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Abstract

Let (X1, . . . , Xd) be a random nonnegative integer vector.

Many conditions are known to imply a central limit theorem

for a sequence of such random vectors, for example, inde-

pendence and convergence of the normalized covariances, or

various combinatorial conditions allowing the application of

Stein’s method, couplings, etc. Here, we prove a central limit

theorem directly from hypotheses on the probability generat-

ing function f(z1, . . . , zd). In particular, we show that the f

being real stable (meaning no zeros with all coordinates in

the open upper half plane) is enough to imply a CLT under a

nondegeneracy condition on the variance. Known classes of

distributions with real stable generating polynomials include

spanning tree measures, conditioned Bernoullis and counts

for determinantal point processes. Soshnikov [Sos02] showed

that occupation counts of disjoint sets by a determinantal

point process satisfy a multivariate CLT. Our results extend

Soshnikov’s to the class of real stable laws. The class of

real stable laws is much larger than the class of determinan-

tal laws, being defined by inequalities rather than identities.

Along the way we investigate the related problem of stable

multiplication.

1 Introduction

In the analysis of random combinatorial objects, one
frequently encounters random variables taking values
in a bounded set of nonnegative integers. The bound
will depend on a size parameter, which will be taken to
infinity, and limit laws will be sought for the behavior
of the random variables. Perhaps the most common
such scenario is when the variables obey a central limit
theorem. Formally, if Pn is the probability law with
size parameter n and X(n) := (X(n)

1 , . . . , X
(n)
d ) is a

random integer vector with law Pn, one would like to
know conditions under which there are centering and
scale constants for which (X(n) − µ(n))/σ(n) converges
in distribution to a given multivariate normal.

One way to answer this is with the tools of classi-
cal probability theory, showing that the variables satisfy
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the hypotheses of a classical central limit theorem such
as the Lindeberg-Feller, or a martingale CLT, or Stein’s
method, etc. Often the information available in a com-
binatorial problem is of a different nature. In particular,
rather than the sort of analytic estimates needed in the
hypotheses of classical probabilistic results, combinato-
rial applications often come with a generating function
that is either exactly known or has certain verifiable
properties. The question then arises of whether infor-
mation from the generating function can be converted
to a limit law.

In the univariate case, one very well known result
is CLT behavior for real-rooted generating functions.
Suppose f(z) :=

∑n
k=0 P(X = k)zk is the generating

function for a random variable X. If f has only real
roots then f factors as

f(z) =
n∏
j=1

(1− pj + pjz)

where pj are numbers in the unit interval. It follows
that X is distributed as a sum of independent Bernoulli
variables, which implies the self-normalized limit theo-
rem

(1)
X − EX

(VarX)1/2
→ N(0, 1) as Var (X)→∞ .

In the multivariate case, a strand of research initi-
ated in [Ben73, BR83, GR92] shows that a multivariate
central limit theorem follows when the the multivari-
ate generating function is a quasi-power (asymptotically
Cnfg

n). More recently central limit behavior has been
shown to follow when the generating function is ratio-
nal and obeys a smoothness hypothesis [PW04, PW08],
or in certain cases when the generating function is alge-
braic [Gre15].

A new development is the emergence of the class
of real stable generating functions [COSW04, BB09a,
BB09b, BBL09]. A real polynomial in d-variables is said
to be stable if it has no zeros all of whose coordinates are
strictly in the complex upper half-plane. In other words,
f is stable if there are no solutions to f(z1, . . . , zd) = 0
such that ={zi} > 0 for all i ∈ {1, . . . , d}. Often it is



possible to verify that a generating function is in this
class without having an explicit description. Examples
collected in [BBL09] include Tutte polynomials, span-
ning tree polynomials, and matrix polynomials such as
(
∑d
i=1 ziAi) for collections of positive definite matrices.

In the case of spanning trees, consequences for the dis-
tribution of the number of edges in each of a finite col-
lection of sets have been applied to TSP approxima-
tion [GSS11].

For univariate polynomials, stability reduces to
real-rootedness, whence (1) is automatic for univariate
stable polynomials. One important class of stable gen-
erating functions in several variables are the occupation
counts of determinantal processes. Let (X1, . . . , Xd) be
the occupation counts of disjoint sets B1, . . . , Bd for a
determinantal point process; see [Sos00] for definitions.
Soshnikov [Sos02, p. 174] proved a normal limit theorem
for linear combinations

∑d
j=1 αjXj , which is equivalent

to a multivariate CLT. This generalized an earlier re-
sult for several specific determinantal kernels arising in
random spectra [Sos00].

Determinantal measures are known to have stable
generating functions. This might suggest that perhaps
the CLT follows directly from stability of the generat-
ing function. Such a result would be important for the
following reason. Determinantal measures are in some
sense a very small set of measures. For example, de-
terminantal measures supported on a set of cardinality
d are parametrized by d × d Hermitian matrices, and
therefore occupy a d2-dimensional set in the (2d − 1)-
dimensional space of probability laws on {0, 1}d. The
set of strong Rayleigh measures, by contrast, has full di-
mension, being constrained by inequalities rather than
identities.

Our main results, Theorem 2.1 in the bivariate case
and Theorem 2.1′ in the multivariate case, show this
to be the case. The next section gives a statement of
this and outlines the proof. The subsequent two sections
discuss extensions and some theoretical questions about
the class of real stable distributions which are raised by
the arguments of the paper and partially answered. The
last section discusses some applications to sampling,
in which the generating functions are stable but not
determinantal.

2 Main result

Our first result in this direction is a bivariate CLT valid
when the variance grows faster than the 2/3 power of
the maximum value. Because real stable variables are
known to be negatively correlated, the covariances are
denoted by negative quantities.

Theorem 2.1. Let {(Xn, Yn) : n ≥ 1} be a sequence of

random integer pairs each of whose bivariate generating
polynomials fn(x, y) is real stable and has degree at most
Mn in each variable. Let

An =
[

αn −βn
−βn γn

]
denote the covariance matrix of (Xn, Yn). Suppose
there is a sequence sn → ∞ and a fixed matrix A =[

α −β
−β γ

]
such that s−2

n An → A and s−1
n M

1/3
n → 0.

Then

(2)
(Xn, Yn)− (EXn,EYn)

sn
→ N(0, A)

in distribution as n→∞.

An outline of the proof is as follows. Let a and b be
positive integers. From the definition of stability it may
be shown that the generating polynomial for aXn+ bYn
has no zeros near 1 (this is Lemma 6.1 below). A result
of [LPRS16] then implies a Gaussian approximation for
aXn+bYn (Lemma 6.4 below). Tightness and continuity
could be used to extend this to positive real (a, b),
however the usual Cramér-Wold argument requires this
for all real (a, b) regardless of sign. Instead, the
argument is finished instead by invoking an improved
Cramér-Wold result (Lemma 6.2 and Corollary 6.3).
The complete proof is given in the Appendix.

A natural question is whether the nondegeneracy
hypothesis on the variance is necessary. This condition
is present in Lemma 6.4 from [LPRS16]. Already there,
we do not know whether the condition is necessary.

3 Extensions

Higher dimensions The following extension to more
than two variables requires only small generalizations of
two of the lemmas.

Theorem (2.1′). Let {X(n)} be a sequence of random
vectors of the same length, with real stable generating
polynomials, degree at most Mn in each variable, and co-
variance matrices An. Suppose sn →∞ with s−2

n An →
A and s−1

n M
1/3
n → 0. Then (X−EX)/sn → N(0, A) in

distribution as n→∞. �

Singularity of A When A is singular, say vA = 0
where v = (a, b), the conclusion of Theorem 2.1,
namely a bivariate Gaussian limit, implies only that
(aX+bY )/sn → 0, not that aX+bY has a normal limit.
This can be improved to the following result; intuitively,
the only way to get degeneracy in the covariance matrix
of a jointly real stable law is to condition a subset sum
to be (nearly) constant.



Theorem 3.1. In the notation of Theorem 2.1′, sup-
pose A is singular and let N denote the nullspace of
A. Let 1G denote the vector whose j component is 1 if
j ∈ G and 0 otherwise. The space N is spanned by a
collection {1G : G ∈M} whereM is a collection of dis-
joint sets. The quantities Z(n)

G := 1G ·X(n) all have nor-
mal limits, provided the variances σ(n)

G := Var (Z(n)
G )1/2

go to infinity; assuming this, (σ(n)
G )−1(Z(n)

G −EZ(n)
G )→

N(0, 1).

Remark. This gives a CLT for a collection of linear func-
tionals spanning the null space of A. More generally, one
might want a CLT for every element of the null space. If
the null space has dimension r then one may construct
{Z1, . . . , Zr} as above. The vectors {Z(n)} are real sta-
ble with covariance matrices A′n for which s−2

n A′n → 0.
If it is possible to find s′n for which (s′n)−2A′n → A′

then one obtains a finer multivariate CLT. The covari-
ance matrices A′n may or may not have a rescaled limit.

Quantitative version Suppose fn is a sequence of bi-
variate real stable generating functions and that Mn/s

3
n

goes to zero, where Mn is the maximum degree of fn in
either variable and s2n is the maximum variance of either
variable. Let Qn denote the probability law represented
by fn and let An denote the covariance matrix for this
law. Suppose that Qn, centered and divided by sn, stays
at least ε away from the bivariate Gaussian with mean
zero and covariance s−2

n An. Taking a subsequence {nk},
there is a matrix A such that s−2

n An → A, contradicting
Theorem 2.1. We conclude that there is a quantitative
version of this result: namely a function g going to zero
at zero such that

(3) ||Q−N(v,Σ)|| < g(M1/3/||Σ||1/2)

whenever Q is a bivariate real stable law with mean v,
covariance Σ and maximum M . We do not known the
best possible function g in (3).

Lemmas 6.1 and 6.4 are quantitative and sharp.
Therefore, establishing (3) without giving up too much
in the choice of function g would rest on a quantitative
version of Corollary 6.3. Inverting the characteristic
function is inherently quantitative, however the use of
uniform continuity so as to use only values on a finite
mesh is messy. Furthermore, while Lemma 6.1 is sharp,
its use is certainly not: for example, if f(z) generates
a distribution within ε of normal, then so does f(zk),
even though the nearest zero to 1 becomes nearer by a
factor of k.

Non-uniformity of the estimates as the denomina-
tor of the rational slope increases is an annoying ar-
tifact of the proof and points to the need to replace
Lemma 6.1 with something uniform over sets of direc-

tions. One possibility is to replace the exact combina-
tion aX + bY with a, b ∈ Z+ by a probabilistic ap-
proximation. One somewhat crude approximation is
to let Z := Bin (X, a) + Bin (Y, b) be the sum of bi-
nomial distributions, conditionally independent given
(X,Y ). This has generating polynomial g(z) = f(1 −
a+az, 1− b+ bz) if f(x, y) is the generating polynomial
for (X,Y ). When f is stable, so is g, thereby achiev-
ing uniformity in direction. Conditioned on (X,Y ),
the difference Z − aX − bY is normal with variance
a(1 − a)X + b(1 − b)Y , which has order M . The size
parameter M cannot be less than a constant times s2,
where s2 is the norm of the covariance matrix, but in
the regime where M = O(s2), the added noise does not
swamp the signal and near normality of Z implies near
normality of the true aX + bY . This works equally well
in any dimension.

To extend beyond the regime where M and s2 are
comparable, we would need to find a random variable
Z with real stable law that approximates aX + bY to
within a smaller error than M1/2. This motivates a
one-dimensional version of this problem, which we now
discuss.

4 Approximate multiplication

We use the term “stable multiplication by a” to denote
an algorithm for constructing Z given X, where X
and Z are positive integer random variables with stable
generating polynomials and |Z − aX| = O(1).

Proposition 4.1 (stable division by 2). Conditional on
X, if X is even let Z = X/2, while if X is odd, flip a
fair coin to decide whether Z = bX/2c or Z = dX/2e.
Then Z stably multiplies X by 1/2.

Proposition 4.2 (stable division by k). For any k ≥ 2,
bX/kc stably multiplies X by 1/k.

The engine for proving both of these is the following
result concerning interlacing roots. This result, proved
in the Appendix, is of independent interest because of
the power of interlacing results when trying to establish
stability. Let NR be the collection of polynomials all of
whose roots are simple and strictly negative. If f is a
polynomial of degree n and k ≥ 1, write

(4) f(x) =
k−1∑
i=0

xigi(xk),

where gi is a polynomial of degree bn−ik c.

Theorem 4.3. If f ∈ NR has degree n, the correspond-
ing polynomials gi are in NR as well. Furthermore,
their roots are interlaced in the sense that if the collec-
tion of all n − k + 1 roots sj of the gi’s are placed in



increasing order,

sn−k < · · · < s4 < s3 < s2 < s1 < s0 < 0,

then the roots of gi are si, si+k, si+2k, . . . . �

With this result in hand, the particular stability
results are easily completed.
Proof of Proposition 4.1: The generating poly-
nomial for Z is

∑
k akz

k where ak = (1/2)P(X =
2k + 1) + P(X = 2k) + (1/2)P(X = 2k − 1). Let
g(z) = (1/2)(1+z)2f(z) where f is the generating poly-
nomial for X. Then f ∈ NR implies g ∈ NR . Applying
Theorem 4.3 with g in place of f , we have g = g0 + zg1
where g0, g1 ∈ NR . The zk coefficient of g1 is the z2k+1

coefficient of g, which we see is equal to ak. Thus Z has
generating polynomial g1, which is stable. �
Proof of Proposition 4.2: The generating polyno-
mial for Z := bX/kc is

(5) h(y) =
k−1∑
i=0

gi(y)

where g0, . . . , gk are defined from the generating poly-
nomial f for X by (4).

From the proof of Theorem 4.3, we see that
(−1)mh(smk) > 0 for each 0 ≤ m ≤ n−k

k (since the
smallest root is sn−k). Therefore, h has a root in
each of the intervals of the form (s(m+1)k, smk) for each
0 ≤ m ≤ n−2k

k . This shows that h at least bnk c − 1
negative roots. The degree of h is the largest of the de-
grees of the gi’s, which is the degree of g0, i.e. bnk c. To
capture the final negative root, we observe that

(−1)b
n
k ch(s(bn

k c−1)k) < 0

and

(−1)b
n
k ch(s) > 0 for large negative s.

�
We do not know the extent to which multiplication

by a can be accomplished when a ∈ (0, 1) is not a unit
fraction. The same construction does not work. For
example, if X has pgf

1
20

(x+ 1)2(x+ 4),

then the pgf of Y = b 23Xc is 1
20 (y2 +6y+13), which has

roots −3 ± 2ı. Thus an approach analogous to the one
for unit fractions, does not work for non-unit fractions,
the simplest unknown case being a = 2/3.

5 Discussion

Suppose one wishes to sample a random subset S ⊆ [n]
with prescribed marginals p1, . . . , pn, that is, pj is the
desired value of P(j ∈ S). Among desirable properties of
the law of S are as follows. (1) If

∑n
j=1 pj = k, then one

might ask for S always to contain precisely k elements;
more generally, one might constrain the sample to k
elements and replace each pj by kpj/

∑n
i=1 pi. (2)

For each pair i 6= j ∈ [n], P(i, j ∈ S) ≤ pipj .
This second property is desirable if the sample is used
to estimate averages of more complicated functionals,
where the pairwise negative correlation of elements
of the sample will lead to a concentration inequality
for the functional being estimated. Sampling schemes
with prescribed marginals are known as πps sampling.
Dozens of such schemes are known [BH83]; a number
are shown in [BJ12] to have stable generating functions
and are therefore pairwise negatively correlated. By
Theorem 2.1′, we may conclude a central limit theorem.
Two of the most common and useful examples or
schemes are as follows.

Example 5.1 (Conditioned Bernoulli sampling). Given
nonnegative p1, . . . , pn summing to k, it is shown how to
find γ1, . . . , γn such that the conditional law P of inde-
pendent Bernoullis {X1, . . . , Xn} with means γ1, . . . , γn,
given

∑n
j=1Xj = k, will have marginals p1, . . . , pn.

For instance one such choice for γ1, . . . , γn may be
characterized as a maximum entropy measure with
the given marginals [Che00]. Conditioned Bernoullis
are known to have a stable generating function (see,
e.g., [BBL09] or [Pem12, Example 6.2]). It follows that
if B1, . . . , Bd are disjoint subsets of [n], then the joint
law of (Y1, . . . , Yd) has stable generating function where
Yj is the number of elements of Bj present in the sam-
ple. A multivariate CLT for these counts follows from
Theorem 2.1′.

Example 5.2 (pivot sampling). One of the quickest
schemes for sampling a subset with given marginals
is pivot sampling. This is a linear time algorithm
in which elements are chosen or rejected sequentially,
requiring the update of only one marginal probability at
each step. The corresponding multivariate generating
function is shown to be stable in [BJ12]. Again, a
central limit theorem follows for the joint counts of
disjoint subsets.

We close with some open questions concerning
sharpening the variance requirements in Theorem 2.1
as well as stable multiplication.

Question 1. Can the hypothesis s−1
n M

1/3
n → 0 in

Theorem 2.1 be weakened, preferably to sn →∞?



Question 2. What is the best possible function g
in (3)?

Question 3. Is there an O(1) stable multiplication by
2/3?

A solution to the following more general stable
multiplication question would improve the hypotheses
for the CLT by lowering the variance requirement below
M2/3.

Question 4. Let X have real stable probability gener-
ating polynomial with maximum value M and let a be
a positive rational vector. Is there a stable o(M1/3) ap-
proximation to a · x?
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6 Appendix

Proof of Theorem 2.1

Lemma 6.1. Whenever (X,Y ) is stable and b ≥ a are
positive integers, the probability generating function for
aX+bY has no zeros in the open disk of radius δ about 1,
where δ := sin(π/b).

Proof: If f(x, y) is the pgf for (X,Y ) then the pgf for
aX+bY is f(za, zb). Stability of f implies that f(za, zb)
has no zeros whose argument z lies in the open interval
(0, π/b). Invariance under conjugation and the fact
that a probability generating function can never have
positive real zeros implies that f(za, zb) is in fact zero-
free on the sector {z : |Arg (z)| < π/b}. The nearest
point to 1 in this sector is at distance δ. �

Lemma 6.2 ([BMR97, Corollary 4.3]). Let L be an
infinite family of (d − 1)-dimensional subspaces of Rd.
Let πL denote projection of measures onto L, in other
words πLµ := µ ◦ π−1

L . Let µ be a probability measure
on Rd with finite moment generating function in a
neighborhood of the origin and let ν be any probability
measure on Rd. Suppose that the projections πLµ and
πLν coincide for every L ∈ L. Then µ = ν. �

Corollary 6.3. Let µ be a centered Gaussian law on Rd
and let L be an infinite family of (d−1)-dimensional sub-
spaces of Rd. Suppose {µn} is a sequence of probability
measures on Rd such that for each L ∈ L, the projec-
tions πLµn converge in the weak topology as n→∞ to
πLµ. Then µn → µ.

Proof: Convergence of πLµn for more than one hy-
perplane L implies tightness of the family {µn}. There-
fore, any subsequence of {µn} has a convergent sub-
subsequence; denote its limit by ν. It suffices to show
that ν = µ. Each πL is continuous, therefore πLν =
limn→∞ πLµn = πLµ. Noting that µ has moment gen-
erating function defined everywhere, the conclusion now
follows from Lemma 6.2. �

Lemma 6.4 ([LPRS16, Theorem 2.1]). Let f be the
generating polynomial for a probability law Q on the
nonnegative integers. Let N denote the degree of f . Let
m and σ2 respectively denote the mean and variance
of Q and let F denote the self-normalized cumulative
distribution function defined by

F (x) :=
∑

k≤m+xσ

Q(k) .

Let N (x) := (2π)−1/2
∫ x
−∞ e−t

2/2 dt denote the standard
normal CDF. Given δ > 0, there exists a constant Cδ
depending only on δ such that if f has no roots in the

ball {z : |z − 1| < δ} then

sup
x∈R
|F (x)−G(x)| ≤ Cδ

N1/3

σ
.

Proof: The result as stated in [LPRS16, Theo-
rem 2.1], in the special case z0 = 1 has the upper
bound B1N/σ

3 + B2N
1/3/σ with B1 and B2 depend-

ing on δ. Because |F − N| is never more than 1, we
may assume that N1/3/σ ≤ B−1

2 , whence B1N/σ
3 ≤

(B1/B
2
2)N1/3/σ. Setting C = Cδ = B2 +B1/B

2
2 recov-

ers the result in our form. The result as stated holds
for N > N0(δ), but with CN0 in place of C it holds for
all N . �
Proof of Theorem 2.1: We will apply Corollary 6.3
with µ = N(0, A) and L equal to the set of lines
through the origin with positive rational slope. Given
L ∈ L, let (a, b) be a positive integer pair in L. Then
πL(X,Y ) = (aX + bY )/

√
a2 + b2 and πLµ = N(0, V )

where

V := V (a, b) :=
αa2 − 2β ab+ γ b2

a2 + b2
.

According to Corollary 6.3, the theorem will follow if
we can show that

a√
a2 + b2

Xn − EXn

sn
+

b√
a2 + b2

Yn − EYn
sn

→ N(0, V (a, b))
(6)

weakly for fixed positive integers a and b as n → ∞.
We proceed to show this.

First, if V (a, b) = 0, we observe that the left-hand
side of (6) has mean zero and variance

αn a
2 − 2βn ab+ γn b

2

(a2 + b2)s2n
= o(1)

by the assumption that An/s2n → A. Weak convergence
to δ0, which is the right-hand-side of (6), follows from
Chebyshev’s inequality.

Assume now that V 6= 0. By Lemma 6.1, for all n,
the generating polynomial gn for aXn+bYn has no zeros
within distance δ := sin(π/b) of 1. Apply Lemma 6.4 to
the generating polynomial gn with N = (a + b)Mn. In
the notation of Lemma 6.4,

m = aEXn + bEYn ;
σ2 = a2αn − 2abβn + b2γn .

The assumption s−2
n An → A implies that

(7) σ2/s2n → (a2 + b2)V .



The conclusion of the lemma is that [a(Xn − EXn) +
b(Yn − EYn)]/σ differs from a standard normal by at
most

Cδ
N1/3

σ
= (1 + o(1))Cδ

(a+ b)1/3√
a2 + b2

√
V

M
1/3
n

sn
.

By hypothesis M1/3
n /sn → 0. Thus [a(Xn − EXn) +

b(Yn − EYn)]/σ → N(0, 1); multiplying through by
√
V

and plugging in (7) gives (6). �

Proof of Theorem 2.1′ More or less the same argu-
ment works to prove a multivariate CLT for real stable
distributions in d variables. The first of the two neces-
sary generalizations is immediate.

Lemma (6.1′). If (X) is stable and a is a positive
integer vector, then the probability generating function
for a·x has no zeros in the open disk of radius δ about 1,
where δ := sin(π/maxj aj). �

Corollary (6.3′). Let µ be a centered Gaussian law
on Rd. If {µn} is a sequence of probability measures
such that for all positive rational lines L, the projections
πLµn converge to πLµ, then µn → µ.

Proof: We prove by induction on m that πLµn → πLµ
for allm-dimensional subspaces containing a positive ra-
tional point. It is true by hypothesis when m = 1. As-
sume for induction that it is true for dimensions smaller
than m. Fix any m-dimensional subspace L containing
a positive rational point and apply Corollary 6.3 with
πLµ in place of µ and the infinite family of subspaces
L′ ⊆ L having a basis of m − 1 positive rational vec-
tors in place of L. By the induction hypothesis, each
πL′µn → πL′µ, so by Corollary 6.3, πLµn → πLµ, com-
pleting the induction. Once m = d, the corollary is
proved. �

These two results imply the extension of Theo-
rem 2.1 to d variables.

Proof of Theorem 3.1

Lemma 6.5. If (X1, . . . , Xr) is a random integer vector
whose r-variate generating function is real stable, then
its covariance matrix has nonnegative row and column
sums.

Proof: The row sums of the covariance matrix are
the values E(Xi − µi)

∑
j(Xj − µj). The argument

may be reduced to the case r = 2 by considering the
pair (Xi, Yi) where Yi :=

∑
i 6=j Xj . Without loss of

generality, we therefore assume r = 2 and denote the
pair (X1, X2) by (X,Y ). We first claim that for all k,

(8) E(Y |X = k) ≤ E(Y |X = k−1) ≤ E(Y |X = k)+1 .

This follows from the strong Rayleigh property for
the polarization (X1, . . . , Xm, Y1, . . . , Ym) of (X,Y ).
Indeed, suppose the polarization is coupled to
(X,Y ) so that for each k, `, the conditional law of
(X1, . . . , Xm, Y1, . . . , Ym) given X = k, Y = ` is the
product νm,k×νm,` where νm,j is uniform on sequences
of zeros and ones of length m summing to j. Then

E(Y |X = k) = E

 m∑
j=1

Yj

∣∣∣∣∣∣Xj = 1j≤k : 1 ≤ j ≤ m


and the claim follows from the stochastic covering
property for strong Rayleigh measures [PP14, Propo-
sition 2.2]. In fact it is only the right-hand inequality
of (8) that we need. Adding X gives E(X + Y |X =
k − 1) ≤ E(X + Y |X = k). Thus E(X + Y |X) is a
monotone increasing function of X. This immediately
implies nonnegative correlation of the bounded variables
X and X + Y , which is the conclusion of the lemma. �

The next lemma is stated generally though it is
used for one specific purpose, namely for the covariance
matrix of a collection of random integers with real stable
generating function.

Lemma 6.6. Let M be any symmetric matrix with
nonnegative diagonal entries, nonpositive off-diagonal
entries and nonnegative row sums. Then the index set
[m] may be partitioned into disjoint sets T and {Sα}
such that Mi,j = 0 when i and j are in different sets
of the partition. This can be done in such a way that
the restriction M |T is nonsingular, while the restrictions
M |Si

have one-dimensional null spaces containing the
vectors with all entries equal.

Proof: Recall that N denotes the null space of M .
Choose any nonzero vector v ∈ N with minimal sup-
port set S, meaning that no vector whose support is
a proper subset of S is in the null space of M . Sup-
pose v has coordinates of mixed sign. Let E be the
set of indices of positive coordinates and F the set in-
dices of negative coordinates. Let M ′ be the 2× 2 ma-
trix indexed by the set {E,F} whose (G,G′)-element is∑
i∈G,j∈G′Mij . This matrix also has nonnegative diag-

onal entries (follows from nonnegativity of row sums and
nonpositivity of off-diagonal elements), nonpositive off-
diagonal entries (obvious) and nonnegative row sums.
It has a vector of mixed signs in its null space, namely
(
∑
j∈E vj ,

∑
j∈F vj), hence must be the 2 × 2 zero ma-

trix. This means that the vE and vF are each separately
in the null space (where vG denotes the vector whose jth

coordinate is vj1G(j)). This contradicts the minimality
of the support of v. We conclude that all elements of
the null space with minimal support have coordinates
all of one sign.



Still assuming v to have minimal support set S ⊆
N , consider the sub-collection {Xj : j ∈ S}, which
inherits the properties in the hypotheses. Its covariance
matrix M ′ is the submatrix of M indexed by S. Assume
for contradiction that the coordinates of v are not equal.
Let w be the all ones vector of the same length as v.
Scale v so that its minimum coordinate is equal to 1. If
vi = 1 then

0 = (M ′v)i ≥ (M ′w)i ≥ 0 ,

the last inequality following from nonnegativity of the
row sums. It follows that Mij = 0 for all i, j such that
vi = 1 < vj . Thus S′ := {i : vi = 1} is a proper subset
of S whose indicator vector is in the null space of M .
By contradiction, v = w as desired.

Finally, if wS and wT are vectors of ones and zeros
with support sets S and T respectively and these are
not disjoint, then wS −wT ∈ N and is of mixed sign, a
contradiction. This finishes the proof. �
Proof of Theorem 3.1: The conclusions of
Lemma 6.5 pass to the limit: the limiting covariance ma-
trix A has nonnegative row sums as well as being sym-
metric with nonnegative diagonal entries and nonposi-
tive off-diagonal entries. The conclusions of Lemma 6.6
then follow as well. Fix v such that vA = 0. It fol-
lows from Lemma 6.6 that wA = 0 as well. The ran-
dom variables Zn = w ·X(n) are univariate real stable,
hence subject to the real stable CLT (1). In partic-
ular, σ−1

n (Z(n) − EZ(n)) → N(0, 1) weakly whenever
σn := Var (Zn)1/2 →∞. �

Proof of Theorem 4.3 The proof is by induction on
the degree n of f . Let r1, . . . , rn be the negatives of the
roots of f , and let ej = ej(r1, . . . , rn) be the elementary
symmetric functions:

e0 = 1, e1 =
∑
i

ri, e2 =
∑
i<j

rirj , . . . .

Assuming without loss of generality that f is monic,

(9) f(x) =
n∏
i=1

(x+ ri) =
n∑
j=0

xjen−j .

Then

gi(y) =
bn−i

k c∑
j=0

yjen−kj−i.

For the base step of the induction, take n < 2k, so
that the gi’s are linear or constant. In fact, gi(y) =
en−i if i > n − k and gi(y) = en−i + yen−k−i if
i ≤ n− k. In the latter case, the root is −en−i/en−k−i,

so the interlacement property is a consequence of the
log concavity of the sequence em:

em+1

em
↓ .

This statement is a consequence of Newton’s inequali-
ties; see [HLP59] and [Ros89].

Now assume the result for a given n, let f be as in
(9), consider the polynomial of degree n+ 1

F (x) = (x+ r)f(x), r > 0,

and its decomposition

F (x) =
k−1∑
i=0

xiGi(xk).

If e′j = e′j(r1, . . . , rn, r) are the elementary symmetric
functions corresponding to the longer sequence, e′j =
ej + rej−1, so

Gi(y) =
bn+1−i

k c∑
j=0

yje′n+1−kj−i(10)

=
bn+1−i

k c∑
j=0

yj [en+1−kj−i + ren−kj−i]

= rgi(y) +

{
ygk−1(y) if i = 0;
gi−1(y) if i ≥ 1.

Now we use this to determine the sign of Gi(sj). The
signs of gi alternate between intervals separated by the
roots of gi, since all roots are simple. Also, gi(0) > 0
for each i.

We describe the argument in the following array, in
case k = 3:

· · · s6 s5 s4 s3 s2 s1 s0 0

g0 · · · 0 + + 0 − − 0 +
g1 · · · + + 0 − − 0 + +
g2 · · · + 0 − − 0 + + +

G0 · · · − + + + − − − +
G1 · · · + + + − − − + +
G2 · · · + + − − − + + +


.

Note that each row is periodic of period 6, and each row
within the two groups is obtained from the previous row
via a shift. Here are some examples of the computation
for the bottom rows:

G0(s2) = rg0(s2) + s2g2(s2) = rg0(s2) < 0 ,
G2(s3) = rg2(s3) + g1(s3) < 0.



More generally note that the induction hypothesis
implies that
(11)

gi(sj)


< 0 if j−i

k ∈ ∪
∞
m=0(2m, 2m+ 1);

= 0 if j−i
k ∈ {0, 1, 2, . . . };

> 0 if j−i
k ∈ (−∞, 0) ∪ ∪∞m=0(2m+ 1, 2m+ 2).

We would like to show that
(12)

Gi(sj)

{
< 0 if j−i

k ∈ ∪
∞
m=0[2m, 2m+ 1);

> 0 if j−i
k ∈ (−∞, 0) ∪ ∪∞m=0[2m+ 1, 2m+ 2).

There are several cases to consider. First take
i = 0, 2mk ≤ j < (2m + 1)k for some m ≥ 0. Then
by (10),

G0(sj) = rg0(sj) + sjgk−1(sj).

By (11), g0(sj) = 0 if j = 2mk and is < 0 otherwise,
while gk−1(sj) = 0 if j = (2m + 1)k − 1 and > 0
otherwise. Since r > 0 and sj < 0, G0(sj) < 0
as required. The next case is i = 0, (2m + 1)k ≤
j < (2m + 2)k for some m ≥ 0. Now g0(sj) = 0 if
j = (2m+ 1)k and > 0 otherwise, while gk−1(sj) = 0 if
j = (2m+ 2)k − 1 and < 0 otherwise, so G0(sj) > 0.

Next take i ≥ 1 and 2mk ≤ j − i < (2m + 1)k for
some m ≥ 0. Now

Gi(sj) = rgi(sj) + gi−1(sj),

gi(sj) = 0 if j − i = 2mk and is < 0 otherwise, and
gi−1(sj) = 0 if j−i = 2(m+1)k−1 and is < 0 otherwise,
so Gi(sj) < 0. If, on the other hand, i ≥ 1 and j < i
or (2m + 1)k ≤ j − i < (2m + 2)k for some m ≥ 0,
gi(sj) = 0 if j − i = (2m + 1)k and is > 0 otherwise,
and gi−1(sj) = 0 if j − i = (2m + 2)k − 1 and is > 0
otherwise, so Gi(sj) > 0.

From (12) we see that Gi has a root in each interval
of the form

(13) (smk+i, smk+i−1)

for 0 ≤ m ≤ n−k−i
k . (By convention, we set s−1 = 0.)

This shows that Gi has at least bn−ik c negative roots.
The degree of Gi is bn+1−i

k c. We see that all roots of
Gi are negative, except possibly in case bn−i+1

k c =
bn−ik c + 1. In this case, the extra root is recovered by
noting that, with m = bn−ik c,

(−1)mGi(s(m−1)k+i) > 0 and
(−1)mGi(s) < 0 for large negative s.

Therefore, Gi has the correct number of negative roots.
The interlacement property follows from the form of the
intervals in (13):

tn−k+1 < sn−k < tn−k · · · < s1 < t1 < s0 < t0 < 0

where the roots of Gi are ti, ti+k, ti+2k, . . . . This
completes the induction step. �


