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Resistance Bounds for
First-Passage Percolation and Maximum Flow

by Russell Lyons, Robin Pemantle and Yuval Peres

Abstract. Suppose that each edge e of a network is assigned a random ex-
ponential passage time with mean re. Then the expected first-passage time
between two vertices is at least the effective resistance between them for the
edge resistances 〈re〉. Similarly, suppose each edge is assigned a random ex-
ponential edge capacity with mean ce. Then the expected maximum flow
between two vertices is at least the effective conductance between them for
the edge conductances 〈ce〉. These inequalities are dual to each other for
planar graphs and the second is tight up to a factor of 2 for trees; this has
implications for a herd of gnus crossing a river delta.

§1. Introduction.

There are well-known connections between random walks and electrical networks. (For
terminology and basic results concerning electrical networks, see Doyle and Snell (1984).)
For example, the commute time between two vertices in a finite network is the effective
resistance between them, multiplied by twice the sum of the edge conductances (see Chan-
dra et al. (1989)). In this paper, we show that effective resistance yields good bounds in
some other probabilistic problems, namely, first-passage percolation and maximum flow
with random edge capacities. Our proofs illustrate that it can be useful to interpret a
potential function on a graph as a measure on cutsets, in analogy with the interpretation
of a flow as a measure on paths.

Let G = (V,E) be a connected finite graph. Suppose that each edge e ∈ E is assigned
an independent random passage time te that is exponentially distributed with mean re.
Let a ∈ V and let Z ⊂ V be a set not containing a. A random variable of wide interest (see,
e.g., the review by Kesten (1987)) is the first-passage time Time (a ↔ Z; 〈te〉) between a

and Z, defined as the minimum of
∑
e∈P te, where P ranges over the paths connecting a
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and Z. Now if each edge e is regarded as a resistor with resistance te, then the effective
resistance of a path P equals

∑
e∈P te. Thus by Rayleigh’s monotonicity principle, the

effective resistance Resis (a↔ Z; 〈te〉) between a and Z satisfies

Time (a↔ Z; 〈te〉) ≥ Resis (a↔ Z; 〈te〉) . (1.1)

Although the two sides of the inequality (1.1) are equal if G consists of several edges
connected in series, this inequality is far from tight even if G consists of n edges in parallel
between a and z: in this case, Time (a ↔ z; 〈te〉) = mine{te}, while Resis (a ↔ z; 〈te〉) =(∑

e t
−1
e

)−1. Our first result is that by averaging the left-hand side and the random times
in the right-hand side, (1.1) can be sharpened to a general inequality:

E
[
Time (a↔ Z; 〈te〉)

]
≥ Resis (a↔ Z; 〈re〉) ; (1.2)

equality holds both for pure series networks and for pure parallel networks. Thompson’s
principle, which expresses effective resistance as a minimum energy, implies that Resis (a↔
Z; 〈te〉) is a concave function of its arguments (see Doyle and Snell (1984) or Lyons and
Peres (1997)). Hence the right-hand side of (1.2) is at least E[Resis (a ↔ Z; 〈te〉)], and is
usually much larger. For this reason, (1.2) is better than simply taking expectations in
(1.1). Moreover, both sides of (1.2) equal

(∑
r−1
e

)−1 if G consists of n edges in parallel.
To substantiate our claim that (1.2) is a fairly good inequality, we prove that for a class
of networks, namely, for the planar duals of trees, the opposite inequality with a factor of
2 holds; see Theorem 2.1.

Now suppose that each edge e ∈ E is assigned an independent random capacity κe that
is exponentially distributed with mean ce. Denote by Conduc (a ↔ Z; 〈κe〉) the effective
conductance between a and Z when each edge e has conductance κe. To consider flows on
G, it will be convenient to fix one orientation for each edge e ∈ E. A flow θ from a to Z
is a function θ : E→ R so that at each vertex v /∈ a ∪ Z, Kirchhoff’s node law is satisfied,
i.e., the incoming flow to v equals the outgoing flow from v. The net outgoing flow from
a, which is assumed to be be nonnegative, is called the strength of θ. We consider flows
θ from a to Z that are feasible, i.e., so that |θ(e)| ≤ κe for all e ∈ E. The maximal
strength of such a flow, denoted Max Flow (a ↔ Z; 〈κe〉), equals the minimal cutset sum
of the capacities by Ford and Fulkerson’s (1962) Max-Flow Min-Cut Theorem. Analogous
to (1.1) is the simple inequality

Max Flow (a↔ Z; 〈κe〉) ≥ Conduc (a↔ Z; 〈κe〉) . (1.3)

Indeed, the current flow corresponding to unit voltage drop from a to Z is bounded by
κe on each edge e, and its strength is Conduc (a ↔ Z; 〈κe〉) by definition. However, the
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inequality (1.3) is again far from tight: if G consists of n edges in series between a and z,
then Max Flow (a↔ z; 〈κe〉) = min{κe}, while Conduc (a↔ z; 〈κe〉) =

(∑
κ−1
e

)−1. Again,
we get a better inequality by averaging the random function on the left and the random
arguments of the concave function on the right:

E
[
Max Flow (a↔ Z; 〈κe〉)

]
≥ Conduc (a↔ Z; 〈ce〉) . (1.4)

Furthermore, when G is a tree, a is its root, and Z is its set of leaves, then the opposite
inequality holds with a factor of 2; see Theorem 3.1.

For planar networks, the inequalities (1.2) and (1.4) are actually equivalent. To be
precise, suppose that G is a planar network that can be embedded in an infinite strip, with
a and Z on opposite sides of the strip (see Fig. 1). Let G∗ be the planar dual of G in
the strip, i.e., the vertices of G∗ are the faces of G. To every edge e in G corresponds a
dual edge e∗ in G∗ that connects the two faces touching e. This edge can be represented
by a smooth path that crosses e orthogonally; we assign e∗ an orientation by rotating
the given orientation of e by an angle of π/2 clockwise. Locate the source a∗ and sink
z∗ of G∗ in the two unbounded faces of G. Assign the same number (whether a passage
time or a capacity) to an edge e as to its dual edge e∗. The Max-Flow Min-Cut Theorem
says that Time (a ↔ z; 〈xe〉) = Max Flow (a∗ ↔ z∗; 〈xe〉). Furthermore, the following
well-known lemma shows that Resis (a ↔ Z; 〈xe〉) = Conduc (a∗ ↔ z∗; 〈xe〉), providing
the asserted equivalence between (1.2) and (1.4). Our proofs for general networks reflect
a more abstract duality.

Lemma 1.1. Let G be a planar network and G∗ its dual in a strip, as defined above. Then
Resis (a ↔ Z; 〈xe〉) = Conduc (a∗ ↔ z∗; 〈xe〉) for any xe > 0. [Recall that xe denotes an
edge resistance in Resis (a↔ Z; 〈xe〉), but an edge conductance in Conduc (a∗ ↔ z∗; 〈xe〉)].

This can be deduced from results in Brooks et al. (1940), but we give a direct proof
for the convenience of the reader.

Proof. Let 〈I(e)〉 be the unit current flow from a to Z corresponding to the resistances
〈xe〉. For any dual edge e∗ in G∗, orient it as described above, and define J(e∗) := xeI(e).
Kirchhoff’s cycle law for I (

∑
e∈γ xeI(e) = 0 along any cycle γ) implies Kirchhoff’s node

law for J (
∑
e∗ J(e∗) = 0, summing over edges incident to a vertex v∗ /∈ {a∗, z∗}); similarly,

Kirchhoff’s node law for I yields Kirchhoff’s cycle law for J along elementary cycles, whence
along all cycles. Thus J is a current flow from a∗ to z∗. Since I is a unit flow, J induces
a unit voltage difference between a∗ and z∗, whence the strength of J is Conduc (a∗ ↔
z∗; 〈xe〉). On the other hand, the strength of J is also the voltage difference between a
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and Z induced by I. Since I is a unit current flow, this difference is Resis (a ↔ Z; 〈xe〉),
whence the lemma.

Finally, a context in which the maximum flow in a network with random exponen-
tial capacities arose naturally was the study of directed fractal percolation; see Chayes,
Pemantle and Peres (1997).

§2. Passage Times.

Theorem 2.1. Let G be a finite network and te be independent exponentially-distributed
random variables with mean re. Then

E
[
Time (a↔ Z; 〈te〉)

]
≥ Resis (a↔ Z; 〈re〉) . (2.1)

Furthermore, if G = T ∗ is the planar dual of a tree T in a strip, with a∗ on the left and
z∗ on the right of T (see Fig. 1), then

E
[
Time (a∗ ↔ z∗; 〈te〉)

]
≤ 2 Resis (a∗ ↔ z∗; 〈re〉) . (2.2)

Figure 1.
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Remark. In the inequalities (2.1) above and (3.1) below, one can replace the vertex a by
a set of vertices A, since gluing together all vertices in A reduces to the case where A is a
singleton.

To prove the theorem, we represent the voltage function by a random cutset. We
shall use the following notation: for a function f : E → R and e = (x, y) ∈ E, write
df(e) := f(y)− f(x).

Lemma 2.2. Let f : V→ [0, 1] be a function that is 0 at a and 1 on Z. Then there exists
a probability measure ν on the collection of cutsets Π separating a from Z so that

∀e ∈ E
∑

{Π ; e∈Π}

ν(Π) = |df(e)| . (2.3)

Furthermore, suppose that every vertex x /∈ a ∪ Z that is a local extremum for f satisfies
f(y) = f(x) for all vertices y adjacent to x. Then there exists a measure ν satisfying (2.3)
that is supported on minimal cutsets.

Proof. Choose a random cutset Π as follows: let U be a uniform random variable on [0, 1],
and set Π to be the collection of edges where f crosses the value U . The distribution ν of
Π clearly satisfies (2.3).

Next, suppose that the assumption on local extrema of f holds. If Π is chosen as
above and an edge e is in Π, then a.s. df(e) 6= 0; hence the assumption easily implies that
e (possibly with the reverse orientation) is on a path P from a to Z such that f is strictly
increasing along P. Thus Π \ {e} is not a cutset, whence Π is a minimal cutset a.s.

Proof of Theorem 2.1. Let V be the unit voltage function on V that is 0 at a and 1 on
Z. For convenience, orient each edge e so that dV (e) ≥ 0. Since V is harmonic off a ∪ Z,
the preceding lemma provides a probability measure ν on minimal cutsets Π separating a
from Z with the property that

∀e ∈ E
∑

{Π ; e∈Π}

ν(Π) = dV (e) .

We claim that
Time (a↔ Z; 〈te〉) ≥

∑
Π

ν(Π) min
e∈Π

te
dV (e)

. (2.4)

To see this, let P be a path from a to Z; we have∑
Π

ν(Π) min
e∈Π

te
dV (e)

≤
∑
Π

ν(Π)
∑

e∈Π∩P

te
dV (e)
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=
∑
e∈P

te
dV (e)

∑
Π3e

ν(Π)

=
∑
e∈P

te .

Now mine∈Π te/dV (e) is the minimum of independent exponential random variables. Thus,
it is also an exponential random variable; its parameter is the sum of the parameters of
te/dV (e), which means that

E
[
min
e∈Π

te
dV (e)

]
=

[∑
e∈Π

dV (e)
re

]−1

. (2.5)

When Π is a minimal cutset,
∑
e∈Π dV (e)/re is the strength of the unit voltage flow, which

equals Conduc (a↔ Z; 〈1/re〉). Thus

E
[
Time (a↔ Z; 〈te〉)

]
≥
∑
Π

ν(Π)E
[
min
e∈Π

te
dV (e)

]
=
∑
Π

ν(Π)Resis (a↔ Z; 〈re〉) = Resis (a↔ Z; 〈re〉) .

This proves (2.1); the inequality (2.2) will follow immediately by combining Lemma 1.1
above and (3.2) below.

Remark. A heuristic interpretation of Theorem 2.1 is that a good estimate of the expected
time it takes the first of a herd of gnus to cross a river delta is the effective conductance
of the delta, provided the time to cross each tributary is exponentially distributed. This
interpretation fares better when not examined too closely.

For series-parallel networks, inequality (2.1) can be extended to concave domination:
Recall that for two nonnegative random variables X and Y , we say that X concavely

dominates Y if E[ϕ(X)] ≥ E[ϕ(Y )] for any concave nondecreasing function ϕ on R+. Say
that one random network concavely dominates another if the minimum passage time
for the first concavely dominates the minimum passage time for the second.

Proposition 2.3. Let G be a finite series-parallel network and te be independent exponent-
ially-distributed random variables with mean re. If Y is an exponential random variable
with mean Resis (a ↔ Z; 〈re〉), then G concavely dominates a single-edge network with
passage time Y .

Proof. If two edges, e and f , of G are in parallel and G′ is the network with e and f

combined to a single edge given an exponential passage time of mean re ∧ rf , then the
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minimum passage times on G and G′ have identical distributions. Thus, it suffices to
show that if two edges, e and f , of G are in series and G′ is the network with e and f

combined to a single edge given an exponential passage time t′ of mean r′ := re + rf , then
G concavely dominates G′. Moreover, it suffices to prove this when we condition on the
values of tg for all edges g 6= e, f . Write ψ(te + tf ) for the minimum passage time in G

given all other tg. Since this is the minimum of linear nondecreasing functions, ψ(•) is
concave nondecreasing. Furthermore, the passage time in G′ given all other tg is ψ(t′).
We need to show that E[ϕ(ψ(te + tf ))] ≥ E[ϕ(ψ(t′))] for every concave nondecreasing ϕ.
Since ϕ̃ := ϕ ◦ ψ is also concave nondecreasing, this is merely the standard fact that the
sum of two exponentials concavely dominates a single exponential with the same mean:

E[ϕ̃(te + tf )] = E
[
ϕ̃
(re
r′
r′te
re

+
rf
r′
r′tf
rf

)]
≥ E

[
re
r′
ϕ̃
(r′te
re

)
+
rf
r′
ϕ
(r′tf
rf

)]
= E[ϕ̃(t′)] .

Question. Does the concave domination in Proposition 2.3 extend to networks that are
not series-parallel?

§3. Maximum Flow.

Theorem 3.1. Let G be a finite network and κe be independent exponentially-distributed
random variables with mean ce. Then

E
[
Max Flow (a↔ Z; 〈κe〉)

]
≥ Conduc (a↔ Z; 〈ce〉) . (3.1)

Furthermore, if G is a tree with a its root and Z its leaves, then

E
[
Max Flow (a↔ Z; 〈κe〉)

]
≤ 2 Conduc (a↔ Z; 〈ce〉) . (3.2)

The following two known lemmas are needed to prove the theorem. For the conve-
nience of the reader, we include their proofs.

Lemma 3.2. Let θ be an acyclic flow from a to Z. Then there exists a measure on self-
avoiding paths from a to Z so that

∀e ∈ E
∑

{P ; e∈P}

µ(P) = |θ(e)| .

Proof. Orient edges so that θ(e) ≥ 0 for all e. Since θ is acyclic, one easily finds a directed
self-avoiding path P from a to Z such that α := mine∈P θ(e) > 0. Subtracting α times the
unit flow along P from θ, and using induction on the number of edges e such that θ(e) 6= 0,
completes the proof.
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Lemma 3.3. (Chayes, Pemantle and Peres 1997) Let Y be an exponential random
variable with mean 1/r. Then for any random variable X ≥ 0 that is independent of Y
and has finite mean,

E
[

min{X,Y }
]
≤ 2EX

2 + rEX
.

Proof. For x ≥ 0, we have

E
[

min{x, Y }
]

=
∫ ∞

0

P[min{x, Y } > y] dy =
∫ x

0

e−ry dy =
1
r

(1− e−rx) .

Hence for any nonnegative random variable X, Jensen’s inequality yields

E
[

min{X,Y }
]

=
1
r
E(1− e−rX) ≤ 1

r
(1− e−rEX) . (3.3)

Now rewrite the inequality

∀x ≥ 0 2 + x ≥
∞∑
k=0

2− k
k!

xk = (2− x)ex

in the equivalent form

1− e−x ≤ 2x
2 + x

.

Combining this with (3.3) proves the lemma.

Proof of Theorem 3.1. Let 〈Ie〉 be the unit current flow from a to Z. Orient edges so that
Ie ≥ 0 for all e. By Lemma 3.2, there exists a measure µ on paths from a to Z such that

∀e ∈ E
∑

{P ; e∈P}

µ(P) = Ie .

Since 〈Ie〉 is a unit flow, µ is a probability measure. Define a new flow

f 7→
∑
f∈P

µ(P) min
e∈P

κe
Ie
.

This flow is 〈κe〉-feasible since∑
f∈P

µ(P) min
e∈P

κe
Ie
≤
∑
f∈P

µ(P)
κf
If

= κf .

Therefore,
Max Flow (a↔ Z; 〈κe〉) ≥

∑
P
µ(P) min

e∈P

κe
Ie
. (3.4)
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Now, as in the proof of Theorem 2.1, we have

E[min
e∈P

κe/Ie] =

[∑
e∈P

Ie/ce

]−1

=

[∑
e∈P

dV (e)

]−1

= Conduc (a↔ Z; 〈ce〉) , (3.5)

where V denotes the voltage function corresponding to the unit current flow. Thus, taking
expectation in (3.4) gives

E
[
Max Flow (a↔ Z; 〈κe〉)

]
≥
∑
P
µ(P)Conduc (a↔ Z; 〈ce〉) = Conduc (a↔ Z; 〈ce〉) .

This shows (3.1).

To show (3.2), we rely on Lemma 3.3 and induction on the number of vertices in the
tree. If the root a has at least 2 children, then G consists of at least 2 networks from a to Z
in parallel. Since both sides of (3.2) add for networks in parallel, this part of the induction
step is easy. Otherwise, the root a has only one child, a′. In this case, the edge e′ := (a, a′)
has random exponential capacity κe′ with mean ce′ , and the network G consists of e′ in
series with a tree T ′. Therefore, we have

E
[
Max Flow (a↔ Z; 〈κe〉)

]
= E

[
min{κe′ ,Max Flow (a′ ↔ Z; 〈κe〉)}

]
≤ 2

2/E
[
Max Flow (a′ ↔ Z; 〈κe〉)

]
+ 1/ce′

by Lemma 3.3

≤ 2
1/Conduc (a′ ↔ Z; 〈ce〉) + 1/ce′

by the induction hypothesis

=
2

Resis (a↔ Z; 〈1/ce ; e ∈ G〉)
= 2 Conduc (a↔ Z; 〈ce ; e ∈ G〉) .
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§4. Distributions with Monotone Failure Rates.

In this section, we relax the assumption that the passage times and random capacities in
Theorem 2.1 and Theorem 3.1 are exponentially distributed. Say that the nonnegative
random variable X has an increasing failure rate (IFR) if for any t > 0, the function
x 7→ P[x < X ≤ x + t | X > x] is (weakly) increasing on [0,∞). Analogously, define
decreasing failure rate (DFR). These notions are important in reliability theory (see
Barlow and Proschan (1965)) and can be incorporated with our main results.

Corollary 4.1. The inequality (2.1) holds if each of the independent passage times te
has IFR, while the inequality (2.2) holds if each of these variables has DFR. Similarly, the
inequality (3.1) holds if the independent random capacities κe have IFR, while (3.2) holds
if they have DFR.

Proof. The identity (2.5) is the only place that the proof of (2.1) used the assumption
of exponential distribution. For distributions with IFR, the left-hand side in (2.5) is at
least the right-hand side (see Cor. 4.10 in Barlow and Proschan (1965)); this suffices to
complete the proof of (2.1) for such distributions. The same applies to the identity (3.5)
in the proof of Theorem 3.1.

In the proof of (3.2), the assumption that the random capacities are exponentially
distributed is needed only to apply Lemma 3.3 to Y := κe′ . That lemma is also valid when
the random variable Y has DFR, since by Theorem 4.8 in Barlow and Proschan (1965),∫ ∞

0

P[min{x, Y } > y] dy =
∫ x

0

P[Y > y] dy ≥
∫ x

0

e−ry dy

for Y with DFR. Finally, the extension of (2.2) to passage times with DFR follows by
planar duality as before.
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