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1 Introduction

Let B denote the standard Brownian sheet. That is, B is a centered Gaussian
process indexed by Ri with continuous trajectories and covariance structure

E{Bth} = min{sl,tl} X min{sz,tg}, s = (81,82), t= (tl,tg) S Ri_

In a canonical way, one can think of B as “two-parameter Brownian motion”.
In this article, we address the following question: “Given a measurable func-
tion v : R — Ry, what can be said about the distribution of 11[011}2 v(Bs) ds?”
The one-parameter variant of this question is both easy-to-state and well under-
stood. Indeed, if b designates standard Brownian motion, the Laplace transform
of fol v(bs+2) ds often solves a Dirichlet eigenvalue problem (in x), as prescribed
by the Feynman-Kac formula; cf. Revuz and Yor [6], for example. While ana-
logues of Feynman-Kac for B are not yet known to hold, the following highlights
some of the unusual behavior of f[O,lP v(B;) ds in case v = 1{g o) and, anecdo-
tally, implies that finding explicit formulee may present a challenging task.

Theorem 1.1
There exists a ¢y € (0,1), such that for all 0 < & < §,

1
exp { T e 10g2(1/<€)} < IP){f[(),1]21{B:,»>0} ds <e} < exp{ - colog2(1/€)}.
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Remark 1.2
By the arcsine law, the one-parameter version of the above has the following
simple form: given a linear Brownian motion b,

lim e 1/2P{fol{b sopds<e}p ==

e—0t

see [6, Theorem 2.7, Ch. 6]. O

Remark 1.3
R. Pyke (personal communication) has asked whether f 0.1]2 1{Bs; > 0} ds has

an arcsine-type law; see [5, Section 4.3.2] for a variant of thls question in discrete
time. According to Theorem 1.1, as ¢ — 0, the cumulative distribution function
of f[0,1]2 1(B,>0y ds goes to zero faster than any power of €. In particular, the
distribution of time (in [0, 1]?) spent positive does not have any simple extension
of the arsine law. O

Theorem 1.4
Let v(x) := 1j_1,1y(z), or v(z) := 1(_se,1)(x). Then, there exists a ¢; € (0,1),
such that for all e € (0, %),

exp{ - 10‘52%} <P{[ 2 0(Bs) ds < e} gexp{ _ Cl%}.

For a refinement, see Theorem 2.2 below.

Remark 1.5
The one—parameter version of Theorem 1.4 is quite simple. For example, let
= fo —1,1](bs) ds, where b is linear Brownian motion. In principle, one can

compute the Laplace transform of I by means of Kac’s formula and invert it to
calculate its distribution function. However, direct arguments suffice to show
that the two-parameter Theorem 1.4 is more subtle than its one-parameter
counterpart:

—00 < hmmfslnP{F <ep<LlimsupelnP{l' < e} <0, (1.1)
—0t e—0+t

where In denotes the natural logarithm function. We will verify this later on in
the Appendix. O

Remark 1.6

The arguments used to demonstrate Theorem 1.4 can be used to also estimate
the distribution function of additive functionals of form, e.g., f[0,1]2 v(Bs) ds,
as long as alj_,,) <Sv<PBl_gp), where 0 < r<R and 0 < a<f. Other
formulations are also possible. For instance, when al(_ ) Sv< L ). U



2 Proof of Theorems 1.1 and 1.4

Our proof of Theorem 1.1 rests on a lemma that is close in spirit to a Feynman—
Kac formula of the theory of one-parameter Markov processes.

Proposition 2.1
There exists a finite and positive constant co, such that for all measurable D C R

and all 0 < n,e < %.
P{f[ojl]Ql{BsgD} ds < e} <P{Vs € [0, 1?: B, € DE%*Z"} + exp{—c2e™ "},
where Dgs denotes the §-enlargement of D for any 6 > 0. That is,
Ds := {x € R: dist(z; D) <(5},

where ‘dist’ denotes Hausdorfl distance.

Proof  Forall t € [0,1]?, let |t| := max{t;,t2}. Then, it is clear that for any
g,0 > 0, whenever there exists some s € [0,1]? for which By, & Ds, either

L. supj,_y <172 |Bt — Bs| > 4, where the supremum is taken over all such
choices of s and ¢ in [0, 1]?; or

2. forallt € [0,1]? with |t—so| <e'/?, B; € D, in which case, we can certainly
deduce that f[o 12 1pe(By) dt > e.

Thus,
P{HSO € [07 1]2 : Bso g D5} < ]P{ SUP|t—s| < el/2 ‘Bt — B§| > 5} 4
'Hp{f[o,u?lDG (By) dt > e}

By the general theory of Gaussian processes, there exists a universal positive
and finite constant co such that

P{ sup [B;—B|>d}<exp{- 02525*1/2}. (2.1)

jt—s| <e1/2

Although it is well known, we include a brief derivation of this inequality for com-
pleteness. Indeed, we recall C. Borell’s inequality from Adler [1, Theorem 2.1]: if
{g+; t € T'} is a centered Gaussian process such that || g||7 = E{sup,c [g¢|} < o0
and whenever T is totally bounded in the metric d(s,t) = VE{(g — gs)?}

(s;,t€T),
2

A
B{suplge| > A+ llgllr} <2exp{ - S }.
teT or

where 02 = sup,cr E{¢?}. Eq. (2.1) follows from this by letting T = {(s,t) €
(0,1)2 x (0,1)? : |s — t|<e'/?}, g1,s = By — By and by making a few lines of
standard calculations. Having derived (2.1), we can let ¢ := €377 to obtain the
proposition. O



Proof of Theorem 1.1 Let D = (—o0,0) and use Proposition 2.1 to see that

]P’{f[o v 1iB,>0p < e} <P{ sup B, <5%_2”} + exp{—cae"}.
’ s€[0,1]2

Thus, the upper bound of Theorem 1.1 follows from Li and Shao [4], which
states that

lim sup loglP{ sup Bs<ep; < —o0.
c—o+ log?(1/e) {se[o,uz <)

(An earlier, less refined version, of this estimate can be found in Cséki et al.
[2].) To prove the lower bound, we note that

IED{f[O,l]Ql{Boo} ds < 2e — €%}

21?’{ sup BS<O}
s€le,1]?

= P{V(u,v) € [0,In(1)]?: )2 B(e7" ™) < 0},

and observe that the stochastic process (u,v) — B(e ", e~%)/e~(“t?)/2 is the
2-parameter Ornstein—Uhlenbeck sheet. All that we need to know about the
latter process is that it is a stationary, positively correlated Gaussian process
whose law is supported on the space of continuous functions on [0, 1]2. We define
c3 > 0 via the equation

e B(e %,e™")
e = P{V(U;, ’U) S [0, 1]2 : e(_(uTW < O}

By the support theorem, 0 < ¢3 < oo; this is a consequence of the Cameron-
Martin theorem on Gauss space; cf. Janson [3, Theorem 14.1]. Moreover, by
stationarity and by Slepian’s inequality (cf. [1, Corollary 2.4]),

P{f[0,1]21{35<0} ds < e}

. . - B(e7",e™")
2 11 P{V(u,v)e[z,z+1]><[],]+1]. W<O}
0<4,j<In(l/e)+1

= exp { —c3 1n2(€2/€)}.
This proves the theorem. O

Next, we prove Theorem 1.4.

Proof of Theorem 1.4 Let D, denote the collection of all points (s, t) € [0, 1]?,
such that st <e. Note that

1. Lebesgue’s measure of D, is at least e1n(1/e); and

2. if sup,cp_ |Bs| <1, then f[o 12 L-1,1)(Bs) ds > eln(1/e).



Thus,

IP{/ 1-11)(Bs) ds < eln(l/e)} SIP’{ sup |Bs| > 1}.

[0,1]2 s€D,

A basic feature of the set D, is that whenever s € D, then E{B?} <e. Since
E{supsep, |Bs|} <E{sup,c(o 152 |Bs|} < oo, we can apply Borell’s inequality to
deduce the existence of a finite, positive constant ¢4 < 1, such that for all € > 0,
P{sup,cp, |Bs| > 1/cs} <exp{—cy/c}. We apply Brownian scaling and possibly
adjust ¢4 to conclude that

P{ sup |Bs| > 1} Lemole,
s€D,

Consequently, we can find a positive, finite constant cs, such that for all € €
(0, %),
In(1
P{T < E}gexp{ —C5M}. (2.2)
€
This implies the upper bound in the conclusion of Theorem 1.4. For the lower

bound, we note that for all ¢ € (0, %), Lebesgue’s measure of D, is bounded
above by cgelog(1/e). Thus,

> i .
]P’{ /[071]2 1(o0,1)(Bs) ds < cGElog(l/s)} /IE”{ SE[O{%E\DE Bs > 1}

On the other hand, whenever s € [0,1]2\ D, s1s2 >¢. Thus,

WV

o dthoo. o~ )
P{ inf Oy, >

u,v > 0:
u+v < In(1/e)

]P’{/ 1(—oo,1)(Bs) ds < CGEIOg(l/E)}
[0.1]2

where O, , := B(e™% e™")/e~(“+)/2 is an Ornstein-Uhlenbeck sheet. Conse-
quently,

0<u,v<In(l/e)

IP’{/ 100,y (Bs) ds < cee log(l/&:)} ;]P’{ inf Ouw > 8—1/2}7
[0,1]2

By appealing to Slepian’s inequality and to the stationarity of O, we can deduce
that

IP’{/ ooy (By) ds < csclog(1/2) }
[0,1]2
> H ]P’{. inf  inf Oy, >€_1/2}
0<4,j <In(1/¢) iSusihl jSvsstl
In?(e/e)
- {P{ inf_ Oy, > 51/2}} ) (2.3)

0L u,w <



On the other hand, recalling the construction of O, we have

IF’{ inf Ou,v>8_1/2}

O0<u, vl

>]P’{ inf Bs;>e 6_1/2}

1<s,t<e

>]P’{BM >2e g=1/2 , sup ‘BS — Bl,1’ <e 5_1/2}

1<s1,52<¢€

:IP’{BM}QG 5*1/2} ~IP’{ sup |B57B111|<€€71/2}

1<s1,52<e

= C7P{B1,1 2 2e 571/2}7

for some absolute constant c¢; that is chosen independently of all £ € (0, é)
Therefore, by picking cg large enough, we can insure that for all € € (0, %),

IP{ inf 1OW, > 5*1/2} >exp{ —cse '}

0<u,v<
Plugging this in to Eq. (2.3), we obtain

IP’{ /[071]2 1(—oo1)(Bs) ds < cﬁslog(l/e)} > exp{ — cslnii#}. (2.4)

The lower bound of Theorem 1.4 follows from replacing e by €/ 1In(1/¢). O

The methods of this proof go through with few changes to derive the follow-
ing extension of Theorem 1.4.

Theorem 2.2
Suppose ¢ : Ry — R, is a measurable function such that (a) asr | 0, p(r) T
oo; and (b) there exists a finite constant v > 0, such that for all r € (0, %),
©(2r) = ~p(r). Define J, = f[o 12 1B, | < ysisse(sis)} ds. Then, there exist a
finite constant cy > 1, such that for all € € (0, 3),

€ €

eXp{ - 09¢2(m)10g2(1/5)} <P{J, <<} <eXp{ - %@Q(W)}'

Appendix: On Remark 1.5

In this appendix, we include a brief verification of the exponential form of the
distribution function of T'; cf. Eq. (1.1). Given any A > 1 and for { = (2A)71/2,
we have

E{e "} < ]E{exp(—)\fgv(bs) ds)}
< e M4+ P{ sup |bg|>1} (2.5)
0<s<(¢
< e M 4 1/20

= 2 VM2, (2.6)



By Chebyshev’s inequality, ]P’{fév(bs) ds < 5} <2infys1 e” V22 Choose

A = g2 to obtain the following for all € € (0, 3):

P{T < e} <21/, (2.7)

Conversely, we can choose § = (21)~'/2 and 7 € (0, 55 to see that

- 5 :
E{e M} > E{exp(—)\fov(bs) ds); 5<1r;f<1|b5\ > 1}
> e M P{lbs| >1+n, sup |by—bs| <n}.
0<s<1+0

Thus, we can always find a positive, finite constant ¢y that only depends on 7
and such that

E{e—)\l“} >c10exp{ — \/g [1 +(1 +n)%(1 —i—wg)]},

where limg_, o+ 15 = 0, uniformly in n € (0, 1%0). In particular, after negotiating
the constants, we obtain

li)\nliololf)fl/z InE{e '} >—21/2, (2.8)

Thus, for any € € (0, ﬁ)v

e~ V2A(1+o1(1)) gE{e"\F}@P’{F < 6} LN,

where 01(1) — 0, as A\ — oo, uniformly in € € (0, ﬁ). In particular, if we
choose € = (1 +n)4/2/A, where 1 > 0, we obtain

P{T < (1+7)y/2/A} > e V2AAHo2(D)

where 02(1) — 0, as A — oco. This, Eq. (2.7) and a few lines of calculations,
together imply Eq. (1.1). O

References

[1] R.J. Adler (1990). An Introduction to Continuity, Extrema, and Related Topics
for General Gaussian Processes, Institute of Mathematical Statistics, Lecture
Notes—Monograph Series, Volume 12, Hayward, California.

[2] E. Csdki, D. Khoshnevisan and Z. Shi (2000). Boundary crossings and the
distribution function of the maximum of Brownian sheet. Stochastic Processes
and Their Applications (To appear).

[3] S. Janson (1997). Gaussian Hilbert Spaces, Cambridge Tracts in Mathematics,
Cambridge University Press, Cambridge, UK



[4] W. V. Liand Q.-M. Shao (2000) Lower tail probabilities of Gaussian processes.
Preprint.

[5] R.Pyke (1973). Partial sums of matrix arrays, and Brownian sheets. In Stochas-
tic Analysis, 331-348, John Wiley and Sons, London, D. G. Kendall and E. F.
Harding: Ed.’s.

[6] D. Revuz and M. Yor (1991). Continuous Martingales and Brownian Motion,
Second Edition, Springer-Verlag, Berlin.

DAvAR KHOSHNEVISAN ROBIN PEMANTLE

University of Utah Ohio State University

Department of Mathematics Department of Mathematics

155 S 1400 E JWB 233 231 W. 18 Ave., Columbus, OH 43210
Salt Lake City, UT 84112—-0090 Columbus, OH 43210
davar@math.utah.edu pemantle@math.ohio-state.edu

http://www.math.utah.edu/"davar http://www.math.ohio-state.edu/ pemantle



