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ABSTRACT:
Consider the problem of obtaining asymptotic information about a multi-dimensional array
of numbers a,, given the generating function F(z) = Y a,z". When F is meromorphic,
it is known how to obtain various asymptotic series for a; in decreasing powers of |r|.
The purpose of this note is to show that, when the pole set of F has singularities of a
certain kind, then there can be only finitely many terms in such an asymptotic series. As
a consequence, in the presence of a singularity of this kind, the whole asymptotic series for

ar is an effectively computable object.
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1 Introduction

Given a generating function F(z) = Y °2a,2", analytic in a neighborhood of the origin,
it is usually possible to obtain a good explicit approximation for a,. The transfer method
of Flajolet and Odlyzko [FlaOdl90], for example, translates information about F near a

singularity automatically into asymptotic information about a,.

The corresponding problem in more dimensions, when r is replaced by a multi-index,
r, is much harder. Even rational functions, whose approximation theory in one dimension
is trivial, are not well understood. The paper [CohElkPro96], for example, spends many
pages deriving asymptotics by hand for an array {a,s;;} whose generating function is, up to
minor changes,

F(z,y,2) = E a”txryszt =

r,8,0

1
(1 —y2)(1 - ﬂz‘_‘ﬂztyif_‘z +22)°

The body of literature dealing with the problem of multivariate coefficient extraction in a
systematic way is quite small. The purpose of this note is to shed some light on coefficient

approximation for a class of meromorphic generating functions to be defined shortly.

The problem of finding an asymptotic expression for a, falls naturally into two steps.
The first is to find the correct exponential rate, namely a homogeneous function (r) of
degree 1 for which

loga,r = (1 + o(1))y(r). (1.1)
This step is geometric and amounts to finding an appropriate point on the variety V of poles

of F. This step, which is not the main concern of this paper, will be discussed in Section 2.

If the first step can be carried out, the next step is to find an asymptotically valid
expression (or better yet, a complete asymptotic series) for a,. This step is analytic. All
known methods involve complex variable methods, namely contour integration or Fourier

transforms. When this step can be carried out, one typically finds something like

ar ~ exp(y(r)) ) _ bj(r)
j=0



where v is homogeneous of degree 1 and {b;};>0 is a sequence of homogeneous functions
whose degrees decrease, typically as (I—-5)/2 for some ! € Z. An example of the leading term
asymptotic (the j = 0 term) is given by F(z,w) = 1/(1 ~z2 —w — zw) = 3. a(r,s)2"w® which
generates the number of lattice paths from (0,0) to (r,s) that go north, east or northeast.

Here the leading term asymptotic is given by

. VTt sZ—s\ [(Viitsi-r _3\/1 rs (1.2)
i r P W\ (r+s— Vg2t r a2’ o

so 7(r, s) is the logarithm of the first two terms and by is the product of the last two terms,
with [ = —1.

Generally, if F is expressed as the quotient of analytic functions G/H, the function
7 is determined by H, as is | in nondegenerate cases. As G varies, the space of possible
asymptotic series will be quite large: even holding r fixed in projective space, any set
of values for by, ...,bx will typically be possible, and the possible values of the sequence
{b;}j>0 will typically form an infinite-dimensional vector space. In some cases, however,
the possible sequences {b;};>o will form a finite vector space, and what is more, will consist
of terminating sequences. Furthermore, each b; will then be a polynomial function of r,
whence the whole asymptotic expansion up to terms of exponentially smaller order is a

finite object. This is the topic of the present note.

The methods herein are more algebraic than geometric or analytic, and are not useful
for computing the coefficients {b;};>0. The point is to find out a priori how many coeffi-
cients one has to compute for a complete asymptotic expansion, thus enabling computation
algorithms such as those in [PemWil0Ob] to terminate. This introductory section concludes
with an imprecise statement of the main result of the paper. Section 2 gives some back-
ground on the determination of the correct exponential order. Section 3 sets forth the
remaining notation and states the main theorem, Theorem 3.1, along with examples and
corollaries. Section 4 shows how a local ring of analytic functions maybe be extended over
a polydisk and characterizes when partial fraction expansions are available in the local and

global rings. Section 5 finishes the proof of Theorem 3.1.



Some notation in use throughout the paper is as follows. Say that g(r) = oexph(r) if
g(r)/h(r) = O(e~%"l) for some 6 > 0. The function F is always taken to be analytic on
a neighborhood of the origin in C?. The formal power series Y rarz" that represents F
will then converge near the origin and its domain of convergence is denoted D; here and
throughout, z" := z[*---z}?. In order to accommodate functions such as the generating
functions for self-avoiding walks and percolation probabilities, which are meromorphic near
the origin but not necessarily near infinity [ChaCha86, CamChaCha91], the natural hypoth-
esis that F' be meromorphic will be weakened as follows. Let z be a point on the boundary
of D where F is singular and let D(z) be the closed polydisk {w : |w;| < |z;],7 =1,...,d}.
Assume that F' is meromorphic in a neighborhood 2 of D(z), and express F = G/H in this
neighborhood (such a global choice is always possible). In particular, z is assumed to be a
pole of F. '

Let V denote the analytic variety where H vanishes. We say that z is a multiple point
of V if near z, V is locally the union of smooth manifolds. We say that the point z is a
complete multiple point if in addition, the common intersection of these manifolds is locally
the singleton {z}. Define
d
v(r,z) = — er log |z;| . (1.3)
Jj=1
As discussed later, when z is a multiple point of V on the boundary of the domain of

convergence, D, then
loga,

v(r,z)
as r varies over & certain cone C N (Z%)%. The cone C depends on H but not on G.
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The main result of this paper is as follows. Assume C = C(H) has non-empty interior.
Then there is a finite dimensional vector space W of polynomials in r such that for any G
analytic in a neighborhood of D(z) there is a P €¢ W with

ar = exp(vy(r,2)) (P(r) + Oexp(l)) . (1.4)

Contrast this to (1.2), which is only the leading term, to see what complications are avoided

when P is a polynomial. This result will be stated more precisely as Theorem 3.1 after the



appropriate terminology has been introduced. This theorem does not address the possibility
that P is always zero, but in fact this is ruled out by results of [PemWil00b, PemWil00c].

2 The exponential order of a,

The problem of determining the exponential order of a, is completely solved only when
d < 2 and the coefficients a, are assumed to be nonnegative. This section summarizes most

of what is known about determining the exponential order.

If one is interested only in those a, with r on the diagonal, then relatively powerful
results may be obtained. When d = 2, the generating function {(2) = Y, a,r2z” may
be extracted analytically [HauKla71], reducing the problem to one dimension. A rational
two-variable function has an algebraic diagonal [Fur67], so for nice two-variable functions,
extraction of the diagonal is effective and asymptotics may then be obtained. In more than
two dimensions, no analytic expression for the diagonal is available [Sta99], but the diagonal
is still D-finite [Lip88] and a recursion for the diagonal may be effectively derived [ChySal96],
which allows the derivation of asymptotics by solving difference equations with polynomial
coefficients. This has in fact been implemented [LeyTsa00] and has no problem running
on a standard laptop (circa 1999) when the inputs are reasonable. The methods used in
these cases, though superficially analytic, are really algebraic and may be carried out over
formal power series rings and modules over the Weyl algebra. The methods may, in theory,
be applied to other rays such as {a,s : s = 2r}, but unfortunately, they are inherently
non-uniform in s/r, and may not therefore be applied when the direction of the ray is a

changing parameter.

When the direction of r varies, all known results require analytic methods. To review
what is known here, begin by defining a function dir = dirg on V. The function dir takes

values in CP%"! and may be multi-valued.

If z is a simple pole and no z; vanishes, then dir(z) = dirp(z) is the single value



(213%,..., zdgf;), which is a nonzero element of C? and thus defines an element of CP% 1,

Under the additional assumption that z is on the boundary of D, an equivalent definition
of dir(z) is the normal to the support hyperplane at (log|z|,...,log |z4|) of the (convex)
logarithmic domain of convergence logD := {x € R?: (e%1,...,€e%¢) € D}. If z is a manifold
point of ¥ but not a simple pole, then H is not square-free and dir(z) may be defined by
replacing H with its radical. In the above cases, dir is single-valued. The remaining case
is when z is not a manifold point of V; in this case, define dir(z) as the set of limit points
of dir(w) as w — z along manifold points of V. When z is on the boundary of D, this
is again the set of normals to support hyperplanes (log|z|,...,log|z4|) of the logarithmic

domain of convergence, logD, but is now, in general, multi-valued.

An illustration will help to clarify the definition of dir. Suppose H = (1 — (2/3)z —
(1/3)w)(1 - (1/3)z — (2/3)w) so that V is the union of two lines, as in figure 1.

figure 1 goes here

As z varies linearly from (0, 3) to (1,1), not including (1,1), the quantity dir(z) is single-
valued and goes from slope oo to slope 2. The value of dir(1,1) is the cone of slopes between
2 and 1/2. As z varies linearly from (1, 1) to (3,0), the quantity dir(z) is once more single-
valued and goes from slope 1/2 to slope 0. The remaining points of V do not concern us,

since they are not on the boundary of the domain of convergence of F.

For each z € V, and each € > 0, the asymptotic inequality
ar =0 ((1 + e)lrlz"’) (2.1)

is immediate from Cauchy’s integral formula. In fact more is true:

Lemma 2.1 Ifz € V is on the boundary of D and r varies over a compact subset of the

complement of dir(z), then a; = 0exp(z™T).

PROOF: Let r be a fixed direction not in dir(z). Since the hyperplane through x :=

(log|z1],...,log|zq|) normal to r is not a support hyperplane to logD, there is a y in the



interior of logD with y - r > x - r. From (2.1) we see that a, = O((1 + €)!"le=¥") for any
€ > 0. Choosing ¢ small enough, the conclusion follows for fixed directions. The rate of
decay (the 6 in the definition of oexp) may be chosen continuously in r, so the uniformity

over compact sets follows. m)

In particular, the true exponential rate for a, is at most y(r,z) = — Z_‘ii:l r; log |z
for any z. This is minimized precisely when r € dir(z). One might hope that the reverse
inequality holds in this case, namely, that loga, = (-140(1)) Zgzl r;log|z;| for z € VYNID
such ‘that r € dir(z). Indeed this is conjectured always to hold when F has nonnegative
coefficients, which is the case of greatest combinatorial interest. Results in this direction

are as follows.

Pemantle and Wilson [PemWil00a, Theorem 6.3] show that if F has nonnegative coeffi-
cients, then for every r there is always a z € YN 0D with r € dir(z). The argument consists

of generalizing the example in figure 1.

When z € 0D is a smooth point of V and r € dir(z), there are several known proofs
that (r, z) is the correct exponential rate for a,. Bender and Richmond [BenRic83] proved
this in 1983, under some additional hypotheses, and also derived the leading term asymp-
totic. A different proof in a more general framework is given in [PemWil00a}; see also the
book [FlaSed00]. When z is a singular point of V, less is known. The preprint [PemWil00b]
shows that -y(r,z) is the correct exponential order when z € 8D is a multiple point and
r € dir(z). As a consequence, if one assumes a, > 0, one has complete knowledge of the
exponential order. Another consequence is that Theorem 3.1 is non-trivial (meaning that
P is not identically zero). The case where d > 3 and z is some singularity other than a

multiple point is addressed in a manuscript in preparation [CohPem00)].



3 Statement of results

The definition of an isolated point may be made precise by the introduction of local rings.
Let 2 be any open set containing a point z and let R, be the complex algebra of germs
of analytic functions in d complex variables, wy,...,wq at z. This is naturally identified
with the set of power series in (w —z) that converge in some neighborhood of z [GunRos65,
Theorem 1 of Ch. II]. The ring R, is a noetherian UFD and is a local ring, with the
maximal ideal M consisting of functions vanishing at z. Any h € M may be factored
uniquely into powers of irreducible factors H;?:l h?j with each h; € M. This corresponds
to the decomposition of the variety V' (h) locally as the union of V;, where V; is the zero set
of h;. Taking h = H, the denominator of F, the point z € V = V(H) is defined to be a
multiple point if each h; has non-vanishing linear part. It is a complete multiple point if,
in addition, the common intersection of the sets V; (locally a hyperplane arrangement) is
the singleton {z}. ‘

Given complete multiple point, z € V' (H), let dir;(z) be the limit of dir(w) asw — z in
V;. This is the normal to V; in logarithmic coordinates. The set dir(z) is simply the convex
hull of {dir;(z) : 1 < j < k}. Let C denote the cone dir(z) and for S C {1,...,k}, let C(S)
denote the convex hull of {dir;(z) : j € S}. Define S to be the family of sets S C {1,...,k}
for which ;s V; # {2z}, that is, the intersection is a variety Vs of dimension at least 1.
By convention, § € S. It follows that if § € S, then for j € S, each V; contains Vg, so
each dir;(z) is normal to Vs in logarithmic coordinates, implying that C(S) is a subspace
of codimension at least 1. Let U = Jgcs C(S). The main result may now be stated as

follows.

Theorem 3.1 Let H be analytic on D(z) and have a complete multiple point at z which
is the only zero of H on the closed polydisk D(z). Let hi',...,hi*, Vi,...,V be the local
factorization of H at z and define dirj, C, C(S) and S as above. Assume C = dir(z)
has non-empty interior. Then there exists a finite-dimensional complex vector space W of

polynomials in r such that for every function G analytic in a neighborhood of D(z) and any



compact subcone Cy of C\ U, the coefficients of F := G/H are given by
ar =2 " (P(r) + E(r))

with P € W and E = 0exp(1) uniformly on C,.

Remark: The set U contains the boundary of C but also possibly some hyperplanes in the
interior of C. Thus it is possible for C \ U to be disconnected. In this case, it can happen

that a, is approximated by two different polynomials on two different subcones of C\ U.

The steps of the proof are as follows. (1) locally, F may be expanded by partial fractions
when G is in a certain ideal, 5, the quotient by which is finite-dimensional (Lemma 4.1).
(2) this is true globally in a neighborhood of D(z) (Theorem 4.5). (3) the partial fraction
summands are ogxp(z77) on C\ U (Lemma 5.2). (4) the coset representatives for analytic
functions modulo 3, have coefficients in a finite vector space of polynomials. Steps (1)
and (2) are carried out in Section 4 and steps (3) and (4) are carried out in Section 5. Two

examples serve to illustrate the use of the theorem.

Example 1 (d = 2)

When d = 2, any singular point z € 9D NV is a complete multiple point. This follows
from the fact that the leading terms of the expansion of H near z are all of the same
homogeneous degree, which is proved in [PemWil00Oa, Theorem 6.1]. Unless the branches
of V near z all intersect tangentially, the cone dir(z) will have non-empty interior, and the

hypotheses of Theorem 3.1 will be satisfied.

If k is the number of factors of H near z, and z is a complete multiple point, then k > d.
The simplest case, when k = d, is worth mentioning as a separate corollary. The proof will

be given in Section 5 after the proof of Theorem 3.1.

Corollary 3.2 Under the assumptions of Theorem 3.1, suppose k = d and each n; = 1.

Then W is one-dimensional, consisting only of constants.



Example 2 (crossing lines)

Consider the example in figure 1, where H = (1—-(2/3)z—(1/3)w)(1 —(1/3)z - (2/3)w).
The leading term asymptotic is computed in [PemWil00b] to be

Qrs = 6+ O(Irl)_l

for 1/2 < r/s < 2. Further terms are increasingly time-consuming to compute. From
Corollary 3.2 we see that in fact there are no more terms of the same exponential order.
In this case there is a more elementary method of obtaining a first-order approximation
to ars. Because H factors globally, it is possible to represent a,; as a two-dimensional
convolution, resulting in a sum of products of binomial coefficients. A bivariate central
limit approximation then recovers the leading term without too much trouble, but gives no

indication that a,; is in fact exponentially well approximated by the constant 6.

Example 3 (peanut)

figure 2 goes here

Suppose H = 19 — 20z — 20w + 522 + 142w + 5w? — 222w — 22w? + 22w?. The real part of
the zero set is shown in figure 2. The point (1,1) is on the boundary of D, and dir(1,1) is
the set 1/2 < r/s < 2. Thus by Corollary 3.2, we have again

ar,s = C + Oexp(].)

where the constant C is proportional to G(1,1). This example illustrates that it is the local
nature of the singularity that allows us to apply Theorem 3.1 and its corollaries: H factors

in the local ring at (1, 1), but does not factor globally.



4 Partial fraction expansions

If F = G/H has a partial fraction representation as Z§=1(gj /h;), then clearly G vanishes
at z. Amplifying on this, for S € S we define hg = Hjese h;j, so that

hs 1

H  Tlieshy
Let 3; be the ideal in R, generated by {hs : S € S}. The following lemma is a local version

of the main result of this section, namely the partial fraction representation, Theorem 4.5.

Lemma 4.1 The quotient R,/S; is a finite-dimensional complez vector space. Equiva-
lently, there is a finite-dimensional vector space V C R, such that for all g € Ry,
g=g0+ Y gshs o (4)
Ses
with go € V and each gs € R,.

PROOF: First observe that z is an isolated element of V(S,). Indeed, if not, then some
variety A of dimension at least 1 containing z is in V(S;). The (possibly empty) set Sy
of j for which A C V; is in S, so hs, € I, and hg, does not vanish on A, contradicting
A CV(Sy).

The local ring R, is noetherian [GunRos65, Theorem 9, Ch. IIB] and satisfies the
Nullstellensatz (see the discussion after Corollary 16 of Ch. IIE on page 90 of [GunRos65)).
From the Nullstellensatz, it follows that the radical of S5, is M, the maximal ideal of R,.
From the noetherian property, it follows that the radical of an ideal is finite-dimensional

over the ideal, hence R,/S; is finite-dimensional over ®;/M = C. 0

To transfer (4.1) to the global setting requires a formulation in terms of sheaves. Let w
be a neighborhood of z in which the factors h; are analytic, and in which ﬂf=1 V; = {z}.
Since V does not intersect the interior of D(z), the intersection of V; with dw is disjoint
from D(z) and it follows that we may choose a neighborhood € of D(z) containing no such

intersection point.
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Lemma 4.2 Fiz any x € D(z) \ {z}. There are functions kY analytic on Q for which the
following hold:

(1) each k¥ is analytic on Q;
(2) h¥ = u - hj with u a unit in R;;
(3) B5(x) # 0.

PROOF: Fix j for the entire proof. Let F; be the sheaf over Q of ideals < h; >. That is,
when w € w and hj(w) = 0, then (Fj)w is the germs of functions divisible by h; at w,
while when w ¢ w or w € w with hj(w) # 0, then (F;)w is all analytic germs at w. The
definition of (F;)¥ is potentially ambiguous when w € 8w is in the interior of , but since

h; is nonzero here, there is no problem.

The sheaf F; is a subsheaf of the structure sheaf O, hence coherent, so by Cartan’s
Theorem A (see [GraRem?79, page 96-97]) there is a map ¢; from some O' onto F;, where
O is the sheaf of germs of analytic functions (the structure sheaf) on Q and [ > 1. Denote
the [ generators of O by 1;,i < L.

Surjectivity of 9; is a local property, but since each 1; is a global section of O, each
fij == %;(1;) is an analytic function defined globally on Q. Surjectivity at z implies that
hj is in the image of ¥;, which is the ideal generated by the functions f;; at z as ¢ varies.

Thus for some functions u; in a neighborhood of z,
$i(Qowily) =D uifij = hj. (4.2)
B i

Surjectivity at any other point implies that f;; do not simultaneously vanish anywhere that
h; does not. By definition of ¢;, each f;; is in the ideal generated by h; and hence may be
written as u;jh; in R,. If each u;; € M, then each f;; € M- < h; > contradicting the fact
that h; is in the ideal generated by the fi;. Thus for some ¢, fi; ¢ M- < h; >.

Given x, if there is an i with f;; ¢ M- < h; > and f;j(x) # 0, then the lemma is
proved with h;‘ := fij and u = w;;. If not, then choose 7 and 7’ so that fi; ¢ M- < h; >

11



and fij(x) # 0. Since it was not possible to choose i = #’, we know that f;j(x) = 0 and

uy; € M. It follows that u;; + uy; ¢ M and the lemma is proved with RY == fij + fv;. O

Corollary 4.3 There is a finite collection {hq : @ € A} analytic on a neighborhood of D(z)
such that for each S € S and each w € D(z) \ {2z} there is an a € A with

ha(w) # 0 and hy = hsu (4.3)

with u a unit of R,.

PROOF: Fix § € S. The function h§ = []jcg.(h)™ satisfies (4.3) for all w in some
neighborhood Ny of x. It also satisfies (4.3) for all w in some neighborhood A of z. By
compactness of D(z), we may choose finitely many x for which the collection of sets N

covers D(z) \ N. Taking the union of such collections over S € S proves the corollary. O

Lemma 4.4 Let Q be a polydisk containing z and let {hy : @ € A} be a finite collection of
functions analytic in Q. Suppose an analytic function g on Q is represented as 3, gXhy in

a neighborhood of each x where each g% is analytic. Then
9= giha
a

with g, analytic in 2.

Proor: This is a straightforward application of Cartan’s Theorem B. A sketch of the
argument is as follows. Define sheaves over @ by F = Ol4 and G =< hy : @ € A >.
The map n :  — G defined by n(fo : @ € A) = Y, faha is a surjection of sheaves. The
space of global sections of a sheaf is the zeroth cohomology group, and H°(£2, F) maps onto
H°(%,G) only if the coboundary map from H®(,G) to H'(Q, £) is trivial, where £ is the
kernel of . By Cartan’s Theorem B ([GunRos65, Theorem 14, Ch. VIIIA]), since £ is
a subsheaf of @4l and Q is a Stein space, the cohomology groups H%(Q2,£) vanish when

12



q > 1. Hence the coboundary map is trivial, and there is a global section (gq : @ € A) of F

mapping by 7 to g. |

Let R now denote the ring of functions analytic beyond D(z), that is, functions f for
which there exists a neighborhood of D(z) on which f is analytic. Putting together the

lemmas of this section yields the following result.

Theorem 4.5 Let H be analytic on D(z) and have a complete multiple point at z which
is the only zero of H on the closed disk D(z). Let hT',... h*, V1,..., V¢ be the local
factorization of H in a neighborhood of z, and let S be the family of subsets S of {1,...,k}
such that z 1s not isolated in Ngcs Vj. Then there is a finite subset {hq : @ € A} of R, each

localizing to hg times a unit in R, for some S € S, and having the following property.

There is a finite-dimensional vector subspace V* of R such that each G € R may be

written as
9 + Zgzha (4.9)

with g5 € V* and the dimension of V* equal to the dimension of R;/S,.

PROOF: The {hy : @ € A} is constructed in Corollary 4.3. Choose coset representatives
for a basis of R,/S, and let V* be their span. We need only to verify the representation
property (4.4). By construction, if G € R, then G may be written as gj + g with g} € V*
and the germ (g), in . Evidently, the dimension of V* is equal to the dimension of R,/S;,

which is finite by Lemma 4.1.

We now verify the hypotheses of Lemma 4.4. In a neighborhood of z, we know from (4.3)
that the functions {hq : @ € A} generate $,. Hence there is a representation g = 3" g%h,,.
In a neighborhood of any other x € D(z) some h, is nonzero, so there is trivially a repre-

sentation g = Y gXh,. Applying Lemma 4.4, it follows that g € S. o

13



5 Finite-dimensional shift-invariant spaces of arrays must be

polynomial

For this section we fix a compact subcone C; C C \ U with non-empty interior.

Let W(d) denote the set of complex valued functions on (Z*)?. For each G € R, let

be,c be the coefficients of the expansion

G(w

#w)) = ; br.gz" .
Denote by g¢ the element of W(d) mapping r to by,g. Thus ¢ is a correspondence between
certain meromorphic functions and coefficient arrays. If S is a subset of R, let g5 denote
{gs : f € S}. Let X C W(d) denote the vector space gg and let E C X denote the subspace
of functions from (Z*)¢ to C that are Oexp(1) uniformly on C;. For 1 < j < d, define a linear
map o; : W(d) = W(d) by o;b(r) = b(r — ¢;) where e; is the vector whose i component

is 0;; and f(r) is defined to be zero if r has a negative component.

Recall that 3 denotes the ideal in R generated by {hy : @ € A}. The next two lemmas
state the properties that will be used of the correspondence gq. The proof of the first one is

trivial and is omitted.

Lemma 5.1 The map g > qq is linear over C and

0;3(qg) = qQu;g -

Lemma 5.2

g Cz 'E.

PROOF: Since E is a vector space, it suffices to show that ggn, € z7"E for each a € A.

This is equivalent to by, /g = Oexp(z™7) on C;. Each h, is chosen as h¥ for some S € §

14



and x € D(z). For such an S, the pole set of the meromorphic function gh,/H is a subset
of the set V. Thus z is on the boundary of the domain of convergence of gha/H. In a
neighborhood of z, the pole set of gh,/H is simply the union of the sheets {V; : j € S}.
Thus dir ”‘?‘F(z) = C(S). We have chosen the cone C; to avoid C(S), so the conclusion of

Lemma 2.1 yields the exponential decay of z"ggpn, on Ci, and establishes the lemma. 0O

The ideal M contains all functions of the form 1 — w;/z;. Write (1 — w/z)" to denote
H;’-’zl(l — w;/2;) and similarly write (1 — 0/2z)" to denote the product of the operators
(1 = 0;/2;)7. Since M is the radical of ¥, some power of each (1 — w;/z;) annihilates
R./Sz and hence the set F := {r: (1 — w/2z)" ¢ S} is finite. From Lemmas 5.1 and 5.2,
we see that for any r ¢ F and any G € R,

(1-0/z)qg € E. (5.1)

The final lemma is as follows.

Lemma 5.3 Let Y C W(d) be a finite-dimensional subspace such that there is a finite set
F for whichr ¢ F implies (1 —0/2)'Y C 2z "E. Then for each f € Y there is a polynomial

g whose terms have multidegrees in F, and for which f —gz~F € 27 "E.

Assuming this for the moment, the proof of Theorem 3.1 can be finished as follows.

PROOF OF THEOREM 3.1: Let Y be the space qy-, where V* is as in the conclusion of
Theorem 4.5. By the conclusion of that theorem, for any G € R, we may write Gu =
96 + 2 ses 95hs. By linearity of ¢, we have written g¢ as the coefficients of gj/ Hf___l(h;)"j
plus terms of the form ggzp:. By Lemma 5.2 these latter terms are in z7"E. According

to (5.1), the hypotheses of Lemma 5.3 are satisfied, and the conclusion of this lemma then

proves Theorem 3.1. a

PROOF OF COROLLARY 3.2: The dimension of V* is constructed in the proof of Theorem 4.5
to equal the dimension of ,/S,. This is at most the cardinality of F, though it may be

less. In the case where each n; = 1 and the surfaces V; intersect transversely at z, the ideal
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S, contains d independent linear polynomials, so is equal to M. Hence |F] is the singleton

{0} and W contains only constants. a
It remains to prove Lemma 5.3.

PROOF OF LEMMA 5.3: Replacing each function f in W(d) by 277 f, it suffices to prove

the lemma for the case z = 1.

Proceed by induction on |F|. If |F| = 1 then F = {0}. In this case, for each f € Y
and ¢ < k, the function &; := (1 — 03)f is in E. The cone C; has nonempty interior, which
implies that C; N Z¢ has a co-finite subset C’ which is a connected subgraph of the integer
lattice. For any r < s € C}, there is an oriented path 79,71, .., connecting r to s in C’,
where | = 3°F_ (s; — ;). (An oriented path takes steps only in the increasing coordinate
directions.) Then

i
I') = Zf(7]) - 7] l zgm(J) 7_7 1)
j=1

where m(j) = i if 4,1 and v; differ by e;. Sending s to infinity, we see that lims_,o, f(s)
exists and :
00 l
f(r) = lim f(s)+ > F(v) = f(ri-1) = = D_ Em(s)(vi1)
j=1 i=1
where v connects r to infinity. Thus on C’, f is a constant plus a tail sum of functions in

E, and the conclusion is true with g = lim,_, o, f(s), the constant polynomial.

The induction step is similar. Let F; = {r: r+e; € F}. Fix f € X. The space (1-0;)X
satisfies the hypotheses of the lemma with F; in place of F. Since |F;| < |F|, we may apply
the induction hypothesis to conclude that (1 - 0;)f = g; + & where g; is a polynomial with
multi-degrees in F; and &; € E. For any r < s € (Z%)¢, and any oriented path v from r to

s, we have

f(s) = f(r) = Zf (v) = f(%5-1)
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! !
= =Y gm()(1-1) = O Emgy (1-1) -
Jj=1 j=1

If r,s € C' then we have already seen that, as a function of s, the last contribution
23:1 Em(y)(75-1) is equal to a function C(r) plus a term decaying exponentially in s. Fixing
r € C’ so that the set of s € C} not greater than or equal to r is finite, it remains to show
that

!
p(s) == f(r) + D gm(j) (vj-1)
=1
defines a polynomial in s whose terms have multidegrees in F.

We see from the equation

(1-0)(1-05)f=(1-0;)(1-05)f (5.2)

that
(1-o0i)g; =(1-05)g:+&

where £ = (1 -0;)&) — (1 —0;)€;. By (5.2), € is a polynomial, and since it is exponentially
small it must vanish entirely. Thus for x € Z¢, we see that g;(x) + g;(x + &;) = g;(x) +
gi(x + ;). It follows that the sum defining p is invariant under switching the order of two
steps in the path <, and hence is independent of the choice of v. Choosing v to take first

s1 — 71 steps in direction e;, then s2 — 9 steps in direction e; and so on, we may write

k si—r;

p(s) = f(r) +Z Z —~9j(81,- -+, 8j-1,Ti +t = L,mj41,..., 7).
j=1 t=1

Each of the inner sums is the sum to s; — r; of a polynomial with multi-degrees in F;, which
is well known to be a polynomial with multi-degrees in F. Hence p(s) is a polynomial with

multi-degrees in F and the proof is done. a

Acknowledgements: Many thanks to Andrei Gabrielov for patiently explaining to me
everything in Section 4. Thanks to Henry Cohn for several conversations and to Bernd

Sturmfels for further help with the algebra.
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