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ESTIMATING THE TRUTH INDICATOR FUNCTION OF A STATISTICAL 
HYPOTHESIS UNDER A CLASS OF PROPER LOSS FUNCTIONS 

J. T. Gene Hwang 1 and Robin Pemantle 2 

Revised: August 6, 1996 

Abstract 

We address the question of estimating an indicator 
function. The specific application of this framework 
is the estimation of the truth indicator function of a 
statistical hypothesis. We consider a class of ''proper 
loss functions'': it can be argued that this is the class 
of all the reasonable loss functions. A general belief 
is that optimality (such as admissibility) of an esttma~or 
will remain the same for various proper loss functions. 
Under certain conditions, we justify the assertion through 
admissibility. We apply the results to evaluate the 
p-value and find that it is inadmissible for two-sided 
tests and admissible for one-sided tests. This result 
lends strong support for the result of Hwang, Casella, 
Robert, Wells and Farrell (1992) under quadratic loss, 
since our results are for a wide class of proper loss 
functions. 
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1 04 J . T.Hwang and R.Pemantle 

1. Introduction. 

In testing a statistical hypothesis 

0 € H, 

where H is a subset of the parameter space, the practitioner 

will typically want to know how likely the hypothesis Is to hold 

or how much evidence the data provides regarding its truth . We 

shall refer to the hypothesis as hypothesis H or H in short. 

A typical frequentist answer will be that one can reject H under 

such and such level. Actually, a better answer is to provide the 

p-value, i.e., the smallest a such that H can he rejected. 

Especially when p-value is small, it is not unusual that the 

p-value is thought of as an estimate of the probability that 0 € 

H, which is from the frequentist's point of view either zero or 

one, i . e., the indicator function 

IH(9) = {6 If 9 E H 
otherwise. 

This indicator function is called the truth indicator function in 

this paper. 

Recent studies about the validity of p-value seem to be quite 

controversial. See Lindley (1982). In particular, the studies in 

Berger and Sellke (1987) and Casella and Berger (1987) make 

different conclusions. By comparing the p-value to the Bayes 

posterior probability of 9 € H, the former study concluded that 

p-value is bad and tends to be too small for two sided tests (see 

also Berger and Delampady (1987)); and the study of Casella and 

Berger (1987) argued that p-value can be reconcilable with a 

Bayesian's approach for one sided tests. Throughout the paper, 

the one-sided test refers to the case where H ; (-m,9
0

) for some 

9 0 and the two-sided test refers to the case H = [9
0

,0
1

] where 

0 0 and 0
1 

are interior points of the parameter space. 
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A decision theory was called for to determine the validity of 

the p-value by considering the problem of estimating IH{8) under 

loss functions including the quadratic loss 

(1) Q(9,p(x)) = (IH(9)-p(x))
2

. 

The result was reported in Hwang, Casella, Robert, Wells and 

Farrell (1992), abbreviated as HCRWF below. Under Q, It was 

found that the p-value was admissible for the one-sided test and 

inadmissible for the two-sided test. This result resolves the 

controversy to some extent. Earlier Schaafsma {1989) and 

Schaafsma, Tolboom and Van Der Meulen (1989) also studied the 

formulation. In a recent thesis, Van Der Meulen (1992) has some 

related results. A related but different subject about confidence 

set estimation can also be found in Brown and Hwang (1991) and 

Hwang and Brown {1991) and the references therein. This approach 

falls in the general area of the frequentist post-data inference 

which Is surveyed In Goutls and Casella (1995). 

Since the quadratic loss function is quite arbitrary, there 

seems to be a need to reconsider the problem under other 'l 
reasonable loss functions. Furthermore. it is generally believed 

that results should not vary for different loss functions as long 

as they are proper. The definition of proper losses is given in 

Section 2, in which we also argue (by considering a weatherman) 

that this defines the class of all reasonable lOss functions. We 

prove a theorem in Section 4 which states that admissibility under 

Q implies the same under virtually any other bounded proper loss 

functions and vice versa. Direct application of the theorem and 

the result of HCRWF Implies that for the two-sided tests, the 

p-value is inadmissible under virtually any other bounded proper 

loss functions . For one-sided tests, the admissibility of p-value 

therefore also holds for virtually any bounded loss function, as 

well as other unbounded loss functions as established in Section 

3. These results, therefore, provide overwhelming evidence that 

the fate of the p-value (interpreted as an estimator of IH(9)) 

depends on whether one-sided or two-sided testing is involved. 

I ,, 



106 J.T.Hwang and R.Pemantle 

2. Proper Loss Functions. 

We are going to examine some natural restrictions on loss 

functions in order to see what may reasonably be termed the most 

general class of loss functions for estimators of binary events. 

We take as a model a weatherman trying to predict whether it will 

rain by using a prohabiity . We then give the weatherman a 

penalty which depends on the probability and on whether it 

actually rains. The pe~alty should be large if it rains and his 

asserted probability of rain is near 0 or if it fails to rain when 

the forcasted probability of rain Is near I. We hope that by 

comparing the penalties incurred by this weatherman to the 

penalties incurred by other weathermen, we can tell in the long 

run which is better at predicting the weather. There are, of 

course, many other possible examples such as predicting the 

outcome of a ball game, the outcome of an election of a particular 

candidate or the outcome of any event as long as there are two 

outcomes and exactly one will happen. 

The above model also applies to different statistical 

problems. In particular, in a hypothesis testing scenario we 

could substitute the event 0 € H for rain and the p-value (or 

any other estimator) for the weatherman's probability of rain. We 

want to keep the loss functions as general as possible, so as to 

be able to apply the theory to weather, testing hypotheses 

problems, estimation of confidence of sets, or other yet unnamed 

problems in decision theory. For ease of exposition, we will 

continue using weather prediction as an example. 

When the forcasted probability Is p, let e 1 (p) and e0 (p) 

denote, respectively, the loss incurred when IH = l {if it rains) 

or IH = 0 {If It does not). Equivalently, we are using the loss 

functio~ 

(I) L(0,p) = IH(e)el(p) + (1-IH(0))eo(p). 

The loss function is said to be proper if 
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(2) min (pt 1(a)+(l-p)e 0 (a)) 
OSaSI 
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pe 1 (p)+(l-p)e0 (p). 

The motivation behind the definition is as follows. Suppose that 

the weatherman's subjective probability of rain is p. Then his 

expected penalty for predicting a 

probability Is pe 1 (a)+(l-p)t0 (a). 

according to the subjective 

The weatherman will do best in 

the long run by predicting an a to minimize this expression. If 

the expression is not minimized at a = p, the weatherman will be 

forced to lie. Thus a proper loss function is one which allows a 

Bayesian not to lie. A strictly proper loss function is one that 

forces a Bayesian to tell the truth, i.e., one for which the 

minimum in the left hand side of equation (2) is uniquely achieved 

by p. The term proper ts taken from Lindley (1982) and from 

Winkler and Murphy (1968) and the Idea goes back at least to de 

Flnettl (1962). 

Clearly. e
1 

must be nonincreasing and e
0 

must be 

nondecreasing for the penalty to make any sense at all and hence 

these are assumed throughout the paper. Also, adding constants to 
' I eo or el does not change the ordering of the class of decision 

procedures. Therefore, let 

(3) e I (I) e0 (o) o. 

so all penalties are nonnegative. Since the values of e1 and 

t 0 at points of discontinuity may be chosen in any of several 

ways, another convenient normalization condition is 

(4) I Im e I (a) 
alp 

t
1 
(p), Jim t

0
(a) 

alp 
tO(p). 

We allow the possibility that t
0

(1) or t
1

(0) Is Infinite : If 

the forecasted probability of rain is truly zero , the weatherman 

will have made precautions that raining does not occur. 

I ,, 



108 J.T.Hwang and R.Pemantle 

Theorea 1. For the function L In (1) with e 1 and e0 

satisfying conditions (3) and (4) to he proper, It Is necessary 

and sufficient that there be a finite measure M on (0, l] such 

I ~ that t 0 (p) = (O,p) l-z I ~ and e 1 (p) = (p, l) z From this 

It follows that J~ t 0 (p)dp J~ e1 (p)dp = M([O. 1)) . 

We omit the proof of the above theorem. Characterization of 

this type can be found In, for example. Schervlsh (1989), as well 

as Van Der Meulen (1992). Our characterization Is slightly 

different and the necessary part is slightly stronger. 

Throughout the paper, we use A to represent the Lebesgue 

measure. 

Example. Suppose M 

-en(l-p) so L(0,p) 

A. Then e
1

(p) = -en(p) and e0 (p) = 

-enlIH-(1-p) I. This Is called the ent ropy 

or logar ithmic loss function (Winkler and Murphy 1968). Note that 

the penalties are infinite for a mistaken prediction of certainty, 

which may be reasonable in certain situations. Suppose dM/dA = 

2x(l-x). 

Q( IH(0), p) 

This is the familiar quadratic loss and is denoted as 

(IH(0)-p) 2 . which dated back to Brier (1950). An 

example of a proper loss function that is not absolutely 

continuous Is when M = o(p0 ), 0 <Po< I. Then e 1 (p) l/pO 

for p < Po and zero otherwise, while e0 (p) = 0 for p < Po 

and l/(1-p
0

) otherwise. This corresponds to a decision problem 

where there will be only two actions, one if the for ecasted 

probability is at least p
0

. and the other if the forecasted 

probability Is less than p 0 (see Berger 1985). 

3. Admissibility Results . 

In this section we will investigate conditions under which an 

estimator p(X) Is admissible. It Is known In HCRWF that any 

admis~ible estimator with respect to Q is generalized Bayes (or 
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possibly with some minor modification). We will therefore focus 

on these estimators and give, in Theorem 2 , a sufficient 

condition under which they are admissible with respect to L. In 

Theorems 3 and 4, we will also provide a device to check whether 

p-values are generalized Bayes. 

As sume that the observation X has a probability density 

function f
0

(X) (p .d.f .) with respect to a measure µ. Here 0 

is the unknown parameter ranging in the parameter space. 

We define aw(X) to be a generalized Bayes estimator with 

respect to v(0) if a(X) = a .. (X) minimizes the posterior risk, 

EL(0,a(X}) Ix J L(0.a(X))f 0 (X)dT(0)/J f 0 (X)dv[0) . 

This is an expectation integrated against the conditional 

distribution of a given x. called the posterior distribution. 

When w(0) is a probability measure, the generalized Bayes 

estimator is called the Bayes estimator. 

A sufficient condition for the admissibility of a genp{alized 

Bayes estimator is that it is unique and it has a finite 

generalized Bayes risk. 

J R(e,a .. )d .. (0), 

where for an arbitrary estimator a(X), 

R(0,a) = J L(0,a(x))f 0(x)dµ 

is the risk function. Under a strictly proper los s, the 

generalized Bayes estimator can be uniquely determined to be 

a .. (x) P(0EHIX=x). 

I 
" 



110 J . T.Hw a n g and R.Pemantle 

Putting these together and using Fubini's theorem, the generalized 

Bayes risk is 

(1) I [e 1 ca cxiia ex> + e0 ca cxiic1-a cxJ))f cx)dµ v 1r ir ll' m 

where fm(x) denotes the marginal p.d.f. of X with respect to 

µ, 1. e., 

fm(x) J fa(x)d"(a). 

In summary, we have the following theorem. 

Theorem 2. Assume that L is a strictly proper loss function. 

The generalized Bayes estimator aw(x) is admissible if (I) is 

fin ite. 

It is usually rather straightforward to check whether (1) is 

finite. The condition does hold for many generalized Bayes rules 

based on one-sided tests. 

Examp le I . Let H = (- 00 ,a
0

) and assume that X has a N(a,1) 

distribution where -m < e < m is the parameter space. (The case 

of several i.i.d. normal observations with known variance can be 

reduced to this canonical form by considering the sample mean.) 

We can further assume that e
0 0 by a location transformation. 

The p-value is then p(X) where p(x) p 0 (X > x) = 1-~(x), and 

~ is the cumulative distribution function of N(O,l). It is easy 

to demonstrate that p(X) is generalized Bayes w.r . t . the 

Lebesgue measure X (see continuation of Example 1 below) . Hence 

p(X) is admissible under L If (I) Is finite where arr(x) is 

replaced by p(x). This is equivalent to 

(2) I e 1 c1 -~cxiic1-~cxiidx + J e 0 c1-~cxii~cxidx < m 
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Assume that M is the measure corresponding to L in Theorem 1. 

It is easy to show that a sufficient condition for the finiteness 

of (2) is 

(3) JI 1/2 
1/2 Jen(l-t)J

112
dM(t) +Io Jen tJ

112
dM(t) < m 

Condition (3) is not a very strong assumption . In particular it 

is satisfied by the quadratic loss and the logarithmic loss. In 

general, it suffices to have M(O,a] and M[l-a.I] going to zero 

as fast as • a for some ~ > 0. 

The more difficult question is under what situation the 

p-value for the one-sided test. H = (- 00 ,a 0 ), is generalized Bayes. 

This problem is addressed here. Let us suppose that T(x) Is a 

one-dimensional summary statistic and also the test is rejected if 

T(x) > c. Assume that the p-value is Pa (T(X) ~ T(x)) = p(T(x)) . 
0 

Theore• 3. Assume that there exists a transformation h( •, •) 

such that h(Z
1 
.z

2
) Is strictly increasing in z1 and !~) 

strictly decreasing in z2 . Further suppose that the sampling 

distribution of h(T(X),a
0

) Is Identical to the posterior 

distribution of h(T(X).a) given T(X) with respect to a 

generalized prior distribution. Then the p-value is generalized 

Bayes with respect to such a prior . 

Proof: Let the cumulative distribution function of the common 

distribution be denoted by F. Hence the p-value is 

Pa (T(X) ~ T(x)) =Pa (h(T(X),ao) ~ h(T(x) , 0oll 
0 0 

= 1-F(h(T(x),a0 )). 

Similar calculation shows that the generalized Bay es estimator is 

also given by the last expression. completing the proof. 

I 
" 



11 2 J.T.Hwang and R.Pema ntle 

The above theorem does not provide a way to construct the 

prior. For the continuous case, the following theorem is useful 

for such a derivation . Assume that h is differehtiable and 

hj{•, •) and h2{•,•) are respectively the partial derivatives of 

h with respect to the first and second coordinates. Further let 

h~ 1 {•, ·) denote the inverse function of h with respect to the 

first variable while the other variable is held fixed. Hence, by 
-1 -1 definition, h 1 (h 1 {Z 1 ,z2 ).Z2 ) = z 1 . Similarly h

2 
{Z

1
.Z

2
J Is 

defined such that h 2 (Z 1 .h; 1 cz 1 .Z2 )) = z2 . 

Theorem 4. Under the above assumptions about h and the 

assump%lon that T has a p.d . f. r 0 (t) with respect to the 

Lebesgue measure, the condition of Theorem 3 (stated in the second 

sentence) is equivalent to the condition that we may write 

(4) 

re (h;
1

111.e0 )) 
0 I 

lhj lh;
1

111. e 0 >. e 0 i I I h2 ( t. h; 1 ( t, 1))) I 

f -1 { t) 
h2 { t, 1J) 

11"(h;
1
1<.11))·g(t) 

for some nonnegative functions ~ and g. When (4) holds then 

the p-value is generalized Bayes with respect to the prior with 

density w. 

Proof : The density of the sampling distribution of 1) = h{T(X),e) 

Is 

where e = eo . 

re {h;1{TJ.Oo)) 
0 

lhj lh;
1

111. e 0 >. e 0 > I 

The posterior density of B is proportional to 

fe(t)T(O) with proportionality being only a function of t, 

denoted by g(t). Hence the posterior density of 1) Is 

proportional to 
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f -l {t)T{h;J(t , 1)}) 
h2 (t,1)) 

I h2 { t. h; I { t, 1))) I 

Hence it is obvious that the a~sumption of Theorem 3 is equivalent 

to (4). The rest of the theorem follows easily. 

Example 1 (continuation). Take a transformation n 
(4) Is proportional to one and hence taking T{e) 

X-e. Then 

will 

generate the p-value as the generalized Bayes estimator by Theorem 

4, as also similarly concluded in Example 1 above for this normal 

case. The normality assumption is not important. however. In 

general, consider the case where the distribution of X has 0 

as the location parameter. We may use the transformation n = X-0 

and apply Theorem 4 to establish the same conclusion. Hence the 

p-value is generalized Bayes with respect to ~(0) = 1. 

Example 2. Assume that 

scale parameter 0 > 0 . 

sufficient statistic T 

xi are i.i.d. gamma distributed with a 

Consider only estimators based on the 

! x
1

. To apply Theorem 4. conslpfr a 

transformation ~ = T/0 . The following derivation works for any 

scale parameter distribution with T - fe(t) = f(t/e) /e. Direct 

calculation shows that (4) equals 
-I t 

1) also h 2 (t,1)} = ~ This 

leads to choosing 11"{e) = l/e . Hence Theorem 3 implies that the 

p-value is generalized Bayes w.r.t. such a prior. 

Despite the applications of Theorems 3 and 4 in Examples 

and 2, the authors are not sure whether there are other 

applications. 

Now we turn to investigate the admissibility of the p-value 

for testing H
0

:e S e 0 In Example 2. We assume without loss of 

generality that e
0 

= 1. The p-value is then 

Pl {T > t) r a-1 -x 
t x e dx/f {a) 

I ,, 
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where a ) 0 is assumed to be known. Note that P
1

(T > t) is of 

order ta-le-t for a large t. Now we apply Theorem 1 . Here 

r'° -t/O a - l a+l 1 r'° -z a-l 
m(t) = J 0 e t /(f(a)O ]dO = t Joe z /f(a)dz 

which is proportional to 

equivalent to 

-1 
t Hence the finiteness of (!) ts 

(5) s: (t 1 (p 1(t))p 1 (t)+t0 (p 1 (t))(l-p 1(t)JJt dt < m 

It can be shown that this is equivalent to 

(6) I: t 0 (p 1 (tJJt dt ( m 

Using the fact that p
1

(T > t) is smaller than 

one can show that (6) is implied by 

(7) Jl/2 

0 (tn( ltn( t) I ))dM( t) < m. 

-t/2 
e as t -+ m 

This condition is weaker than (3) and holds for most proper loss 

fun c tions. 

In summary, it follows from Theorem 2 that the p-value is 

admissible whenever (6) or (7) hold . Interestingly, the p-value 

is one at t = 0 and yet it is still generalized Bayes and 

admissible. The situation is quite different from what was 

discussed in HCRWF for the two sided case. 

4. A relation between the quadratic loss and other proper losses 

for two-sided problems . 

Under certain conditions , it is shown that admissibility 

(inadmissibility) of an estimator under Q implies admissibility 

(inadmissibility) under most of other proper loss functions. Here 

Q is the quadratic loss defined in (1) of the Introduction. One 
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application of this theorem is to two-sided testing hypothesi s 

problems. In HCRWF, it was shown that for exponential families 

and under the quadratic loss function, that the p-values 

corresponding to one-sided tests are typically admissible while 

those corresponding to two-sided tests are typically inadmissible. 

By using the theorems of this section, it then follows that these 

results also hold for many other proper losses. 

The admissibility result here applies to any estimators 

admissible under Q, but to a slightly smaller class of loss 

functions than in Section 3. 

Although our arguments can presumably be generalized to many 

other parametric assumptions, we will focus only on the 

exponential family of distributions. Hence assume that the p . d.f. 

of the random vector X w.r. t. µ 0 ts 

go(O)e0T(x) 

The natural parameter space N is an interval. The testing 

hypothesis problem we wi 11 focus on is ' J 

H
0

:o E H (00,01] 

where e
0 

~ e
1 

are assumed to be interior points of N. We will 

estimate IH(9) under proper loss functions. We will consider 

only non-randomized estimators which are functions of the 

one-dimensional sufficient statistic T(X). Note that the 

distribution of T(X) also belongs to an exponential family 

having the p.d . f. 

f
0
(t) = e 8 tg(O) 

with respect to some measure µ. Below we will use the property 

that for 0 € N, g(O) ts continuous and the expectation of the 

function of T is also continuous in 9 as long as the 

expectation is finite. See Exercise l. 13 . 1 on p.28 of Brown 

(1986). 

I ,, 



11 6 J.T . Hwang and R.Pemantle 

Although we consider only non-randomized estimators based on 

T, we do not lose any generality. This assertion is obvious for 

strictly convex loss functions. It is also true for any proper 

loss functions with a measure M such that the function K(x) as 

defined by M(O,x] is strictly increasing. In fact, in such a 

case, all the admissible non-randomized rules based on T forms a 

minimal complete class due to the reason explained below. One can 

prove that ti(K-
1
(x)), i = 1,2, are strictly convex. In other 

words, there is a change of scale under which e
1 

are 

simultaneously strictly convex. Hence a randomized rule is 

dominated by its ''expectation" with respect to its new scale. 

This rule, in turn, is dominated by its conditional expectation 

given T, again with respect to the new scale. 

The Admissibility Theorem. 

Theorem 5. Assume that the natural parameter space N = (-m,m), 

and p 0 (T) is an arbitrary admissible estimator under Q, then 

p 0 (T) is admissible under any strictly proper bounded loss 

function L. 

Proof: By Theorem 5.1 of HCRWF, p
0
(t) must be a "modified" 

generalized Bayes estimator for t € (t
1

, t
2

), a truncation set. 

That Is 

(!) 
J f 6 (t)dir0 (e) 

t € ( t I, t2) Po( t) J f aC~ J d~ 1 c e J + ] f 6 ( t J dir 1 ( e J 

0 t f [t,.t2] 

where "o is a probability supported on [BO.el] and "1 is a 

a-finite measure supported on (-w,e0 ] U [6
1

,w). One can easily 

show that Po( t) is admissible under L, since it has finite 

modified Bayes risk by comparing to the zero estimator. 

J.T.Hwang and R.Pemantle 11 7 

The Inad•isstbtlity Theorea. The inadmissibility theorem is more 

difficult to establish and more assumptions are needed. However, 

unlike in Theorem 5, we make no assumption about N. 

Theore• 6. Let p(T) be an arbitrary estimator and L(B,x) any 

proper loss function. Assume that the derivative of L with 

respect to x is continuous and nonzero for x € [0,1) and that 

its representing measure ML has a derivative with respect to the 

Lebesgue measure. If p(T) is inadmissible under Q, then It is 

inadmissible under L. a 

The theorem ts proved in the Appendix. Below. we sketch the 

main idea by constructing an estimator qL that domains p for 

loss L, given an estimator of qQ that dominates p for loss 

Q. For each 0, qQ has a lower quadratic risk than p, so 

E6Q(B,qQ(T)-Q(B.p{T)) < 0. 

By convexity, the integrand is bounded below by 
8 

(qQ(T)-p(T))Q'(0,p(T)) where Q'(B,p) = Bp Q(B,p). Hence 

(2) E0 (qQ(T)-p(T))Q'(B,p(T)) < 0. 

' I 

Now depending on e € [e0 .a 1] or not, L'(B,x) = ~x L(B,x) is 

either (-1/x)dML/dx or [1/(1-x)]dML/dx. Similar expressions 

hold for Q'(B,x). Hence Q'(0,x)/L'(B,x) = dMQ/dML(x) 

independent of e. and 

(3) 

Let qL 

I 
dM 

{qQ(T)-p(T))dMQ(p(T))L'(0,p(t))f 6 (t)dµ(t) < 0. 
L 

qL,S so that 

I 
ii 
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qL,S(T)-p(T) S(qQ(T)-p(T))dMQ/dML(p(T)). 

where S is a positive constant. If we are allowed to 

differentiate under the expectation, it is obvious that the 
d 

lefthand side of (3) Is dS E9L(9,qL,S(T)) evaluated at S ; 0. 

This together with the fact that qL,S(T) reduces to p(T) at S 

= 0 and hence both have identical risk function imply that 

qL,S(T) dominates p(T) with respect to L at 9 for small S. 

Since we are interested in domination uniformly in 9, the bulk of 

the proof in the Appendix is concerned with this uniformity. 

Effort is needed to make the differentiation and the choice of q 

rigorous. 

In fact, it appears that the argument works with any £9 (x). 

However, we assume an exponential family to simplify the analytic 

arguments . 

Putting Theorems 5 and 6 together give the following 

corollary . 

Corollary 11. For a strictly proper loss function satisfying the 

conditions of Theorems 5 and 6, the class of admissible estimators 

are given by (1). 

5. What Dominates the p-Value for the Quadratic Loss? 

We have seen in Theorem 6 and in HCRWF that the p-value is an 

inadmissible estimator (under the quadratic loss, hence under any 

proper continuously d!f ferent!able loss) for the truth Indicator 

function of a point null In the two-sided case based on a N(9,J) 

observation X. Van Der Meulen (1992, p.81) had a similar 

inadmissibility result which applies to convex and proper loss 

functions. It is noted, however, in HCRWF, by looking at the size 

of the tails of the p-value p(X), that It cannot be dominated by 

any proper Bayes estimator, leaving open the question of what 

generalized Bayes estimator dominates the p-value for the 

quadratic loss . A concrete example would be useful since it could 
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be plugged into Theorem 6 to produce an estimator dominating p 

for any loss function satisfying the assumptions. In this section 

we exhibit such an estimator, q. The demonstration that q 

dominates p is numerical and we know of no analytic proof that 

q dominates p. 

Let m and k be parameters to be specified later and let 

~(9) be the positive part of m9 2 -k, I . e ., the maximum of 0 and 

m0 2-k. Let v(m,k) be the a-finite measure having density ~ 
with respect to Lebesgue measure together with a mass at zero of 

weight 1. For various values of m 

estimate q(m,k) with prior ~(m,k) 

particular, the estimator q(.5.1) 

and k the generalized Bayes 

dominates the p-value . In 

has 12X less quadratic risk 

than the p-value for nonzero values of lel up to 1 or greater 

than 5, Improvement dipping to a low of l.3X at 9; ±3.4. When 

m; .7 and k; 1.95, q(m,k) does only BX better than the 

p-value for small 9 but is more even, dropping no smaller than 

2 .5% at e = 2.9 . In both cases, the k was chosen as a function 

of m to make the quadratic risk of q slightly better than 

that of p for 9 0. Below is a table comparing quadratic 

risks of the p-value to those of q for the two above choi~es of 

parameters . The table was computed by numerical integration after 

first obtaining the formula q(x) ; •(x)/(•(x)+H(x)), where H Is 

the integral of the continuous part of v against ~(x-0) and 

can be written: 

J-..lklin 2 r"' 2 
H(x) ; (me -k)•(x-9)d8 + J_ (m9 -k)•(x-8)d9 

-~ "1<7iii 

J-..lklin-x 2 2 
-~ •(w)(mx -k+2mxw+mw )dw 

r 2 2 
+ •(w)(mx -k+2mxw+mw )dw 

"1<7iii-x 

"o(x) + "o(-x). 

I ,, 
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where 

H
0

(x) (mz 2+m-k)t(-v'k7iii-x)+m(v'k7iii-x)~(v'k7iii+x). 

6 R(p,6) R ( q ( . 5, I . 004, 6) R ( q ( . 7 , 1 . 95) , 6) 

0 .33333 .33179 .33277 

o+ .33333 .28858 . 29996 

.5 .30137 .26253 .27250 

.22290 .19766 .20429 

1.5 . !3520 .12311 . 12634 

2 .06752 .06339 .06441 

2.5 .02791 . 02697 .02705 

3 .009612 .009475 .009357 

3.5 .002774 .002748 .002664 

4 .0006751 .0006583 . 0006248 

4.5 .0001392 . 0001303 .0001207 

5 .0000244 . 0000213 .0000192 

Acknowledgement: We thank the referees, Professors L . D. Brown 

and Roger Farrell for many insightful comments and discussions. 

Appendix 

Note that all the loss functions considered in Theorem 6 are 

bounded for each 9. Below we assume without loss of generality 

that all the estimators take values In [O,l], and hence they all 

have finite risk for every 0 and every loss considered. 

The proof of Theorem 6 will be based on the following lemmas 

whose proofs are very technical and are either omitted or 

sketched. See Hwang and Pemantle (1992) for the details. 

Le•ma A.I. Consider an estimator p(T) Inadmissible under the 

quadratic loss Q. Then there is an estimator q strictly 

dominating p for all e and for some constant 0 < r < 1 and 

finite cutoff points c < c+, 
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(I) q(t) rp(t) for t ( [c_,c+]. 

Furthermore q(t) ~ rp(t) for all and 

(2) µ(t > c+:p(t) > 0) > 0 and µ( t < c_:p(t} > 0) > 0. 

In proving Lemma A. I, start out with an estimator qi which 

dominates p for al I 6 under Q. The estimtor 

q(t) - {qi ( t) t € [c_.c+] 

- rp( t) otherwise 

with approprite choice of c± will do the work. 

Proof of Theorem 6. Suppose p(T) is a Q-inadmissible estimator . 

By Lemma 4 . 1, we may assume qQ(T) dominating p(T) for the 

quadratic loss and satisfying all the other conclusions of Lemma 

A. I. Let 

(3) 
dMQ 

sup Cfi;! (z) 
z L 

'I 

B 

where MQ and ML are the representing measure for 

respectively. 

Q and 

The following lemma can be established by using the 

continuity of L and the identity e0(t)(l-t) = e;(t)t . 

L 

Lemma A.2. There exists a density of MQ with respect to ML so 

that B is finite. 

Below we will work with such a density and hence B is 

finite. Construct a family of functions 

{qL,S:O ~ S ~ tl 

I 
" 
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defined by 

(4) 
dMQ 

p(t) + S(qQ(t)-p(t))~(p(t)) . 
L 

qL,S(t) 

Assume without loss of generality that 

[O, 1] . Since QL,S always lie between 

qQ 

qQ 

and p give values in 

and p, so in 

particular it lies in the unit interval and is at least rp. 

Let RL(O,q) represent the risk function of q under L. 

Hence 

RL(e,q) EeL(e , q(T)). 

Lemma A. 3. 

(5) 
defn . d 

•(e,S) E dSRL(e,qL,S) 
d 

Ee dS L( 8 ,qL,S(T)) . 

From Lemma A.3 

(6) d 
dS RL( 8 ,qL,S) 

, dMQ 
E0L (0,qL , S)(qQ(T)-p(T))dML(p(T)) . 

Setting S = 0 in the above expression give s th e left hand side 

of (3) In Section 4 which equals (2) In the same section . Hence 

•(0,0) is strictly negative for every 0 . Since qL.S reduces 

to p for S = 0, we conclude that for every e 

(7) RL(e,qL,S) < R(O,p) 

as long as S is small enough . It remains to find an S for 

which (7) hold s for every e . We establish this In three p a rt s 

(I) 0 € [eO.el] ( 11) e € [a,b] n (e
0

.e
1

)c and 

( 11 !) e € [a,b]c where [a,b] is any interval In the pa ra meter 

space N wl th a < e 0 ~ e 1 < b . 
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To do so , we need to ex t end the definition of RL( 0 ,q) . Le t 

R~(e,q) 

Note that R~(e,q) = RL(e , q) 

is a continuous extension of 

Define 

•o(e,S) 

Similar to (5) we have 

Eee 0 (q( t)) . 

for al I 

RL from 

e € [eo,e1Jc 

[e
0

.e
1
]c to 

d 0 
dS RL ( e ' qL, S) . 

and R~(e , q) 

(eo . e1)c. 

(8) 
d 

•o(e,S) = Ee dS(qL,S(T)) 
, dMQ 

Eeto(qL s<T))~(p(T)) 
. L 

and hence •o(0,0) < 0 for e € [e0 ,e 1]c . It can also b e shown 

that •o(0 , 0) < 0 for e = e 0 or e 1 . 

similarly to (2) and (3) of Section 4 as 

This can be est a blished 
'I 

long as one starts with a 
0 0 qQ such that RL(e,q

0
) < RL(e,p(t)) for e € (e

0
,e

1
)c . Putting 

these together, we have 

(9) •o(e.o) < o for e € (e0 .e 1)c : 

We have the following property of •o(0,S). 

Le••a A. 4. •o(0,S) Is jointly continuous In e € (e 0 ,e 1)c and 

s. 

Now we return to the proof of (7). We work with case (ii) 

first . For each e, let u(0) be the largest number u such 

that •o(0,S) < 0 for every S < u. By (9) and Lemma A.4, u(0) 

0 . Note that 

I 
" 
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(10) .,0 (a.u( a )) 0 . 

We claim that for a € [a,b] n (a0 . a 1 )c. u(B) is bounded below by 

UM ) 0. This then implies that for 0 < s < s2. where s2 =~UM, 

<P 0 (B,S) 0 for every a E [a.b] n [a0 . a 1]c and therefore qL,S 

dominates p for case (ii). 

To establish that u(9) is bounded away from zero , assume 

that this is not the case. Then (0 , u(B)) has a limiting point 

(aM.O) for some aM € [a.b] n (aa.a1)c by compactness. Hence 

.,0 (aM.O) = 0 by (10) and by continuity of .,0 . This, however, 

contradicts (9) . Inequality (7) ts now established for a in 

case (ti). 

Case (1) can be similarly proved by considering L 1 instead 

of L0 . Hence there exists s 2 > 0 so that RL(0,qL.S)-RL(0,p) 

is strictly negative for all a and 0 < s < s 2. 

Now we only need to deal with case (iii) . If N is compact, 

taking (a,b] = N completes the proof of the theorem. If N ts 

not compact, we have three cases: 

N [aL'OU). (BL.au) or (aL.eU] . 

All the three c a ses are similar and hence we consider only the 

first case . The lower end point causes no problem since we can 

handle by taking a= BL . The only problem ts as a~ BU. Note 

that au can be infinite or finite which will be considered 

below . 

Now for a a < a . write the difference in risks between 

QL , S and p as 

J . T . Hwang and R.Pema ntle 

(11) RL(a.qL , S)-RL(B.p) 

Jt~c+ f 0 (t)[e0 (qL.s(t))-e0 (p(t))]dµ(t) 

+ Jt>c+ f 0 (t)[e0 (qL.s(t))-e 0 (p(t))]dµ(t) 

where c± were defined in Lemma A. 1 . For t > c+, 

-2(p(t) - qL 8 (t)) 
e0 (qL.S(t))-e 0 (p(t)) ~ B · (rp(t)) 

2 dMQ 
-2S(l-r)rp (t)d'i!" (p(t))/B . 

L 
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By (2), there exists a positive number E > 0 such th a t _ the set 

D 2 dMQ 
(t > c++c;p (t)dML (p(t))/B > c} 

' I 

has a positive measure. Hence the second term on the right hand 

side of (11) ts bounded above by 

(12) -2S(l-r)rcPa(T > c++ c ). 

Now consider the first term on the right hand side of (11). 

a" be a fixed point with a" < au . For a such that 

a" < a au · and t < c+· 

f 0 (t) g(a)eat 
M M 

g(a"Jea t.et(a-a ) ~ 
g(a"J 

g(a")ea"tec+(a-a"J ~ 
g(a"> . 

/, 

Let 
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Hence the aforementioned first term is bounded above by 

(13) c+ca-a"i sl.Ql_ I f (t)(e (q s<t>>-eo<P<t>>Jdµ(t). 
e M t<c M 0 L, 

g(a l + a 

Arguments similar to those leading to (6) establish the finiteness 
d 

of dS EI(-'" )(T)e0 (qL sCT)) I . This implies that the 
,c+ ' S:O 

integral in (13) is bounded above by kS for s smal 1 enough 

where k is some constant independent of s and a. 

Now compare ( 13) to (12). If BU is finite, one can show by 

using Fatou's lemma and the fact au f N that as a .... au· 

g(B) .... 0 and hence (13) converges to zero. Similarly one can 

show P8 (T > c+c) _,I as a .... au. Therefore ( 12) is larger in 

magnitude than ( 13) for al 1 s. 0 < s < s3. where s3 is some 

finite number, and for 0 sufficiently close to au and hence 

{11) is negative for such S. What if e
0 

= m? We can use 

arguments similar to those leading to {13) to show that 

( 14) 
(c++c)(e-a") " a"t 

Pa(T > c +c) ~ e g(B) J > g(a )e dt. + t c + +E. 

Using this lower bound, (12) is bounded above by -2S(l-r)r times 

{14). Since there is an extra term e"a in (14), the ratio of 

(14) to (13) without the integral term approaches as e -+ Cl) 

Hence the rest of the argument ts similar to the case when OU is 

finite . 

In summary, qL,S dominates p for all a and S such that 

0 < S < Min(S 1 ,s 2 ,S3 ) and hence p is inadmissible. Q. E.D. 
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Abstract 

Liudley's measure of information iJ a sample about a parameter is given by the average 

l(ullback-Leibler distance between the posterior and the prior. This is also equal to the 
Bayes risk when one estimates the density using the entropy loss. In this paper, an asymp­

totic expansion of this measure is obtained. for a one.parameter family of discontinuous 
densities. This expansion is then used to obtain the reference prior in the sense of Bernardo. 

'I 

1. Introduction 

Let X 1, X 2 , •.. , X,. be independent observations each having a distribution P9 with a density 

f(x; 0) with respect to a fixed dominating measure where 8 E e, an open subset of R. Consider 

a prior on e havi.ng a density 1f{-) with respect to the Lebesgue meas'!re. Lindley's measure of 

information (see Lindley [15)) /(1f;X") in X" = (X1 , .•. ,Xn) abo\tt 8 is given by the average 

relative entropy or Kullback-Leibler distance between the posterior distribution of 8 given X " 

•nd the prior " (see Sec. 2). This measure is also equal to the average (with respect to 11") 
relative entropy distance between the distribution of X" given 0 and the marginal distribution 

of X" and indeed is the Bayes risk when one estimates the density of X" given 0 using the 

entropy Joss (see Aitchison [l)). 
In Section 2 of this paper, we obtain an asymptotic expansion of this Bayes risk (or measure 

of information) /(11"; X") for a family of nonregular cases. We restrict our attention to the 

cases which, by results of Ghosh et at. [11], are essentially the only cases where the posterior 

distributions converge. Our treatment is similar to that of Clarke and Barron [9] who obtained 

an expansion of the entropy risk for the regular cases. Results similar to those of Clarke and 

Barron [9] were obtained earlier by lbragimov and Has'minskii [13]. For extensions to non 

1 Research supported by the National Board of Higher Mathematics, Department of Atomic Energy, Bombay, 

Ind ia. 
AMS 1991 subject cla.ssification: Primary 62F25. 
Key words and phrnsu: A11.vmpt.otic expansion, Bayes risk, discontinuous di?nsitiea, l<ullback.Leibler number, 

posterior distribution, rderence prior. 
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