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Abstract. We consider simple random walk on the family tree T of a nondegenerate
supercritical Galton-Watson branching process and show that the resulting harmonic
measure has a.s. strictly smaller Hausdorff dimension than that of the whole boundary
of T. Concretely, this implies that an exponentially small fraction of the nth level of
T carries most of the harmonic measure. First-order asymptotics. for the rate of escapé,-
" Green function and the Avez entropy of the random walk are also determined. Ergodic
theory of the shift on the space of random walk paths on trees is the main tool; the key
observation is that iterating the transformation induced from this shift to the subset of
“exit points’ yields a nonintersecting path sampled from harmonic measure. o

1. Introduction .

Consider a supercritical Galton-Watson branching process with generating function
FG) = 322, piusk, ie., each individual has k offspring with probability p,, and
m := f’(1) > 1. Started with a single progenitor, this process yields a random infinite
family tree T, called a Galton-Watson tree, on the event of nonextinction. See Figure 1
for an example. We are interested in the asymptotic properties of simple random walk on
T and what they reveal about the structure of T. Recall that a particle performing si;hple
random walk moves from a vertex x to a vertex y chosen uniformly arhong the neighbors
of x (including the parent of x). For concreteness, start the simple random walk at the root
(that is, the progenitor) of T. The fact that simple random walk on a Galton—~Watson tree
T is almost surely transient was first established by Grimmett and Kesten [8], but their
long proof was not published. Criteria later developed for general trees, however, easily
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imply that simple random walk on a Galton-Watson tree T is almost surely transient
({16, Theorem 4.3 and Proposition 6.4]). Equivalently, the electrical conductance of T
is almost surely positive when each edge has unit conductance. A self-contained proof
of a stronger version of this fact for Galton-Watson trees is included here in Lemma 9.1.
See Figure 2 for the distribution of the conductance when f(s) = (s + s2)/2.

FIGURE 1. A typical Galton-Watson tree for f(s) = (s + s%)/2.

More detailed study of random walk on Galton-Watson. trees is aided by ergodic
theory. While the trees themselves are completely inhomogeneous, we recover
stationarity by considering Markov chains on the ensemble of trees.
~ The most basic question after transience concerns the rate of escape (or speed) of
" simple random walk. This is clearly ‘related to the proportion of the time the walk
‘spends at vertices of degree k + 1 for each k. Perhaps surprisingly, this asymptotic

proportion is simply py; unlike the situation for finite graphs, there is no biasing in favor
- of vertices of large degree. As we show in Theorem 3.2, this.means that the speed is.

=Y mpet
= k .
= k+1

One consequence of this is that simple random walk is slower on a nondegenerate
Galton-Watson tree (px < 1 for all k) than on a regular tree of the same growth.

This settled, the main question which interests us is how the random irregularities
which recur in a nondegenerate Galton-Watson tree T essentially confine the random
walk to an exponentially smaller subtree of T. Transience of the random walk on T
implies that the walking particle converges almost surely to a (random) boundary point,
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FIGURE 2. The apparent density of the conductance for fis) = (s +5H/2.

i.e., an infinite rail of T (precise definitions are in §2) and the distribution of this random
boundary point is called harmonic measx_ire. The boundary 37 has Hausdorff dimension
logm in the natural metric (defined in.:§-2). This follows from a result of Hawkes (10];
a simpler proof is in [16, Proposition 6.4]. Our main result compares this with the
dimension of harmonic measure:

_ THEOREM 1.1. The Hausdorff dimension.'of harmonic measure on the boundary of a
nondegenerate Galton-Watson tree T is a.s. a constant d < logm = dim(37T), i.e.,
there is a Borel subset of OT of full harmonic measure and dimension d.

This result is established in a sharpér form in Theorem 8.4.

With further work, Theorem 1.1 yields the following restriction on the range of random
walk.

COROLLARY 1.2. Fix a nondegenerate offspring distribution with mean m. Let d be as
in Theorem 1.1. For any €. > 0 and for almost every Galton-Watson tree T, there is a
rooted subtree T' of T of growth '

lim M)/ = ¢ < m
n—00

such that with probability 1 — ¢, the sample path of simple random walk on T is contained
inT. (Here, |T'"| is the cardinality of the nth level of T.)




' study of harmonic measure is the fundamental work of Makarov [17] on the dimension

~ of some useful facts from ergodic theory are in §2. In -§3, we start by identifying the

596 ."R. Lyons et al.

See Theorem 9.9 for a restatement and proof

This corollary gives a partJal explanation for the low speed of s1mple random walk
on a Galton—-Watson tree: the walk is confined to a smaller subtree. Interpreted for the
first N levels of T, Corollary 1.2 ylelds an asymptotic result about simple random walk
on large finite trees for which the only available proof goes through ergodic theory on
infinite trees. :

The proof of Theorem 1.1 gives an abstract integral formula for the number d
appearing in Theorem 1.1 and Corollary 1.2. This formula can be rewritten as follows:

“log(1+s) :
-1 [ o arware, ~

where F is the distribution function of-the effective conductance from the root to infinity
of a Galton—Watson tree. For example, this gives that d ~ log 1.47 for the tree with
f(s) = (s +sH/2.

Beyond the intrinsic interest of Galton—Watson trees an additional motivatlon for our

of harmonic measure for planar Brownian motion and the work of Kifer and Ledrappier
[14] concerning the dimension of harmonic measure on. the boundary of the universal
cover of a compact surface of variable negative curvature.

The rest of the paper is orgamzed as follows. Definitions, notation and a review

stationary measure for simple random walk on the space of trees. The resulting Markov
process is ergodic and allows computation of the speed of simple random walk. This
approach works even if po > 0. We remark that Kesten [13] has analyzed simple
random walk on a critical Galton—Watson tree condmoned on nonextinction, where the
rate of escape is subdiffusive. In §4, we recall the relation between Holder exponents
and dimension of measures. Certain Markov chains on the space of trees (inspired by
Furstenberg [7]) are discussed in §5. In §6, we define limit uniform measure, which is the
analogue on the boundary of a Galton-Watson tree of Pzigterson measure, and compute its
dimension, thus extending a theorem of Hawkes [10]. A general condition for dimension
drop is given in §7 and applied to harmonic measure in §8, where Theorem 1.1 is proved.
In §9, we derive asymptotics for the first-hitting probabilities, the Green function and
the Avez entropy; Corollary 1.2 is proved there. Kaimanovich [12}, extending work of
Ledrappier [15], has established the relation (Theorem 9.7) between speed, Avez entropy
and dimension of harmonic measure in a general setting. The paper ends with some
unresolved questions in §10. “

2. Basic notation and definitions
The following notation will be used throughout the paper. Trees will be unlabelled but
rooted. This will be important for constructing stationary Markov chains on the space of
trees. For a tree with no nontrivial graph-automorphisms, it still makes sense to refer to
vertices of the tree. All of our trees will have no nontrivial graph-automorphisms. Write
deg x for the degree of a vertex x in a tree. If we change the root of a tree T to a vertex
x € T, we denote the new rooted tree by MoveRoot(T, x). Given a tree T and a vertex




Ergodic theory on Galton-Watson trees . 597

x in T, the subtree T (x) rooted at x denotes the subgraph of T formed from those edges
and vertices which become disconnected from the root of T when x is removed. This is
considered as the descendant tree of x. A path xo, x, ... in T will be denoted X, while

a bi-infinite path «++y X_t, Xg, X1, ... will be denoted %. Similarly, a path cenXoly X

will be denoted X. Rays are special cases of singly-infinite paths, h'a_mely, ones which
never backtrack. They will be denoted &, regardless of their direction. If ¢ is a ray, the
vertices along & will be denoted 0. &1, . ... The set of all rays emanating from the root
(also known as infinite lines of descent, or ends) is called the boundary of T, denoted
8T. A path X that passes through every vertex at most finitely many times intersects a
unique ray £ € 3T infinitely often; we say that ¥ converges to & and write x., 1= .
Similarly for a limit x_o, of a path ¥. The space of convergent paths ¥ in T will be
denoted T‘; likewise, T denotes the convergent paths x and f"denotes the paths ¥ for -
which both ¥ and ¥ converge and have distinct limits. For disjoint trees T3, ..., T, let

\/f-‘=l T; denote the tree formed by joining the roots of 7; by single edges to a new vertex, =

the new vertex being the root of the new tree.

For a vertex x € T, let [x{ denote the distance from the root of T to x, i.e., the
number of edges on the shortest path from the root of T to x. More generally, for two
vertices x,y € T, write |x — y| for the distance from x to yin T. Let T" be the set
of vertices at distance n from the root of T.IfyeT(x)and |yl = |x] + 1, we write

X — y; we think of y as a child of x. For distinct boundary points &, 5 € 37, let EAn -

denote the furthest vertex from the root common to & and 7. Define the metric

| dg,n) = eV (& £ p)
on 3T. )

A fuhction 6 on the vcﬁiceé of T is called a flow if 6 > 0 and for all x eT,
' 0(x) =Y 8(y).
x>y

These functions are in one-to-one correspondence. with positive Borel measures p on 3T
via : o

_ O =u(E €aT; xeg)).
For this reason, we identify flows on T and measures on 37T.

' A Galton—-Watson process is determined by a probability distribution {po, 1, P2, ...}
on N.-Let the generation sizes-be Z,, so that Z, has the given distribution. Let the mean
generation size be m := 2 kpr = E[Z,]. We assume throughout that 1 < m < oo and
that all p; < 1. The usual martingale Z,/m" — W will play an important role. Note
that since our trees are unlabelled, the chance, say, that the family tree has two children
of the root, one having one child and the other having three, is 2p, P1p3. Since various
measures on the space of trees will need to be considered, we use GW to denote the
standard measure on (family) trees given by a Galton-Watson process. Here, we regard

the space of trees as being given the weak topology generated by finite subtrees from
the root.

'Foi'mally, the space 7 of rooted unlabelled locally finite trees can be defined
as follows. Let 7, be the space of rooted unlabelled finite trees of height n
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with the discrete topology. There are natural maps from 7,,; — 7,. Define
T to be the inverse llmxt of T. This is a Polish space.

We shall assume that pg =0 unless stated otherwise. In particular, Galton~Watson trees
a.s. have no nontrivial automorphisms. We call two measures equivalent if they are
mutually absolutely continuous.
Given a measure-preserving transformation S of a measure space (X,u) and a
measurable set A C X with 0 < u(A) < oo, we denote the induced measure on A
by pa(C) := u(C)/uu(A) for C € A. We also write u(C | A) for pn4(C) since it is a
conditional measure. Define the return time-to A by ns(x) :=inf{n > 1; S"x € A} for
x € A and, if na(x) < 00, the return map Sa(x) := §"4®(x). The Poincaré recurrence
theorem [18, p. 34] states that if u(X) < 00, then na(x) < oo for a.e. x € A. In this
case, (A, 14, Sa) is a measure-preserving system [18, p. 39], called the induced system.
If w (X \ UL, S™"A) =0, then (X, u, S) is called a (Kakutani) tower over (A, 4, Sy).
- In this case, the Kac lemma [18, p. 46] gives that fA nadig = u.(X)/y,(A) also, S is
_ergodlc iff S is ergodic [18, p. 56].

3. Speed of simple random walk
'__As in the rest of this paper, we assume that py = 0; however, towards the end of this
section, we discuss what changes result when py > 0. In order to analyze the speed of
. simple random walk, we need to find a stationary measure for the environment process,
~si.¢.; the tree as seen from the current vertex. This will be a fundamental tool as well for
our analysis of harmonic measure. Now the root of a Galton-Watson tree is different
“from the other verticés since it has stochastically one fewer neighbor. To remedy this
defect, we consider augmented Galton—Watson measure, AGW. This measure is defined
just like GW except that the number of children of the root (only) has the law of Z; + 1;
i.e.; the root has k+ 1-children with probability p; and these children all have independent
standard Galton-Watson descendant trees. Consider the Markov chain which moves from
a tree T to the tree MoveRoot(T x) for a random neighbor x of the root of T. For fixed
T, this chain is isomorphic to simple random walk on T. Write the transition probabilities

- , 1/ deg(root(T)), if3x €T x| =1 & T"= MoveRoot(T, x); .
psrw(T, T') = : ) .
: 0, otherwise. -

“THEOREM 3.1. The Markov chain with transition probabilities pspw and initial
- distribution AGW is stationary and reversible. :

Proof. For Borel sets A, B of trees, write
Psrw(A, B) = / psrw(T, B) dAGW(T).
A

~ We must show that Psrw(A, B) = Psrw(B, A). Given disjoint trees Ti, T, define
[T} T3] to be the tree rooted at root(7;) formed by joining root(T) and root(7,) by an
-edge. Note that this is not a symmetric operation. For sets C, D, write

[Ce-D}]:={[TheT]; 1 «eC, T, € D}.
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-Then it suffices to show that Psrw(A, B) = Psrw(B, A) for sets of the form A = [C D],
B = [D «C] with C, D being disjoint Borel sets of trees since such sets generate the
o-field (up to sets of AGW-measure 0): Furthermore, for sets F;, write ‘

L VE={(VT: T.eF}

Then we may further assume that there are some &, /, disjoint C; (1 <i < k), disjoint
D; (1 < j <) such that : . -
k l

c=\c, p=\/p,

i=1 Jj=1

i=]

.k oo
@=D ”UC@F cnl oy
M )

for the same reason. - _
Now we may. calculate that

. . k
AGW(A4) = AGW(IC «-D]) = ax(k + 1) [[ GW(C,) GW(D)

i=1

= (k+ DOW(CIGW(D).

Also for all T € A and T’ € B, Psew(T,.T") = 1/(k + 1). Therefore,
_ 1
Psrw(4, B) = / 1 dAGW(T) = GW(C)GW(D).
A , .

Likewise, Pspw (B, A) = GW(D)GW(C), whence the two are equal. A i ‘ O

We shall ﬁndlt convenient to work with the bi-infinite paih space (actually, bérh
bundle over the space of trees) of simple random walk on Galton—Watson trees:

PathsInTrees := {(ff, Ty; $eT, xo = rooi(T)} .
Let S be the shift map: v »
(Sf)n = Xng
S(F, T) := (5%, MoveRoot(T, x,)) .

Let SRW x AGW denote the measure on the path bundle associated with the Markov
chain above, even though this is not a tensor product of measures. In §8, we shall see
that the system (PathsInTrees, SRW x AGW, S) is a tower over an ergodic Markov chain,
and hence is ergodic itself. ' '

THEOREM 3.2. The speed (rate of escape) of simple random walk is SRW x AGW-a.s.

. |xal Z -1 o
I'=lim =X <E[ZL"_| 3.1
oo 7 [z,+1] 6D
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Proof. Rather than calculate the speed as the rate of escape from the root of the tree, we
shall calculate it as the rdte of increase of the ‘horodistance’ (Busemarnn function) from
a boundary point. In other words, given a boundary point § €.0T and a vertex x € T,
let [x, £] denote the ray from x to £&. (More precisely, there is a unique one-to-one
correspondence § — [x, £] from 9T — dMoveRoot(T, x) such that § and [x, £] have
infinitely many vertices in common.) Given two distinct vertices x, y.€ T, define x Ap y
to be the vertex where [x, £] and [y, §] meet. Let the signed distance from x to y as
seen from & be [y —xJ¢ := |y — x A¢ ¥l — [x — X A¢ y|. Note that for any vertices x, y, z
and any ray &, we have [z — x]e = [z — yl¢ + [y — x]¢.

Now, for X € T, since X400 7 X—0o, there is a constant ¢ such that for all sufﬁcxently
large n,

[xn — X0l = [xn - xO]x_w +c,
whence the speed is the limit

. 1 . n—1
lm —(x, = Xolxo = HM = [ert = Fele s
n—oon n—->oon
k=0
But these are averages of an ergodic stationary sequence, (Sf‘ [x1 — x0lx_oo)» whence the
ergodic theorem tells us that they converge a.s. to their mean

<

f [x, — %ol dSRW x AGW(E, T). (3.2)

To evaluate this expectation, consider a-bi-infinite path X € T with (%, T) picked
according to SRW x AGW. Since x; is uniformly distributed among the neighbors
of xo given the number of such neighbors,‘i deg(xo), and giverm x_o, the chance that
[x1 — xo0lx_,, is —1 is 1/deg(xo); otherwise, [x; — xoly_,, = +1. Therefore the number
(3.2) evaluates to " o
/deg(root(T)) - JAGW(T),
deg(root(T))

'whlch is the same as (3.1) since AGW glves the root one more edge than does GW 0

Remark. By Jensen’s inequality, uniess 21 = m as., this 1s stnctly smaller than
(m — 1)/(m + 1), the speed on the deterministic tree of the sairie growth rate when m
is an integer. Since random walk on a random spherically symmetric tree is essentially
the same as a special case of random walk in a random environment (RWRE) on the
nonnegative integers, we may compare this slowing down with- the fact that randomness
“also slows down random walk for the general RWRE on the integers [20].

‘Remark. The same result holds for simple random walk on GW-a.e. tree. To prove this
intuitively clear fact, note that the AGW-law of T\ T (x_;) is GW since x_ is uniformly
chosen from the neighbors of the root of T. Let A be the event that the walk remains
in T\ T(x_):

A:=((%,T) € PathsInTrees; ¥n > 0x, € T\ T(x-1)}
= (%, T) € PathsInTrees; X C T \ T(x-1)}
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and B be the ew)ent that the walk returns to the root of 7' exactly k times:
B, = {(:t', T) € PathsInTrees; I{i >1; x =xo}| = k}.

Then the (SRW xAGW | 4, By)-law of (X, T\ T (x_;)) is equal to the (SRW x GW | B)-
law of (X, T), whence the (SRW x AGW | A)-law of (X, T \ T(x_;)) is equivalent to
the (SRW x GW)-law of (¥, T). By the theorem, this implies that the speed of the latter
. is almost surely E[(Z; — 1)/(Z, + DI. .

Now we consider the case when Po > 0. As usual, let g be the probability of
extinction of a Galton-Watson process. Let Nonextinctior be the event of nonextinction
. of an AGW tree. It is easily seen that AGWyonextinction 18 SRW-invariant. (In fact, AGW

_is still invariant and Nonextinction is an invariant subset of trees.) The AGWnionextinction-
~ distribution of the degree of the root is seen to be

AGW (Nonextinction | deg xo = k+ 1)
AGW (Nonextinction).
1 — qk+l . ;
1—-g%"

AGW(deg xog = k + 1 | Nonextinction) = Pk

= Pk

for the numerator, we have calculated the probability of extinction by calculating the
probability that each child of the root has only finitely many descendants; while for
the denominator, we have calculated the probability of extinction by regarding AGW as
[GW «~GW], so that extinction occurs when each of the two GW trees is finite.

The proof of Theorem 3.2 on speed is valid when one conditions on nonextinction in
the appropriate places. It gives the following formula for the speed:

. xg] Zy -1
1 =E|—0—
n—l-golo n [Z] +1

k=1 1—gkt
Noncxtinction:l = Z pk——q— :

= k+1 1 —g42

The dynamical system (PathsInTrees, SRW x AGW, S) actually has much stronger
mixing properties than simply ergodicity: using [9] and some ideas about regeneration
points, it may be shown that it is a K-automorphism.

4. Holder exporient and dimension
The Hausdorff dimension of a probability measure 1 on X is usually defined to be
' dim p4 := min{dim E; u(E) = 1}.

There is another quantity related to the Hausdorff dimension of measures which yields
more informatipn when it exists: the Holder exponent of u at x is defined to be

.« T ] 1 l
Ho(u)(x) := lrlﬂ)l (log m/log r) (4.‘1)

when the limit of the above quotient exists. :

Example. For a Borel probability measure 6 on oT, we have

NN |
Ho(6)(§) = ,.IL’&; log 5E
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The relationship between Holder exponent to Hausdorff dimension is given in the
following result of Billingsley [4, §14]; see also [21]. (Billingsley proved a more general
result for Euclidean space, but the same proof works even more easily on the boundaries

. of trees.)

LEMMA 4.1. For any Borel probability measure p on the boundary of a tree, if the Hélder
exponent of i exists ju-a.e. and is constant, then that constant is the Hausdorff dimension

‘0fu

This lemma is actually valid with ‘liminf’ in place of ‘lim’ in (4.1). When the
Holder exponent of 4 exists and is constant, however, all reasonable alternative _notions

~ of dimension of u coincide [21].

-Example. Given a tree T, define simple forward random walk to be the random walk
- which chooses randomly (uniformly) amorig the children of the present vertex.as. the
-:next vertex. The corresponding harmonic measure on 3T is called visibility measure,

denoted VIS, and corresponds to the equally-splitting flow. Suppose now that T is a
Galton—Watson tree. Then VISt is a flow on the random tree T. Write VIS x GW for

_'the measure o ]
(VI_S’x GW)(F) := //lp(f, T)dVISr(E)dGW(T).
Since 1 ’
1 ,_”‘ VISr(&)
VIST ¢n) Z VIST Grs1)

and the random varlables VISt (& 1)/VIST(1,-'k) are VIS x GW-i.i.d. with the same

_ distribution as Z;; the strong law of large numbers gives

Ho(VISr)(§) = Ellog Z:] VIS x GW-as. (¢, T).

"Thus dim VIS = E[log Z;] for GW-a.e. tree 7.

The arithmetic mean—geometric mean mequahty shows that this dimension is less than

logm except in the determlmstlc case Zl =m as.

N ‘5. Markov chains on the space of trees

Given a flow 8 on a tree T and a vertex x € T with 8(x) > 0, we write 6* for the
(conditional) flow on T'(x) given by

0*(y) :=0(y)/6(x) (y € T(x)).

We call a Borel“f'unction ® : {trees} — {flows on trees} a b(consistent) flow rule if

VYT ©O(T) is a flow on T such that

xeT, xi=1 6(T)x)>0 = @(T)" = (T (x)).

A flow rule may also be thought of as a Borel function which assigns to a k-tuple
(Th, ..., T) of trees a k-tuple of nonnegative numbers adding to one representing the
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probabilities of choosing the corresponding trees T; ‘in V,{;, Ti. A random (forward)
walk according to ®(T) is Markovian in that once it visits T(x), it walks according to
O(T (x)). It follows from the definition that for all x € T, not only those at distance
1 from the root, ®(T)(x) > 0 = (T)* = ©(T(x)). We shall usually write @1 for
(7). o P »

One example of a flow rule has already been encountered, namely, VIS. The principal
object of interest in this paper, harmonic measure, also comes from a flow rule, HARM.
Another important flow rule, UNIF, is discussed in §6. :

PROPOSITION 5.1. If © and ®’ are-two flow rules such that for GW-a.é. tree T and all
vertices |x| = 1, ©r(x) + @7(x) > 0, then GW(Or = @}) € {0, 1}.

That the hypothesis is néeded is seen from examples, ‘_say, where two flow rules both
follow a 2-ray when it exists (see below) but do different things otherwise.

Proof. Let's := GW(@r = ©7F). By the hypothesis,
. Or =07, kl=1 =" Ory =0,

Therefore, conditioning on Z;, we see that

s .o
s<) p[[oWEr =0r) =) pst
.k i=l1 k
and so s e' {0, 1}. . . - : 0

Given a flow rule ©, there is an associated Markby chain on the spacé of trees given
by the transition probabilities:

VIVxeTxi=1 = po(T,T()=Or(x).

We say that a (possibly infinite) measure 4 on the space of trees is @-stationary if it is
Pe-stationary, i.e., upe = u, or, in other words, for any Borel set A of trees,

#(A) = (upe)(A) = / Y pe(T, TYdu(T)

T'eA : ‘
= / > e(T, T(x) du(T) = / 3 or@dull).
roea e

The path of such a Markov chain is a sequence '(T(E,,));’io for some tree T and some
ray § € 3T. Clearly, we may- identify the space of such paths with the ray bundle

RaysInTrees := {(§, T); & € 8T} .
For the corresponding path measure on RaysInTt@e‘s; write
©xw(P) = [ [ 166 D d0r@ anc,

even though this is not a tensor product of measures.
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. It is well known ([19, pp. 96-97]) that ® x u is ergodic iff every ®-invariant set
of trees has p-measure O or 1, where a Borel set A of trees is called ®-invariant if
Pe(T, A) = 14(T) p-as. In fact, the shift-invariant o-field in RaysInTrees corresponds
to the ®-invariant o-field via the projection 7 : RaysInTrees — {trees} onto the second
coordinate, which is essentially invertible when restricted to the invariant o-fields.

PROPOSITION 5.2. Let © be a flow rule such that for GW-a.e. tree T and for all x| =1,
©r(x) > 0. Then the Markov chain with transition probabilities. Pe and initial
distribution GW is ergodic, though not necessarily stationary. Hence, ifa (posszbly
infinite) ©-stationary measure . exists which is absolutely continuous with respect to
GW, then u is equivalent to GW. and the associated Markov chain is ergodic.

Proof. Let A be a Borel set of trees which is ®-invariant. It follows from our assumption
that for GW-a.e. T, we have T € A iff T(x) € A whenever |x| = 1. Therefore
conditioning on the degree of the root of T gives

GW(4) = Zpk / / r[dGW(T) —Zkawm)

so that GW(A) € {0, 1}. . , : a

An example of a flow rule ® with a ®- statlonary measure which: is" absolutely
continuous with respect to GW but whose associated Markov chain is not ergddic is
as follows. Call aray & € T an n-ray if every vertex in the ray has exactly n children
and write T € A, if 3T contains an n-ray. Note that A, are pairwise disjoint. Consider
the GW process with p3 := ps := 1/2. Then GW(4,) > O for n = 3,4. Define Or
to choose equally among all children of the root on (A3 U A4)°-and to choose equally
among all children of the root belonging to an n- ray when T € A,. Then GW,, is
©®-stationary for both n = 3, 4, whence the ©- -stationary measure (GWA1 +GWy,)/2
gives a non-ergodic Markov chain. .

Given a O-stationary probability measure u on the space of trees; we follow
Furstenberg (7] and define the entropy of the associated stationary Markov chain as

1
Ente(u) : f I; po(T, T(x)) ‘°g—(rr—(53"“(“

/ Z@T(x)log du(T) / / log 5
lxi=

= /1 d(® ).
foggr(&) (© x u)§, T)

[This is not the ergodic-theoretic entropy of the measure-preserving system, only the
entropy with respect to a certain (non-generating) partition.] Define 8o, T)
log 1/ @T(El) and let S be the shift on RaysInTrees. The ergodic theorem gives that

+

d®r(§) du(T)

: _ 1 L 12 Or¢)
H0(®T)(§) = lim ~log OrE,) Am Z )

- .Q.EQ;’
S Z 0g == T = lim - Zs ge(t, T)
n—oo @(T)fk(sm) n—co 1

!
5

Cerath
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exists © x u-a.s. and satisfies

/ HO(O7)(§) d(® X w)(E, T) = Ento ().
If the Markov chain is ergodic, then

H8(O71)(§) = Entg(w) ® x u-as. 6.

Note that even if the Markov chain is not ergodic, the Holder exponent H6(®7)(&) is
constant ©r-a.s. for u-a.e. T': since (¢, T) — Ho(®O7)(&) is a shift-invariant function, it
is ®-invariant (i.e., measurable with respect to the @-invariant o-field) and so depends
onlyon T,

6. Limit uniform measure .

In this section, we sharpen Hawkes’s theorem (10] on the Hélder exponent of limit
uniform measure. This measure is defined as follows. According to the Seneta—Heyde
theorem [1, Theorem I1.5.1, p. 43], there exist constants ¢, such that Cnt1/Cn.~ m and

o W(Dg= lim Z,/c,
exists and is finite non-zero a.s. Note that

. 1 N o
W(j) =~ Z W(T(;?)). | 6.1)

|xj=1

Therefore, if we define for every vertex x € T

W (T (x))

UNIFr(x) = ——=2
T(x) R W (T

(6.2)
then UNIF7 is a unit flow and defines limiz uniform measure on the boundary of T. The
Kesten—Stigum theorem [1, Theorem 1.2.1, p 23], which says that S W(T)dGW(T) > 0
iff fW(T) HGW(T) = 1iff W > 0 as. iff E[Z, logZ;] < oo, implies that when
E[Z;log Z|] < oo, the constants C, may be taken to be m” and so W may be used in
place of W in (6.2) and (6.1). A theorem of Athreya [2] gives that

/ W(T)dGW(T) < oo «= E[Z,log Z] < oo. | (6.3)

We next show that a (poésibly infinite) UNIF-stationary measure on trees is
W(T) dGW(T). This was also observed by Hawkes [10, p. 378]. Related ideas occur
in [11]. ‘ ' .

PROPOSITION 6.1. The Markov chain with transition probabilities punip and initial
distribution W - GW s Stationary and ergodic.

Proof. Apply the definition of stationarity with ©7(x) = W(T (x))/(mW (T)): for any
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Borel set A of trees, we have
W(IT®) &
W.G A — . W(T)dGW(T
(W - GW)pon)(4) = f ¥ iy DO
T(x)eA

- ~=Z”"%fr /TZIT' AW(T)ndGW(T)
- k=1 k=1

00 k . .
= Zpk% }:/____-,;_-f 1neAW(Ti)ﬂdGW(Tj)
. i j=1
—Zpk— /WdGW /WdGW

=(W- GW)(A)
as desired. .
The Markov chain i 1s ergodic by our general result on ergodicity (Proposition 5.2) and
thefactthatW>0GWas ) |

In order to calculate the Holder exponent of limit uniform measure, we shall use the
- following well- known lemma of ergodic theory g *
o

LEMMA 62. IfSisa measure-preservmg transformation on a probability space, g is finite
and measurable, and g — Sg is bounded below by an integrable function, then g — Sg is
integrable with integral zero.

Prboﬁ By ergodic",déc.omposition, we rhay assume that § is ergodic. If g — Sg
is not integrable with integral Zero, then it has either a finite non-zero integral or
[(g — Sg) = +oo. In either case, the ergodic theorem implies that

] 1 n—1 1 '
07 [(6=58) = Jim L 35 = 59060 = im -z = "0

for a.e. x, whence S"g(x) — Fo0 fora.e. x as n — oc. But the distribution of S"g is
the same as that of g, a contradiction. Therefore, g — Sg is integrablé with integral zero.
a

TH‘EOREM 63. If E[V‘Zl ‘log Z1] < oo, then the Hélder exponent at & of limit uniform
measure UNIFr is equal to logm for UNIFr-a.e. ray § € 3T and GW-a.e. tree T. In
particular, dim UNIFr = logm for GW-a.e. T.

Proof. The hypothesis and Proposition 6.1 ensure that WGW is a stationary probability
“distribution. Let S bé the shift on the ray bundle RaysInTrees with the invariant measure
UNIF x WGW. Define g(§, T) := log W(T) for a Galton—Watson tree T and § € aT.
Then

w(T)

(5 = S5)6.T) = log W(T) ~ log W(T &) = 08 7

—logm

1
= log ———— —logm.
EONIFr 61 °
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In particular, g — Sg > — logm, whence the lemma implies that g — Sg has integral zero.
Now, for UNIF x WGW-a.e. (&, T) (hence for UNIF x GW-ae. (£, T)), we have
that HS(UNIF7)(§) = Entynr(WGW) by ergodicity. By definition and the preceding

calculation, this in turn is

EntUNIF(WGW) = //Iog m dUNIFT(E) W(T) dGW(T)

- = logm + / / (¢ ~ Sg) dUNTF7 (£) W (T) dGW/(T)

= logm.

7. Dimension drop for other Sflow rules
We believe that any flow rule other than limit uniform gives measures of dimension less
than logm GW-a.s. In this section, we prove that this is the case when the flow rule
has a finite stationary measure equivalent to GW. (Note that our theorem is valid even
when E[Z; log Z,] = 00.) To this end, we shall use Shannon’s inequality (concavity_ of
the log function): ; ‘ -

] : ) 1 N . 1 e T
. a,-,b,-e[O, 1], Za;:Zb;:l => Za;loga—iSZailogb—i, o
with equality iff a; = b;.

THEOREM 7.1. If ® is a fow rule such that ®r # UNIFr for GW-a.e. T and there is a

finite @-stationary measure K absolutely continuous with respect to GW, then for p-a.e.
T, we have H6(®7) < logm ®z-a.s. and dim(®r) < logm. : '

Proof. Recall that the Holder exponent of @7 is constant Or-as. for p-ae. T and equal * .
to the Hausdorff dimension of ©7. Thus, it suffices to show thai the set of trees

A:={T; dm@O7 = logm} = (T; H6(®7) = logm ©Or-as.)

has u-measure 0. Suppose that u(a) > 0 Now since w <K GW, thé limit unifom}‘_‘
measure UNIF7 is defined and satisfies (6.2) for pa-ae. T. Since the entropy is the
mean Holder exponent, we have by Shannon’s inequality,

1
togm = Ento(u) = [ T ortios s dua(d

1 1
< 2., Or(a) 108 s dua() = [ ool d0r6) dua(r)

|x|=1

= logm + f (8 — 58)dOr(E) dus(T) = logm,

where, as in the proof of Theorem 6.3, we have applied Lemma 6.2 to the function

8¢, T) := log W(T),_ which satisfies g — Sg is bounded below by —logm. This
contradiction shows that u(A4) = 0, as claimed. d

In order to use this result for harmonic measure, we need to find a stationary measure
for the harmonic flow rule with the above properties.
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‘8. Harmonic-stationary measure
Consider the set of ‘last exit points’

Exit := {(%, T) € PathsInTrees; x_; € X—co, Y2 > 0 xy # x_{} .

This is precisely the event that the path has just exited, for the last time, a horoball
centered at x_.,. By almost sure transience of simple random walk, the set Exit has
positive measure and for a.e. (X, T), there is an n > 0 such that S*(X, T) € Exit.
Inducing on this set will yield a key tool: o

THEOREM 8.1. There is a unique ergodic HARM-statibnary measure [LyarM equivalent
to GW.

Proof. The key point is that for (x T) e Exit, the path of vertices in the tree
T given by the first components of the sequence (S (%, T))iso0 is a sample from
HARMp\7x_,)- (Recall that T is rooted at xp.) Note that the Markov property of
the induced systém is a consequence of the fact that HARM is a consistent flow rule.
Now since AGWgyi: < AGW, we have that the (SRW x AGW)gxi-law of T \ T (x_;)
is absolutely continuous with respect to GW. From Proposition 5.2, it follows that the
(SRW x AGW)gyi-law of T \ T(x-;) is equivalent to GW. Therefore, the induced
measure-preserving system :

(Exit, (SRW x AGW)gyit, Sexit)

is isomorphic to a HARM-stationary Markov chain on trees with a stationary; measure
- [iuArRM equivalent to GW.
The fact that HARM X piyarm 1S ergodxc follows from our general result on ergodicity,
Proposition 5.2. Ergodicity implies that ugarm is the unique HARM-stationary measure
- absolutely continuous with respect to GW. : O

Remark. Since (PathsInTrees, SRW x AGW, S) is a tower over Exit, this proves that the
former is ergodic, as promised in §3.

-

Since incredses in distance from the root come only at exit points, it is natural that
the speed is also-the probability of being at an exit point:

PROPOSITION 8. 2 The measure of the exit set is the speed (SRW x AGW)(Ex1t)
El(Z, - 1)/(Zi+ D]

Proof. See the thlrd proof of the Kac lemma in Petersen [18, pp. 47-48]. d
The next proposition is mtumvely obvious, but crucial.

PROPOSITION 8.3. For GW-a.e. T, HARMr # UNIFr.

For a proof, define Tp := [A o T, where A is a single vertex not in T, to be thought
of as representing the past. Let ¥(T) be the probablllty that simple random walk started
at A never returns to A:

y(T) :=SRWr, (Y¥n >0 x, # A).
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This is also equal to SRWrea)(Vn > 0 Xn % A). Let C(T) denote the effective
conductance of T from its root to infinity when each edge has unit conductance. Then
(6]

. C()
y(TYy= TC(T)

It follows that y(T) = C(Typ).

Proof of Proposition 8.3. In view of the zero-one law, Proposition 5.1, we need merely
show that we do not have HARM; = UNIFr as. Now, for any tree T and anyx T

with |x| = 1, we have :
' v (T (x))

HARM =2 v/
. » T Z(yl:l Y(T(y))
while o e
w(T
UNIFT:(x) - (T(x))

Y W(T ()
Therefore, if.’HAR'MT = UNIFr, the vector

< y(T(x))> T : (8.1
W (T (x)) Ix(=t e ' .

is a multiple of the constant vector 1. For Galton-Watson trees, each component of this
vector has the same law as that of y (T)/ W(T). But the independence of T(x) and T (y)
for two distinct children x and y of »ihe root implies that the random vector (8.1) is, in
fact, constant GW-a.s. Thus, Y(T)/W(T) is a constant GW-as. But y < 1-and, since

Z, is not constant, W is obviously unbounded, a contradiction. O

Taking stock of our preceding results, we get our main theorem:

THEOREM 8.4. The dimension of harmonic measure is GW-a.s. less than logm. The
Hélder exponerit exists a.s. and is constant.

Proof. The hypotheses of Theorem'7.1 are verified in Theorem 8.1 and Proposition 8.3.
The constancy of the Holder exponent follows from (5.1). O

Note that no- moment assumptions (other than m < ‘o) were used.

Remark. This-theorem holds everr if po > 0: that is, given nonextinction, the subtree
of a Galton-Watson tree consisting of those particles with an infinite line of descent has
the law of another Galtoh—Wa’iéqni process still with me{an m [3, p. 49]. Theorem 8.4
applies to this subtree, while harmonic measure on the whole tree is equal to harmonic
measure on_the subtree. -

We now sketch the derivation of the explicit expression (1.1) for the dimension 4 of
harmonic measure. From 85, we have

1
————— dHARM x , T).
HARM; ) MHARM(? I )

Using the relationship between random walks and the conductance C(T), we may rewrite
this as d = [ log(1 + C(T))duuarm(T). The formula (1.1) follows from this by

d = Entyarm(Uyarm) = / log
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substituting the following expression for the Radon-Nikodym derivative of uyarm with
respect to GW:

d LHARM 1 / 1
AT =~ dGW(T"),
dGW () e 1+ (T L+ C(@)! )

where [ is the speed of simple random walk. This expression is a consequence of our
construction of wyarm by inducing; we omit the calculation.

9. The ‘hot’ part of the tree.. )
In this section, we demonstrate Corollary 1.2, showmg that, with probablhty arbltranly
close to one, the random walk. is confined to an exponentially small part of the whole
tree. In the process, we shall need to analyze;se\}eral other interesting asymptotics of
random walk.

We first bound the mean resistance. Note that 1/y(T) = 1 + C(M) ' =1+ R,
one more than the effective registance R(T) from the root of T to infinity.

LEMMA 9.1. We have

fdGW(T) 1
v - 1-E[1/21]
with equality iff Z, is constant.
Proof. For aflow 6 on T, define
Ta@= Y e
0<ixi<n.
and
£@) := lim &,(9).
n-—>00 .
Then ([6], [16])

- y(T) —er(rg)lg 8(9) = E(HARMy) €9.1)

and HARM7 is the unique minimizer of 8(9) among umt flows. In particular,

1/y(T) < E(VISr) with equality iff VISy-= HARM7y. A proof similar to that of

Proposmon 8.3 shows that' VIST # HARM7 for GW-ae. T unless Zl is constant.
Setay == [ &, (VISt) dGW(T) We have ¢ ao =1 and

np1 = f {1 + Z Z—e (VIST(x))] dGW(D).

Ix|= 1 _‘
Conditioning on Z; gives
anar =1+ P 2/8 (VIS7,) dGW(T)
k>1 i=1

=1+) Zkan = 1+E[1/Z]a.
k>1
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Therefore, by the monotone convergence theorem,

dGW(T) / _ @ 1
——— < [ E(VIST)dGW(T) = lim a, = El1/Z)) = ———
7 (D) d A = ) B2 =
o
LEMMA 9.2. For SRW x AGW-a.e. (%, T),
1 1 ’
lim ~ Z =0, 9.2)
n—con. .
lv=xal=1 4, (( MoveRoot(T, x,,))(v))
whence 1 : .
' lim ———— =0, L 9.3)-
w0 ny (TG ©3)
and for HARM X pyarm-a.e. (€, T), = ~®
o o
. lim ———— =9 ‘9.4
) k=00 ky (T (£)) )
Proof. By Lemma 9.1, we have T
: 1 o ElZi+17 o
dAGW(T) < —————_ « . 9.5)
/,; yY(T(x)) 1 —-E[1/Z)] _ o
Now for any n, the random variable
- . 1 - P B
[o=xal=1 4, <(MOVeRoot(T, x,,)) (v)) - B

has the same SRW x AGW-distribution as the AGW-distribution of ¥, _, 1 /¥ (T ().
Equation (9.2) is thus.a consequence of the Borel-Cantelli lemma and (9.5). This

~ immediately implies (9.3). Let t(0) := inf{n > 0; S".(:r', T) ¢ Exit} and (k) =
inf(n > t(k); S"(¥; T) e Exit} be the sequence of exit times of (¥, T). Set &k 1= X7,

Then we conclude from (9.3) that

lim ————__g
oo T(k)y (T (&) ' ' o

for SRW x AGW-a.e. (¥,T). Since limk/z (k) is the speed, which is positive as., we

get (9.4) for SRW x AGW-ae. (%, T), which is the same as for HARM x LHARM-.€.
(¢, T), as the latter measure is induced from the former. -0

LEMMA 9.3. For SRW x AGW-q.e. (X, T), we have

n—1

1
lim - "logdeg(x) = Ellog(Z; + 1)].
k=0

n—oo n

Proof. Apply the ergodic theorem to the function (X, T) > log deg(xg). a

For the remainder of this section, let VISITr (x) be the probability that simple random

walk on T visits x at some time > 0 (starting from the root of T).
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THEOREM 9.4. For SRW x AGW-a.e. (%, T), we have

1
lim - log ——— =
naeon 08 VISITy ()

=-Proof. Note that for all vertices v e T,

HARMT(v) < VISIT7(v) < HARM7(v)/y (T (v)).

[To see the nght-hand inequality, for fixed v € T and for X e T, lett: = inf{n; x, = v}.
The paths xg, x1,...,%¢, Y1, ¥2,... such that T < co and Vk >0 y;. € T(v) exit at v
and have SRWr-probability VISITr(v) - ¥ (T(v)). On the other hand, the set of all paths
exiting at v have SRWr-probability HARM7z(v).] Thus for all £ €8T,

1 1 1

HARMT(Ek) k VISITT(Ek) k

1
m 103 Y (T (&)).

Apply. this to HARM x puuarm-a.e. (€, T) to get

1

. lim ~log ——— =d
ek BVISIT Gy : ©8

by virtue of Lemma 9.2 “;a.ﬁd Theorem 8.4 on the Holder exponent of harmonic measure.
Define r(k) as in the proof of Lemma 9. 2, so that limg. 0 k/r(k) = [l. Then from
(9.6), we have

- 1 _
i 1 =1d SRW x AGW-ass.
flagl T(k). o8 VISITT (xe ) g *

Set e(n) := sup{t(k); t(k).<n}). Then e(n) —n =o(n) as. and so - -

,.‘_i."ﬁ,‘o iog Vﬁm =1d SRW x AGW-as. oD
and
by Lemma 9.3. But every path visiting Xen)» 1€+ Y1, .-, ym such that m = xem’ 0
 be extended t0 a path Y1, ..., Y, Xem+1, - - - %y Visiting xp, s0
. ml g
VISIT (32) = VISITr (tecn) -jl:[(n) dezG)’
similarly, ‘ '
: VISIT7 (Xemy) = VISITr(xs) - ﬁ de ; 3
j=e(n)+1 g(x;)
Hence -

1 1 T 1
lim = log ———— = lim - log————— SRW x AGW-a.s.
oo B VISITr(6n)  mason 8 VISITy (rugy) as

The theorem is now a consequence of (9.7).
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Define the Green function of a simple random walk on a tree T as

Gr(v) == / 2 1) (xn) dSRW,(F)

n=0

for a vertex v of T. This is, as usual, the expected number of visits to .

COROLLARY 9.5. The Green Junction Gy satisfies

1
lim — log

=1ld SRW x AGW-a.s. -
~on O Grio) *Avas

Proof. We have the usual formula
Gr(xn) = VISITF (%) Grtorekoo . (). -
Now GMoveRom(T,x”)(x,,)‘has the same dis&ibﬁtion as Gr(xp) and-
‘ . Graw =degoem). o ©8)

To see this, let VISIT 7{(xo) be the probability of returning to x, after time 0. Then
. e - o 1 ’

Crix) = 1 — VISIT, (x0)
and o
L) = LTI . om
‘VISITT<xo)—Z_ﬁ~deg(xO) == s .%; e e

Ix]=1"

Putting these togethef 'giv:'es (9.8). Therk_:fore, Lelhma 9.2 and Lemma 9.3 give (recall
that 1/C(T) = 1/y(T) ~ 1) ‘ . . I

lim ~ 10g GMoveRoot(T,x,,) (X,,) = 0 SRWwW X ACWV-a.s.,
n - .

nA—>00

whence the result follows from Theorem ‘9.4.on VISIT. a

Remark. The same result holds for the Green function of simple random walk on
GW-a.e. tree. Briefly, this is seen as follows. Since the AGW-law of T \ T(x) is
GW, we may examine the rate of decay of Grvrupn(,) forx ¢ T \T(x_;). On
one side, we have Gr\i(x_,)(xn) > Gr(x;), to which we apply the above corollary
directly. On the other side, write G7(x)_for the expected number of visits to x
before "'returning to thequot of T. Then Gnre_)(x) < GT\T(x_,)(xo)G’T\T(X_‘)(x,,)
and G’T\T(X_‘)(x,,)/ deg(xo) < G (x,) < Gr(x,), to which we apply the corollary again.

It follows that Theorem 9.4 on VISIT also. holds for simple random walk on GW-a.e.
tree. .

Far our next result, we shall need the foll‘bW’ing lemma.

LEMMA 9.6. We have ) «

1 1
lim ~log——0  _ _ 7 SRW AGW-a.s.
im - log HARM; (r,) = X a.s

n—oco n
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Probf As in the proof of Theorem 9.4 on VISTT,‘we have
y(T (x))VISIT7(x) < HARMr(x) < VISIT7(x),

whence
VISIT;(x,) ~n — y(T(a))— n ~ HARMr(xq) ~ n = VISITr(x,) -
The result now follows from Lemma 9.1 and Theorem 9.4 on VISIT. .- O

The following was first proved by Ledrappier [15] in the case of random walks
on free groups (i.e., nonnecessarily nearest-neighbor (group- -invariant) random walks on
homogeneous trees). As we mentioned in the introduction, Kaimanovich [12] has proved
this for general trees. :

Define SRW%(x) as the probability that simple random walk started at the root of T
is at x at time n.

THEOREM 9.7. The Avez (asymptotic) entropy of simple random walk on Galton—Watson
_trees is equal to its speed times the dzmenszon of its harmonic measure: :

1 1 : : V '
lim - log ————— =1d (9.
ningon ‘ SRW ny | (9.9)

both SRW x AGW-a.s. and in L' (SRW x AGW) and

1 : -
Jim_ ~ ZSRW (x)Alog—S—Rw—;.(}—) =1d AGW-as. - : (9.10)

xeT

] Proof Smce SRW% (x,,) < VISITr(x,), we have

1
llnrg}gfn logm >1ld SRW X AGW -a.s.

. For the other direction, fix & > Id and choose ¢ € (0, (@ — Id)/2). Define the set of

‘bad’ points
{x eT; |x| <n, SRW " (x) < @, HARM7(x) > ¢ ~Gd+an) .
"Then o ‘
n+l= Z HARMTr(x) > Z SRW(x)e@td-2m = SRW " (B,)e@—id=2m,
Ix|<n x€B, )

whence

Z SRW2(B,) < 00

n31 .
for every tree T. Therefore, x, € B, only finitely often SRWr-a.s. In view of Lemma 9.6,
it follows that »

SRW%(x,) > e~
eventuaily SRW7-a.s. for AGW-a.e. tree T. By the choice inherent in a and ¢, it follows
that o

| .
lim su lo —— <ld SRW x'AGW-as.,
o 18 SRWE (xy) —
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which completes the proof of 9.9).
In order to.deduce (9.10), set

1

(. T) = log ———
Ja® T) := log SRWZ (x,)

We shall establish that for GW-a.e. tree T, the sequence of functions % Fu(-T) is
dominated by an SRWr-integrable function. Note that the left-hand side of (9.10) is
simply [(1/n)f, dSRWr. ‘ .

Now since the chance of being at x,,,, at time m + n is at least the cR¥hcesnf being

. atxp, at time m and then going from there to Xm+n iN 1 more steps, we have
© SRWE™ (xmin) 2 SRWE (xm) SRWitoreroar. oo Cmen).

The fact that )

SRW’I:doveRoot( T\ Xm) (x m+’l)

allows us to write this inequality as Jmin < fu + S™F,; ie., the sequence of functions
(/) is subadditive. Induction then shows that :

S™fu(X, T) = log

n—1 :
<) S*A. (9.11)
k=0 T
Since fi(X, T) = logdeg xo, we have trivially that
/ﬁ log* fi dSRW x AGW. < 0. ] (9.12)

Wiener’s dominated ergodic theorem [18, p- 87] says that (9.12) is equivalent to

1 n=1
/sup — > 5 fidSRW x AGW < o,
n Mo
whence from (9.11), we have S sup, f,/ndSRW x AGW < oo, Therefore, for AGW-

a.e. T, we have fsup, f,/n dSRWr < o0, whence Lebesgué’s dominated convergence
theorem yields (9.10) from 9.9). . e O

Theorem 8.4 on the dimension of harmonic measure has the following finitistic version.
Recall that 7* denotes the particles of the nth generation of a tree T. Consider the hitting
measure HIT; on 7" of simple random walk, i.e., HIT(x) is the probability that simple
* random walk started at the root of T first hits the x|th generation T'* at . (Note that
HIT is not a flow rule.) :

THEOREM 9.8. If 1, denotes the first hitting place in T", then

1 1
lim - log——— =4 9.13
oo n S HT gy~ ¢ ©-13)

for a.e. walk in GW-a.e. tree T. Thus, for every ¢ > 0, .

lim HITr ({x € T"; e “+9" < HIT;(x) < ¢=@- D=1 GW-as. (9.14)
n—>o0
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Therefore, if K7 (¢) denotes the Jrri‘inimum number of points x € T" forming a set of hitting
measure at least € € (0, 1), then
. L
lim —log K7(¢) =d GW-as. 9.15)
n—oon
Proof.. Equation (9.14) is merely convergence in pfobability in (9.13) for GW-ae. T
and equation (9.15) follows immediately from (9.14). To prove (9.13), note that by
Theorem 3.2 on speed, (1,) is a subsequence of (x,) of density ! for a.e. walk in GW-
a.e. tree T. Since HITr(n.) < VISIT7(4,), it follows from Theorem 9.4 on VISIT
that .

i
li f log —— > d
I e H Ty () =

for a.e. walk in GW-a.e. tree T..On the other hand, by Lemma 9.6,
{ 1
lim - log ——————— =d SRW x GW-as. 9.
oo 7 C HARM7(7,) s 616

To compare this with HIT and show that

1 .
limsu lo ———— <d SRW x GW-as., 9.17
S S HITr (1) , )

fix @ > d and choose € € (0, (a —d)/2). Define the ‘bad’ points ’
B,={xeTH HITT(x') < e @ O" HARMr(x) > e~ @+o"} -
Thus’ . ,’ . .
= Z HARM;(x) >'Z HITy (x)e®~4-29" > HIT(By)e@ 42",
xi=n x<B, -

whence ZP, HIT7(B,) < oo. (Note that HIT7 is a probability measure on T"
and a measure on T.) Since 7, has law HIT7 on T", it follows from the Borel-
Cantelli lemma that N € B, only finitely often a.s. In light of (9. 16), this means that
HITr(n,) > e~@ 9" eventually as. As € and o were essentially arbitrary, we may
educe 9.17). _ O

" We now demonstrate how the walk is esscntlally restricted to a small subtree of the
whole tree. The following is a restatement of Corollary 1.2 from the introduction.

THEOREM 9.9. For every € > 0, there are subtrees T') C T of smaller exponential
growth, :

1
lim ~log|T"NT®| =d, . (9.18)
. n—oon
such that
(SRW x AGW) {(¥,T); Yn >0_x, e T} > 1~e. = (9-19)

Proof. For X € f' let 7 be the time of the kth exit, i.e., 7o := 0 and

Teqr o= inf {n > w; S"ﬂ(}'_, T) € Exit} .
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SRW x AGW-stationary for k > 1 with finite niear_l (the mean being the reciprocal of
the measure of the set Exit, according to the Kac lemma), we have
fzr"—“kzirﬁdSRwX AGW < oo,

k2

whence for AGW-a.e. T, - ,
f 3R GSRWr < oo,

whence
/ (Tk+1 — ) dSRWr = 0(k?) AGW-as.,

and, finally, - :
> / (Tt — Te) dSRWr = o(n®)  AGW-as.
k=1 o ’ .

From this, we get that the total amount of time"_>'_’vt1 that the random Wialk spends in the
first n generations of T has SRW-expectation o(n3)f A fortiori,

> MVISITr(x) = o(n®) AGW-ass. -.

Ixl=n
Now the walks which first hit T'*! at x and then stay in T(x) are among those which =~ ™
visit x at time > r;. Thus, ° ' ' '

VISITr (x) > MVISITy (x) > Hrr;(x)y(T(x)), o

whence by Theorems 9.4, 9.8, and Lemma 9.2, we have that,
lim —log ————— =14 SRW x AGW-as.
wvoon C MVISITy () ¢ SRW X AGW-as.
It follows from Egorov’s theorem that for any € >0, there is a set 4, C PathsInTrees
of SRW x AGW-measure greater than 1 — ¢ such that on A,

1 1 Voo

log —— 01
n OB MVISIT7 (x,)

converges uniformly to /d and Al‘x,,l /n converges uniformly to /. Dividing these limiting
relations, we see that o '

1 1
NI |
%l © MVISTT7 (5y)

converges uniformly to d on A.. Since |x,]| tends uniformly to infinity on A., there is a
function ¢, (k) tending to 0 as k — oo such that on A,

1 1
lxnl'log m —d| < e({xal).
Define 7
T .= [x eT; l_l log L '—.d‘ < e,(|x|)] U {root(T)},
lx| ° MVISIT7(x) .
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T® :={xe T(e); Vy<x yEe€ T(e)}.

By definition, on A., x, € T* for all n > 0, whence x, € T© for all n > 0. Also, the
growth of T is bounded above by

1 lel—’l MVISYTT (x)
lim su lo T"NT®| < limsup - lo
n-—>oop 8 I | n—-»oop 8 mfxeT"nT(‘) MVISITT(X) , e

i . .
< limsup - (logo(n®) + d~+ e(n)n) =d as.

'l—fm ‘
and below by
lim logK (l1—-e)=d as,

. where K7} (¢) is as.in Theorem 9.8 on HIT. (For the same reason, no subtree of growth -
. rate smaller than d exists on which the random walk can stay with positive probability.)
O : <

Remark. The same method shows that the corollary also holds for GW trees.

10. Open questions :

Séveral interesting questions remain open. ‘A-few follow. - -~~~ :

(i) Is it true, as we conjecture, that for every consistent flow rule ® # UNIF-as., the
Hausdorff dimension of Or < logm a.s.? We have shown in Theorem 7 1 that
this is the case provided that there exists a finite ©- -stationary measure equwalent
to GW. When do such measures exist? —

(i1) In the direction of comparison opposite to that of Theorem 1 1 is dim VIST a lower
bound for dim HARM7?

7. . (iii) For the general theory of §5, if a flow rule has a stationary measure equwalent to
“ GW, must the associated Markov chain be ergodic? .

(iv) It was shown in Theorem 3.2 that the speed of sxmple random walk on a Galton-—
Watson tree with mean m is strictly smaller than the speed of simple random walk on
a deterministic tree where each vertex has m children (m € Z). Since we have also
shown that simple random walk is essentiaily confined to a smaller subtree of growth
e, it is natural to ask whether its speed is, in fact, smaller than (e — 1) /(e“ +1).
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