of

the longest k-alternating sequence beginning with a down step instead of an up step.

We claim that

s(1) < s(2) < s(1) + k ⇒ Ln,k(s) = Ln,k(s
′′)

s(1) > s(2) ⇒ Ln,k(s) = Ln,k(s
′)

s(1) + k 6 s(2) ⇒ Ln,k(s) = 1 + L∗n,k(s
′)

The first holds because we can’t use both s(1) and s(2) and starting with s1 dominates

starting with s(2). The second holds because again we can’t use both and this time

starting from s2 dominates starting from s(1). The last is true for the following rea-

son. The LHS cannot be more than the RHS because any k-alternating subsequence

restricts to a reverse k-alternating sequence of s′ upon removal of its first element

(here the inequalities in the definition of alternating sequence are reversed, not the

word itself). On the other hand, if w is a reverse k-alternating subsequence of s′,

then there are two cases. If the first element w(1) is at least s(2), we can prepend

s(1) and obtain a k-alternating subsequence of s longer by one. Similarly, if the first

element in w is less than s(2), we can replace w(1) by s(2) and then prepend s(1).

This proves the claim. The lemma now follows by induction. �
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Replacing k-alternation by x-alternation, an identical argument shows that greedy

provisional acceptance will also identify an x-alternating subsequence of y having

maximal length. Next, we adjust the bookkeeping slightly as follows. The way the

algorithm is written, the first element y1 begins in a state of provisional acceptance.

When y1 > 1− x, it is doomed eventually to be replaced, so instead of provisionally

accepting it, we reject each initial value until we see a value that is at most 1 − x.

This yields the following easy lemma.

Lemma 7. Conditional on y1, . . . , yj, the probability of rejecting yj+1 is always pre-

cisely x.

Proof: If no value has yet been provisionally accepted, then by rule we reject pre-

cisely those values above 1−x. On the other hand, if any value has been provisionally

accepted, it is easy to check inductively that when the state is “up”, the provisional

value y is at most 1 − x, and the rejection interval for the new value, [y, y + x) is

entirely within [0, 1] and has length x. Similarly, when the state is “down”, the pro-

visionally accepted value is at least x and the rejection interval (y − x, y] again has

length x. �

Let A ⊆ {1, . . . , n} be the subset of indices i for which yi was at least provisionally

accepted. The previous lemma shows that A has the distribution of a set selected by

independent coin flips with success probability 1− x.

Lemma 8. Let j1 < j2 < · · · < jr enumerate the set A. Let zi := yji when yji
was provisionally accepted initially or after a down step and let zi := yji − x when

yi was provisionally accepted after an up step. Then z is a collection of independent

variables uniform on [0, 1− x] and is independent of A.

Proof: Condition on the y1, . . . , yj. We know that P(j + 1 ∈ A) = 1 − x. We

therefore need to show that conditional on j + 1 ∈ A, and on y1, . . . yj, the value zi+1

is uniform on [0, 1 − x] where i is the cardinality of A ∩ {1, . . . , j}. When i = 0 we

are in the initial phase and the result is obvious. If not, suppose first that the state

is “up”. Then zi 6 1 − x and the values of yj+1 for which provisional acceptance

will occur are the union of two intervals [0, zi] ∪ [zi + x, 1]. If yj+1 lies in the upper

of these two intervals, it will be provisionally accepted after an up step while if it

the electronic journal of combinatorics 22 (2015), #P00 7



is in the lower interval it will be provisionally accepted replacing a previous down

step value. Thus the two intervals together will map to the single interval [0, 1− x].

Similarly, supposing instead that the state is “down”, provisional acceptance will

occur in [0, zi − x] ∪ [zi, 1]; zi+1 will be yj+1 − x in the upper interval and yj+1 in the

lower interval, and again we see that zi+1 is uniform on [0, 1− x]. �

Proof of Lemma 3: Let z be as in Lemma 8. By Lemma 6, the quantity Ln,x(y) is

equal to L|z|,0(z). By Lemma 8, the joint distribution of

(
|z|, z

1− x

)
is the product

measure Bin(n, 1 − x) × µ. The permutation associated with z is the same as that

associated with the dilation z/(1 − x), whence the conditional distribution of Ψ(z)

given |z| is uniform on S|z|, which is enough fo prove the lemma. �

Final remarks

The maximum of (1 − x)(2 + 5x) on [0, 1] occurs at x = 3/10. Consequently the

variance of the length of the longest x-alternating sequence is maximized not at

ordinary alternating sequences (x = 0) but at 0.3-alternating sequences.

The asymptotics in Lemma 5 can be sharpened. Instead of tightness of the max-

imum of a Brownian bridge, use tightness of the renomralized bridge statistic

max{X(t)/
√
t(1− t)| log(t(1− t))| : 0 6 t 6 1}.

This allows us to replace x2 by k/n + min{n−1/3, C(n − k)1/2+ε} in Lemma 5. The

estimate in Theorem 2 then becomes a sharp asymptotic ELn,k ∼ (2/3)(n − k),

uniform down to n− k > (n− k)δ, where δ can be made arbitrarily small.

Note added in revision: We have heard (Richard Stanley, personal communica-

tion). that Tommy Cai has a soon to be available preprint “Average maximal length

of k-alternating subsequences of permutations” in which Conjecture 1 is proved.
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